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Abstract— We consider the problem of sensor selection for
time-optimal detection of a hypothesis. We consider a group
of sensors transmitting their observations to a fusion center.
The fusion center considers the output of only one randomly
chosen sensor at the time, and performs a sequential hypothesis
test. We study sequential probability ratio test with randomized
sensor selection strategy. We present optimal open loop sensor
selection policies for three distinct cost functions. We utilize
these policies to develop an adaptive sensor selection policy. We
rigorously characterize the performance of the adaptive policy
and show that it asymptotically achieves the performance of
the globally optimal policy.

I. INTRODUCTION

The advent of cheap sensors has resulted in their extensive
deployment. This makes plethora of information available
for decision making. Such a data overload diminishes the
efficiency of the operator processing this information and is
often the root cause for missing critical information [10].
This calls for development of policies that help the operator
focus her attention to the most pertinent information.

In large scale sensor networks, it may not be energy
efficient to have all the sensors activated all the time. An
energy efficient technique is to activate the most pertinent
sensors and censor the remaining sensors. This needs a
characterization of the most pertinent sensors.

In this paper, we consider the problem of quickest decision
making and the Sequential Probability Ratio Test (SPRT).
Recent advances in cognitive psychology [2] show that
human performance in decision making tasks, such as the
”two-alternative forced choice task,” is well modeled by a
drift diffusion process, i.e., by the continuous-time version
of SPRT. Roughly speaking, modeling decision making as
an SPRT process may be appropriate even for situations in
which a human is making the decision, e.g., an operator
processing the feeds of a camera network [3].

Recent years have witnessed a significant interest in the
problem of sensor selection for optimal detection and estima-
tion. Tay et al [13] discuss the problem of censoring sensors
for decentralized binary detection. They assess the quality of
sensor data by the Neyman-Pearson and a Bayesian binary
hypothesis test and decide on which sensors should transmit
their observation at that time instant. Gupta et al [6] focus on
stochastic sensor selection and minimize the error covariance
of a process estimation problem. Isler et al [7] propose
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geometric sensor selection schemes for error minimization
in target detection. Debouk et al [5] formulate a Markovian
decision problem to ascertain some property in a dynamical
system, and choose sensors to minimize the associated cost.
Williams et at [15] use an approximate dynamic program
over a rolling time horizon to pick a sensor-set that optimizes
the information-communication trade-off. Zhao et al [16]
study information driven sensor collaboration. They study
information gain and cost trade-off in target tracking through
directed diffusion routing. Wang et al [14] design entropy-
based sensor selection algorithms for target localization.
Joshi et al [8] present a convex optimization-based heuristic
to select multiple sensors for optimal parameter estimation.
Bajović et al [1] discuss sensor selection problems for
Neyman-Pearson binary hypothesis testing in wireless sensor
networks. Castañón [4] study an iterative search problem as
a hypothesis testing problem over a fixed horizon.

In this paper, we analyze the problem of time-optimal
sequential decision making in the presence of multiple
switching sensors and determine a sensor selection strategy
to achieve the same. We consider a sensor network where all
sensors are connected to a fusion center. The fusion center,
at each instant, receives information from only one sensor
and implements the SPRT with the gathered information.
The sensors may be heterogeneous (e.g., a camera sensor,
a sonar sensor, a radar sensor, etc), hence, the time needed
to collect, transmit, and process data may differ significantly
for these sensors. We extend our previous work [12] where
we develop a version of the SPRT algorithm in which the
sensor is randomly switched at each iteration, and determine
optimal open loop sensor selection policies that minimize
the expected decision time. Here, we develop closed loop
sensor selection policies where we learn the true state of the
nature and adapt our sensor selection policy accordingly. We
rigorously analyze this closed loop policy and show that it
is asymptotically optimal. The major contributions of this
paper are:

i) We present a version of the SPRT where the sensor is
selected randomly at each observation.

ii) We present optimal open loop policies for this version
of SPRT for three distinct cost functions.

iii) We develop an adaptive sensor selection policy and
rigorously characterize its performance.

iv) We provide asymptotic bounds on performance of
SPRT with multiple sensors under any sensor selection
policy.

v) We show that our adaptive sensor selection policy is
asymptotically optimal.

The remainder of the paper is organized in following
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way. Some preliminaries are presented in Section II. In
Section III, we present the problem setup. We present the
SPRT procedure with randomized sensor selection strategy
in Section IV. In Section V, we present open loop policies for
time-optimal sensor selection. An adaptive sensor selection
policy is presented in Section VI. We elucidate the results
obtained through some numerical examples in Section VII.
Our concluding remarks are in Section VIII.

II. PRELIMINARIES

A. Kullback-Leibler divergence

Given two probability mass functions f1 : S → R≥0 and
f2 : S → R≥0, where S is some countable set, the Kullback-
Leibler divergence D : L1 ×L1 → R∪{+∞} is defined by

D(f1, f2) = Ef1

[
log

f1(X)

f2(X)

]
=

∑
x∈supp(f1)

f1(x) log
f1(x)

f2(x)
,

where supp(f1) is the support of f1. It is known that 0 ≤
D(f1, f2) ≤ +∞, that the lower bound is achieved if and
only if f1 = f2, almost surely, and that the upper bound is
achieved if and only if the support of f2 is a strict subset
of the support of f1. Note that equivalent statements can be
given for probability distribution functions.

B. Sequential Probability Ratio Test

Consider two hypotheses H0 and H1 with their condi-
tional probability distribution functions f0(y) := f(y|H0)
and f1(y) := f(y|H1). Given repeated measurements
{y1, y2, . . .}, the SPRT algorithm collects evidence about
the hypotheses and compares the integrated evidence to two
thresholds η0 and η1 in order to decide on a hypothesis. The
SPRT procedure is presented in Algorithm 1.

Algorithm 1 Sequential Probability Ratio Test
1: at time τ ∈ N, collect sample yτ
2: compute the log likelihood ratio λτ := log f1(yτ )

f0(yτ )

3: integrate evidence up to current time Λτ :=
∑τ
t=1 λt

% decide only if a threshold is crossed
4: if Λτ > η1, then accept H1

5: if Λτ < η0, then accept H0

6: else (Λτ ∈ ]η0, η1[) continue sampling (step 1:)

Given the probability of false alarm P(H1|H0) = α0 and
probability of missed detection P(H0|H1) = α1, the Wald’s
thresholds η0 and η1 are defined by

η0 = log
α1

1− α0
, and η1 = log

1− α1

α0
. (1)

Let Nd denote the number of samples required for decision
using SPRT. Its expected value is approximately [11] given
by

E[Nd|H0] ∼= −
(1− α0)η0 + α0η1

D(f0, f1)
, and

E[Nd|H1] ∼=
α1η0 + (1− α1)η1

D(f1, f0)
.

(2)

The approximations in equation (2) are referred to as the
Wald’s approximations [11]. It is known that these ex-
pressions are accurate for large thresholds and small error
probabilities.

III. PROBLEM SETUP

We consider a group of n agents (e.g., robots, sensors,
or cameras), which take measurements and transmit them to
a fusion center. We generically call these agents “sensors.”
We identify the fusion center with a person supervising the
agents, and call it the “supervisor.” The goal of the supervisor
is to decide, based on the measurements it receives, which
one of two alternative hypotheses or “states of nature” is
correct. To do so, the supervisor implements the SPRT al-
gorithm with the collected observations. Given pre-specified
accuracy thresholds, the supervisor aims to make a decision
in minimum time.

Fig. 1. The agents A transmit their observation to the supervisor S, one
at the time. The supervisor performs SPRT to decide on the underlying
hypothesis.

We assume that there are more agents than hypotheses
(i.e., n > 2), and that only one sensor can transmit to the
supervisor at each (discrete) time instant. Equivalently, the
supervisor can process data from only one of the n agents
at each time. Thus, at each time, the supervisor must decide
which sensor should transmit its measurement. We aim to
determine the optimal sensor(s) that the supervisor must
observe in order to minimize the decision time.

We adopt the following notation. Let {H0, H1} denote the
two hypotheses. The time required by sensor s ∈ {1, . . . , n}
to collect, process and transmit its measurement is a random
variable Ts ∈ R>0, with finite first and second moments. We
denote the expected value of processing time of sensor s by
T̄s. Let st ∈ {1, . . . , n} indicate which sensor transmits its
measurement at time t ∈ N. The measurement of sensor s
at time t is y(t, s). For the sake of convenience, we denote
y(t, st) by yt. For k ∈ {0, 1}, let fks (y) denote the proba-
bility that the measurement at sensor s is y conditioned on
the hypothesis Hk, and αk denote the desired bound on the
probability of incorrect decision conditioned on hypothesis
Hk. We make the following standard assumption:
Conditionally-independent observations: Conditioned on

hypothesis Hk, the measurement y(t, s) is independent
of y(t̄, s̄), for (t, s) 6= (t̄, s̄).

We adopt a randomized strategy in which the supervisor
chooses a sensor randomly at each time instant; the proba-
bility to choose sensor s is stationary and given by qs, for
s ∈ {1, . . . , n}. Also, the supervisor uses the data collected
from the randomized sensors to execute the SPRT. We
study our proposed randomized strategy under the following
assumptions about the sensors.
Distinct sensors: There are no two sensors with identical

conditioned probability distribution fks (y) and process-
ing time T̄s. (If there are such sensors, we club them
together in a single node, and distribute the probability
assigned to that node equally among them.)
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Finitely-informative sensors: Each sensor s ∈ {1, . . . , n}
has the following property: for hypotheses k, j ∈ {0, 1},
k 6= j

i) the support of fks is equal to the support of f js ,
ii) fks 6= f js almost surely in fks , and

iii) conditioned on hypothesis Hk, the first and second
moment of log(fks (Y )/f js (Y )) are finite.

Remark 1: The finitely-informative sensors assumption is
equivalently restated as follows: each sensor s ∈ {1, . . . , n}
satisfies 0 < D(f0

s , f
1
s ),D(f1

s , f
0
s ) < +∞. �

IV. SPRT WITH RANDOMIZED SENSOR SELECTION

We call the SPRT with the data collected from n sensors
while observing only one randomly chosen sensor at a time
as the SPRT with randomized sensor selection. The sensor
to be observed at each time is sampled from a stationary dis-
tribution, and the probability of choosing sensor s is qs. The
SPRT with randomized sensor selection is defined identically
to the Algorithm 1, where the first two instructions (steps 1:
and 2:) are replaced by:

1: at time τ ∈ N, select a random sensor sτ according to
the probability vector q and collect a sample ysτ

2: compute the log likelihood ratio λτ := log
f1
sτ (yτ )

f0
sτ (yτ )

Theorem 2 (SPRT with randomized sensor selection):
Assume finitely-informative sensors {1, . . . , n}, and
independent observations conditioned on hypotheses Hk,
k ∈ {0, 1}. For the SPRT with randomized sensor selection
the following statements hold:

i) Conditioned on a hypothesis, the sample size for
decision Nd is finite almost surely.

ii) The sample size for decision Nd satisfies

E[Nd|H0] ∼= −
(1− α0)η0 + α0η1∑n

s=1 qsD(f0
s , f

1
s )
, and

E[Nd|H1] ∼=
α1η0 + (1− α1)η1∑n

s=1 qsD(f1
s , f

0
s )
.

(3)

iii) The decision time Td satisfies
E[Td|Hk] ∼= E[Nd|Hk]

n∑
s=1

qsT̄s. (4)

Proof: Conditioned on hypothesis Hk, the observa-
tion yt is sampled from the distribution fks with probabil-
ity qs, s ∈ {1, . . . , n}. Therefore, the pairs {(st, yt)}t∈N
are i.i.d. Further, E[λt|H0] = −

∑n
s=1 qsD(f0

s , f
1
s ), and

E[λt|H1] =
∑n
s=1 qsD(f1

s , f
0
s ). The remaining proof of the

first two statements follow similar to the proof of SPRT
in [11].

Let {T1, . . . , TNd} be the sequence of the processing times
at each iteration. Note that the decision time Td =

∑Nd
`=1 T`.

It follows from Wald’s identity [9] that E[Td|Hk] =
E[Nd|Hk]E[T ]. This completes the proof.

V. STATIONARY SENSOR SELECTION

In this section we consider sensor selection problems
with the aim to minimize the expected decision time of
the SPRT with randomized sensor selection. As exemplified
in Theorem 2, the problem features multiple conditioned

decision times and, therefore, multiple distinct cost functions
are of interest. In Scenario I below, we aim to minimize the
decision time conditioned upon one specific hypothesis being
true; in Scenarios II and III we will consider worst-case and
average decision times. In all three scenarios the decision
variables take values in the probability simplex. We state
the results without proofs. The interested reader may refer
to [12] for detailed proofs.

Before we pose the problem of optimal sensor selection,
we introduce the following notation. We denote the prob-
ability simplex in Rn by ∆n−1, and the vertices of the
probability simplex ∆n−1 by ei, i ∈ {1, . . . , n}. We refer
to the line joining any two vertices of the simplex as an
edge. Finally, we define the conditional expected decision
time gk : ∆n−1 → R, k ∈ {0, 1}, by gk(q) = q · T /q · Ik,
where T ∈ Rn>0 is the array of expected processing times,
I0 ∈ Rn>0 is an array with elements I0

s = −D(f0
s , f

1
s )/((1−

α0)η0 + α0η1), and I1 ∈ Rn>0 is an array with elements
I1
s = D(f1

s , f
0
s )/(α1η0 + (1− α1)η1).

A. Scenario I (Optimization of conditioned decision time):

We consider the case when the supervisor is trying to
validate the true hypothesis. The corresponding optimization
problem for a fixed k ∈ {0, 1} is:

minimize
q∈∆n−1

gk(q). (5)

The conditional expected decision time gk is a quasi-linear
function and achieves its minimum at some vertex of the
feasible simplex. This is rigorously characterized in the
following theorem:

Theorem 3 (Optimization of conditioned decision time):
The solution to the minimization problem (5) is q∗ = es∗ ,
where s∗ is given by

s∗ = argmin{T̄s/Iks | s ∈ {1, . . . , n}},

and the minimum objective function is E[T ∗d |Hk] = T̄s∗/I
k
s∗ .

B. Scenario II (Optimization of the worst decision time):

We consider the multi-objective optimization problem of
minimizing both conditional expected decision times. We
construct single aggregate objective function by considering
the maximum of the two objective functions. The associated
optimization problem is:

minimize
q∈∆n−1

max
{
g0(q), g1(q)

}
. (6)

The conditional expected decision times gk are monotone
along any line in the feasible simplex, and hence, the solution
of the optimization problem (6) lies either at some vertex of
the feasible simplex or at the intersection of the graphs of
g0 and g1. Further, the minimum along the the intersection
of the graphs of g0 and g1 is achieved at some edge of
the feasible simplex. To rigorously characterize these ideas,
we introduce some notation. We assume that the sensors
have been re-ordered such that the entries in I0 − I1 are in
ascending order. We further assume that, for I0−I1, the first
m entries, m < n, are non positive, and the remaining entries
are positive. For each s ∈ {1, . . . ,m}, r ∈ {m+ 1, . . . , n}
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and i ∈ {1, . . . , n}, we define the optimal point at an edge
joining vertices er and es by

q̃sri =


(I0
r − I1

r )

(I0
r − I1

r )− (I0
s − I1

s )
, if i = s,

1− q̃srs , if i = r,

0, otherwise.

The optimal edge and the associated minimum value is:

(s∗, r∗) ∈ argmin
r∈{m+1,...,n}
s∈{1,...,m}

(I0
r − I1

r )T̄s − (I0
s − I1

s )T̄r
I1
s I

0
r − I0

s I
1
r

, and

gtwo-sensors(s
∗, r∗) =

(I0
r∗ − I1

r∗)T̄s∗ − (I0
s∗ − I1

s∗)T̄r∗

I1
s∗I

0
r∗ − I0

s∗I
1
r∗

.

The optimal vertex and associated minimum value is:

w∗ = argmin
w∈{1,...,n}

max

{
T̄w
I0
w

,
T̄w
I1
w

}
, and

gone-sensor(w
∗) = max

{
T̄w∗

I0
w∗
,
T̄w∗

I1
w∗

}
.

Theorem 4 (Worst case optimization): For the optimiza-
tion problem (6), an optimal probability vector is given by:

q∗ =

{
ew∗ , if gone-sensor(w

∗) ≤ gtwo-sensors(s
∗, r∗),

q̃s
∗r∗ , if gone-sensor(w

∗) > gtwo-sensors(s
∗, r∗),

and the minimum value of the objective function is:

min {gone-sensor(w
∗), gtwo-sensors(s

∗, r∗)} .

C. Scenario III (Optimization of the average decision time):

For the multi-objective optimization problem of minimiz-
ing both conditional expected decision times, we formulate
the single aggregate objective function as the average of
these decision times. Let πk be the prior probability of Hk

being true, the resulting optimization problem is posed in the
following way:

minimize
q∈∆n−1

π0g
0(q) + π1g

1(q). (7)

For a generic set of sensors, the Jacobian of the average
expected decision time does not vanish in the interior of
the feasible simplex, and the optimal solution lies at some
edge of the simplex. The global optimal can be computed by
comparing the optimal values at each edge. We rigorously
characterize the solution in the following theorems:

Theorem 5 (Optimal number of sensors): For n > 2, if
each 3 × 3 submatrix of the matrix

[
T −I0 −I1

]
∈

Rn×3 is full rank, then the following statements hold:
i) every solution of the optimization problem (7) lies on

an edge of the probability simplex ∆n−1; and
ii) every time-optimal policy requires at most two sensors

to be observed.
Theorem 6 (Optimization on an edge): Given two ver-

tices es and er, s 6= r, of the probability simplex ∆n−1,
then for the problem (7), the following statements hold:

i) if g0(es) < g0(er), and g1(es) < g1(er), then the
minima, along the edge joining es and er, lies at es,
and optimal value is given by π0g

0(es) + π1g
1(es);

and

ii) if g0(es) < g0(er), and g1(es) > g1(er), then the
minima, along the edge joining es and er, lies at the
point q∗ = (1− ν∗)es + ν∗er, where

ν∗ = min(1,
( 1

1 + µ

)+

), and

µ =
I0
r

√
π1(T̄sI1

r − T̄rI1
s )− I1

r

√
π0(T̄rI0

s − T̄sI0
r )

I1
s

√
π0(T̄rI0

s − T̄sI0
r )− I0

s

√
π1(T̄sI1

r − T̄rI1
s )
,

and the optimal value is given by

π0g
0(q∗) + π1g

1(q∗) =
π0g

0(es) + π1g
1(es), if ν∗ = 0,

π0g
0(er) + π1g

1(er), if ν∗ = 1,(√
π0(T̄sI1r−T̄rI1s )
I0s I

1
r−I0r I1s

+
√

π1(T̄rI0s−T̄sI0r )
I0s I

1
r−I0r I1s

)2

, otherwise.

VI. ADAPTIVE SENSOR SELECTION

In the previous sections, we considered the open loop
policies, i.e., we did not incorporate the information available
from the observations to modify our policy. We now present
an adaptive policy where we learn the likelihood of the true
hypothesis from each observation, and utilize it to modify
our sensor selection policy at each iteration. The SPRT with
adaptive sensor selection policy is presented in Algorithm 2.
We now present a formal analysis of this policy.

Algorithm 2 SPRT with adaptive sensor selection policy
1: set (π0, π1) = (0.5, 0.5)
2: solve problem (7) to obtain q∗

3: at time τ ∈ N, select a random sensor sτ according to
the probability vector q∗ and collect a sample ysτ

4: compute the log likelihood ratio λτ := log
f1
sτ (yτ )

f0
sτ (yτ )

5: integrate evidence up to current time Λτ :=
∑τ
t=1 λt

6: compute π0 = 1/(1 + exp(Λτ )), π1 = 1− π0

% decide only if a threshold is crossed
7: if Λτ > η1, then accept H1

8: if Λτ < η0, then accept H0

9: else (Λτ ∈ ]η0, η1[) continue sampling (step 2:)

We introduce the following notation. As stated in Theo-
rem 3, conditioned on a hypothesis, optimal policy is to pick
one sensor deterministically. Let s∗k be the optimal sensor
conditioned of hypothesis Hk.

For r, s ∈ {1, . . . , n}, we define the following quantities

ηmax
rs = max

{(
I1
r

I0
r

)2

,

(
I1
s

I0
s

)2}(
(T̄rI

0
s − T̄sI0

r )

(T̄sI1
r − T̄rI1

s )

)+

,

ηmax = max{ηmax
rs | r, s ∈ {1, . . . , n}, r 6= s},

ηone
s = ((g0(es∗1 )− g0(es))

+/(g1(es)− g1(es∗1 )), and
ηone = max{ηone

s | s ∈ {1, . . . , n} \ {s∗1}}.

Let Ds(0) := D(f0
s , f

1
s ), and Ds(1) := D(f1

s , f
0
s ). We

now state some asymptotic properties of the adaptive sensor
selection policy.

Theorem 7 (Adaptive sensor selection): Given finitely in-
formative sensors {1, . . . , n}, the following statements hold
for the SPRT with adaptive sensor selection policy:
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i) Conditioned on hypothesis Hk, the sample size re-
quired to cross a threshold (−1)k+1η, η ∈ R≥0 is
finite almost surely.

ii) Conditioned on a hypothesis, the sample size for
decision Nd → +∞ almost surely as α0, α1 → 0+.

iii) Conditioned on hypothesis Hk, the sample size for
decision Nd satisfies
Nd
|ηk|
→ 1

Ds∗k(k)
, almost surely, as α0, α1 → 0+.

iv) The expected sample size satisfies

E[Nd|Hk]

|ηk|
→ 1

Ds∗k(k)
, as α0, α1 → 0+.

v) Conditioned on hypothesis Hk, the decision time Td
satisfies

Td
|ηk|
→

T̄s∗k
Ds∗k(k)

, almost surely, as α0, α1 → 0+.

vi) The expected decision time satisfies

E[Td|Hk]

|ηk|
→

T̄s∗k
Ds∗k(k)

, as α0, α1 → 0+.

Proof: The proof of the first two statements follow from
Theorem 1 and Lemma 1 in [12]. Note that the observations
in the adaptive policy are not identically distributed, but the
proof of convergence requires only independence and sensors
being finitely informative.

To prove the third statement, we observe from Theorem 6
that the optimal solution on the edge joining vertex es and
er always occurs at a vertex if µ ≤ 0, which holds if
π1/π0 > ηmax

rs . Therefore, the solution on any edge lies at a
vertex if π1/π0 > ηmax. Without loss of generality assume
that hypothesis H1 is true. From Theorem 3, it follows
that g1(es∗1 ) ≤ g1(es) for all s ∈ {1, . . . , n}. It can be
verified that π0g

0(es∗1 ) + π1g
1(es∗1 ) ≤ π0g

0(es) + π1g
1(es)

if π1/π0 > ηone
s . Therefore, it follows that the adaptive sensor

selection policy always picks sensor s∗1 if log(π1/π0) > η∗,
where η∗ = log(max{ηmax, ηone}). Note that η∗ < +∞, and
hence, from the first statement of the theorem, conditioned
on hypothesis H1, the SPRT with adaptive sensor selection
crosses η∗ in finite time, almost surely. Let N∗ be this
time. From second statement of the theorem, it follows that
Nd → +∞ almost surely as α0, α1 → 0+. We now observe
that

1

Nd

Nd∑
t=1

log
f1
st(yt)

f0
st(yt)

=
1

Nd

N∗∑
t=1

log
f1
st(yt)

f0
st(yt)

+
Nd −N∗

Nd

1

Nd −N∗
Nd∑

t=N∗+1

log
f1
s∗1

(yt)

f0
s∗1

(yt)
. (8)

Note that the observations are i.i.d. for t ≥ N∗+1. Therefore,
it follows from strong law of large numbers [9] that

lim
Nd→+∞

1

Nd

Nd∑
t=1

log
f1
st(yt)

f0
st(yt)

= E
[

log
f1
s∗1

(yt)

f0
s∗1

(yt)

∣∣∣∣H1

]
= Ds∗1 (1).

Since, Nd is sample size for decision, and α0, α1 → 0+,
there is no false alarm or mis-detection, it follows

Nd∑
t=1

log
f1
st(yt)

f0
st(yt)

> η1, and
Nd−1∑
t=1

log
f1
st(yt)

f0
st(yt)

< η1.

We take lim inf and lim sup as Nd → +∞, respectively, on
the two inequalities to obtain

lim
Nd→+∞

Nd∑
t=1

log
f1
st(yt)

f0
st(yt)

= η1,

and thus, the third statement of the Theorem follows.
The proof of the remaining three statements is similar to

the proof of Theorem 1 in [12] with a construction as in the
proof of third statement.

Now we establish bounds on the performance of the
adaptive policy. We denote the least expected decision time,
conditioned on hypothesis Hk, among all the sensor selection
policies by T kmin. Let Tadp be the decision time of the adaptive
sensor selection policy. We now establish the following
bounds on the performance:

Theorem 8 (Global bounds on performance): The
following statements hold for the SPRT with adaptive
sensor selection policy as α0, α1 → 0+

i) Conditioned on a hypothesis Hk, the least expected
decision time among all the sensor selection policies
satisfies T kmin ≥ gk(es∗k).

ii) The expected decision time for the adaptive sensor se-
lection policy, conditioned on hypothesis Hk, satisfies
E[Tadp|Hk] ≤ min {gone-sensor(w

∗), gtwo-sensors(s
∗, r∗)} .

Proof: We first establish the global lower bound. We
first note that as α0, α1 → 0+, −η0, η1 → +∞. It is known
that conditioned on a hypothesis, the decision time of the
SPRT Td → +∞ almost surely as −η0, η1 → 0+ [12].
Further, as −η0, η1 → +∞, the correct decision is made
with probability one. Without loss of generality, suppose H1

is true. Suppose that xs is the number of times the sensor s
is chosen. For a given expected decision time T̄d, the optimal
policy will maximize the expected aggregate likelihood ratio.
Therefore, the optimal sensor selection policy is the solution
of the following optimization problem

maximize
xs∈Z≥0

∑n
s=1 xsDs(1)

subject to
∑n
s=1 xsT̄s ≤ T̄d.

(9)

The relaxation of the optimization problem (9) is a linear
program. Therefore, the relaxed solution lies at one of the
vertex of the feasible simplex and is given by:

xs =

{
T̄d/T̄s, if s = argmaxr∈{1,...,n}Dr(1)/T̄r,

0, otherwise.
(10)

The non-zero component of the solution in equation (10)
may not be an integer, but the fractional part is negligible as
T̄d → +∞. This establishes the first statement.

We observe that π0g
0(q)+π1g

1(q) ≤ max(g0(q), g1(q)),
and the second statement follows immediately.

VII. NUMERICAL EXAMPLES

We now elucidate on the results in previous sections with
an example. We first demonstrate that the expressions for
expected decision time in equation (4) provide a lower bound
to the empirical expected decision time. We show that the
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optimal policies for the worst case decision time and the
average expected decision time in Section V may yield an
expected decision time much larger than the optimal expected
decision time conditioned on the true hypothesis. We show
that the adaptive sensor selection policy works better than
the open loop optimal policies for the worst case decision
time and the average expected decision time.

Example 9: We consider a set of four sensors. Con-
ditioned on hypothesis H0, the observations from each
sensor is normally distributed with mean value {0, 0, 0, 0}
and variance {1, 4, 9, 16}, respectively. Conditioned on hy-
pothesis H1, the observations from each sensor are nor-
mally distributed with mean value {1, 1, 1, 1} and variance
{9, 1, 16, 4}, respectively. The expected processing time of
sensors are {4, 5, 10, 2} secs, respectively.

A comparison of the empirical and analytic conditional
expected decision time for different sensor selection proba-
bilities is shown in Figure 2. It can be seen that the analytic
expected decision time is a lower bound to the empirical
expected decision time. Conditioned on H1, the optimal
policy for the average expected decision time performs very
badly.

A sample evolution of the SPRT with adaptive sensor
selection policy is shown in Figure 3. It can be seen that
as the posterior probability of a particular hypothesis being
true increases, the adaptive policy chooses the best sensor
for that hypothesis with higher probability. In this example,
sensor 1 is the best for hypothesis H1, while sensor 4 is the
best for hypothesis H0.

The performance of the adaptive policy is shown in Fig-
ure 4. It can be seen that as the error probability decreases,
the expected decision time of the adaptive policy is very
close to the optimal conditional decision time.

Fig. 2. Empirical and analytic expected decision times conditioned on
hypothesis H1. The solid blue line and blue + represent analytic and
empirical expected decision time for the optimal policy for conditional
decision time. The dotted black line and black triangles represent analytic
and empirical expected decision time for the optimal policy for worst
decision time. The dashed red line and red × represent analytic and
empirical expected decision time for the optimal policy for average expected
decision time.

Fig. 3. A sample evolution of the SPRT with adaptive sensor selection
policy. In the figure on left, the solid blue line represents the posterior
probability of H1 being true and the dashed red line shows the posterior
probability of H0 being true. In the figure on right, solid blue line represents
the selection probability of sensor 1, while the dashed red line represents
the selection probability of sensor 4. All other sensors have zero selection
probability.

VIII. CONCLUSIONS
In this paper, we considered a sequential decision making

problem with switching sensors. We studied version of the
SPRT algorithm where the sensor switches at each observa-
tion. We used this sequential procedure to decide reliably. We

Fig. 4. Performance of the adaptive sensor selection policy. The solid blue
line represents the expected decision time for the adaptive sensor selection
policy. The dotted black line and dashed red line represent the optimal worst
case expected decision time and the optimal conditioned expected decision
time, respectively.

studied the set of optimal sensors to be observed in order to
decide in minimum time. We observed the trade off between
the information carried by a sensor and its processing time. A
randomized sensor selection strategy was adopted. Optimal
open loop policies were developed for three performance
metrics. An adaptive sensor selection policy was developed
that learns the true hypothesis and accordingly adapts the
sensor selection strategy. The asymptotic performance of
the adaptive sensor selection policy was characterized. An
asymptotic lower bound on the performance of SPRT with
multiple sensor for any sensor selection strategy was devel-
oped. It was shown that the adaptive sensor selection policy
achieves this lower bound asymptotically.
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