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Abstract— In this paper, finite time stabilization of a per-
turbed double integrator is considered, incorporating jumps in
the velocity at the unstable equilibrium. Rigid body inelastic
impacts are considered. A robust control synthesis is presented
in the presence of uniformly bounded persistent disturbances.
The second order sliding mode (twisting) controller is utilized.
Firstly, a non-smooth state transformation is employed to
transform the original system into a jump-free system. The
transformed system is shown to be a switched homogeneous sys-
tem with negative homogeneity degree whose solutions are well-
defined. Secondly, a non-smooth Lyapunov function is identified
to establish uniform asymptotic stability of the transformed
system. The global finite time stability then follows from the
homogeneity principle of switched systems. Thus, using a single
Lyapunov function, the global finite time stability of the origin
of the system with velocity jumps is established without having
to analyze the Lyapunov function at the jump instants. A finite
upper bound on the settling time is also computed.

I. INTRODUCTION

The study of discontinuous systems has received consid-
erable interest amongst control theorists and practitioners.
Discontinuous systems are studied in very different research
fields such as economics, electrical circuit theory, mechanical
engineering, biosciences, systems and control theory. Many
different frameworks therefore exist to describe various
classes of discontinuous systems, for example, differential
inclusions [1], measure differential inclusions [2] and com-
plementarity systems [3] to name a few. Discontinuities
appear either due to the very nature of the system dynamics
or due to discontinuous feedback control. A survey article on
discontinuous dynamical systems can be found in [4], which
discusses various kinds of discontinuities, their respective so-
lutions concepts and stability tools available in the literature.
The monograph [3] details methods for specifying solutions,
the Lyapunov stability framework and control synthesis for
non-smooth mechanical systems with friction and collision.
The rigorous theoretical developments in the theory of non-
smooth mechanics have been accompanied by applications
such as biped robots [5], [6], [7] thereby emphasizing the
importance of control theoretic aspects.

The main focus of this paper is on mechanical systems
with resets in velocity. A linear double integrator is con-

This work was supported by EPSRC via research grant EP/G053979/1.
The second author wishes to thank Consejo Nacional de Ciencia y
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sidered with jumps in its velocity when it hits a constraint
surface. The velocity undergoes an instantaneous jump when
the inelastic collision occurs. It is assumed in this paper
that the restitution in velocity, representing loss of energy
which occurs at the time of impact, is fully known. It is
clear from the existing Lyapunov stability frameworks [3],
[8] that a jump in the Lyapunov function occurs whenever the
velocity undergoes a jump. Therefore the Lyapunov stability
needs to be specifically defined for all possible jumps in
the Lyapunov function. An alternative approach is followed
in this paper. First, a non-smooth state transformation [3]
is utilized to render a jump-free system with its solutions
clearly defined in the sense of Filippov [1]. As an immediate
consequence, the resulting transformed system turns out to
be a valid candidate for the stability analysis via smooth and
non-smooth Lyapunov functions. A non-smooth Lyapunov
function is identified for proving global uniform asymptotic
stability. In turn, the quasi-homogeneity principle [9] is
shown to be applicable to the transformed system which,
while being locally homogeneous with negative homogeneity
degree, proves to be finite time stable.

The work presented contains several contributions. Firstly,
although results exist for asymptotic stabilization of con-
tinuous and discrete dynamics [8], finite time stabilization
in the presence of velocity jumps is a novel concept. A
finite upper bound on the settling time is also computed.
Secondly, the presented method, substantiated by a single
non-strict Lyapunov function, gives proof of global finite
time stability of the transformed and the original impact
system without having to analyze the jumps of the Lyapunov
function. Finally, the ‘twisting’ controller [10] is shown to
stabilize the double integrator with impacts in finite time.

II. PROBLEM STATEMENT

Consider the following open loop system [3]:

ẋ1 = x2
ẋ2 = u(x1,x2)+ω(t)
x1 ≥ 0
x2(t+k ) =−ē x2(t−k ) if x2(t−k )< 0, x1(tk) = 0,

(1)

where x1,x2 are the position and the velocity respectively,
u is the control input, ω(t) is disturbance, tk is the kth

jump time instant where the velocity undergoes a reset or
jump, ē represents the loss of energy and x2(t+k ) and x2(t−k )
represent right and left limits respectively of x2 at the jump
time tk. The third inequality represents the dynamics with
unilateral constraints on position x1 [3]. It is assumed that the
jump event occurs instantaneously within an infinitesimally
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small time and hence mathematically can be represented by
Newton’s restitution rule [3], [6] given by the fourth equality
of (1). The twisting control law [10] in (x1,x2) coordinates
is given as follows:

u(x1,x2) =−µ1 sign(x2)−µ2 sign(x1) (2)

where, µ2 > µ1 > 0. It should be noted that the above control
law undergoes a jump whenever the state x2 undergoes a
jump. As in [9], the disturbance ω is assumed to admit a
uniform upper bound

esssup
t≥0
|ω(t)| ≤M (3)

on its magnitude such that

0 < M < µ1 < µ2−M. (4)

It is noteworthy that the solutions of the closed-loop system
(1),(2), which involve switched terms along with impact, can
be defined using existing methods (see [2], [3], [11] and [12]
for a differential inclusion solution with both friction and
collisions terms on the right hand side).

The aim of this paper is to (i) prove finite time stability
and (ii) to establish a finite upper bound on the settling time
T of the closed-loop system (1), (2).

The existing approaches [9], [10], [13] do not apply to
the case of jumps in the velocity dynamics. The motivation
to achieve finite time stability is twofold. Firstly, the effect
of the jump in velocity when x1 = 0 is a destabilizing one
for the double integrator. This is contrary, for example, to
the self-stabilizing nature of a bouncing ball where impact
with the ground stabilizes the motion [3], with loss of
energy at the time of impact. Hence proving finite time
stability is a theoretical challenge due to the complexity of
the definition of the solutions of the closed-loop system (1),
(2) [12]. Although limited, system (1) is not too restrictive as
such planar systems may occur when non-linear constraints
of the form F(x) = 0 are transformed into x̃1 = 0 (see
[14]). Secondly, stabilization results will motivate a similar
development for nonlinear systems with resets in velocity
such as biped robots. It is noted that the latest advances in the
literature of numerical schemes [15] aid the implementation
of discontinuous control laws.

III. GLOBAL FINITE TIME STABILITY

The method of non-smooth transformation [3] is employed
to transform the impact system (1) into a jump-free system.
Let the non-smooth transformation be defined as follows:

x1 = |s|, x2 = R v sign(s), R = 1− k sign(s v), k = 1−ē
1+ē

(5)
The variable structure-wise transformed system

ṡ = R v
v̇ = R−1 sign(s) (u(|s|,R v sign(s))+ω(t))

(6)

is then derived by employing (5) (see [3, Sec. 1.4.2] for de-
tailed explanation of this derivation). By combining (2) and

(5), the controller (2) can be represented in the transformed
coordinates as follows:

u(|s|,Rvsign(s)) =−µ1 sign(sv)−µ2 (7)

Substituting (7) into (6), the closed-loop system in the new
coordinate frame can be obtained as follows:

ṡ = R v
v̇ =−µ1 R−1 sign(v)−µ2 R−1 sign(s)+R−1sign(s)ω(t)

(8)
Remark 1: The origin s = v = 0 of the system (8) corre-

sponds to the origin x1 = x2 = 0 of the system (1),(2). Since
the transformation (5) is not invertible, one starts from the
closed-loop system (8) and that the original dynamics can
be recovered via (5). The solutions of (8) are well defined in
the sense of Filipov [1]. Furthermore, such a formulation
admits both friction and jump phenomena, while guaran-
teeing existence of the solutions. Finally, the formulation
(8) captures the infinite rebounds [8] (the so-called Zeno
behavior) once the system stabilizes on the origin and in
turn on the constraint surface.

Lemma 1: Let the dynamical system be given by (8). Also
assume ē ∈ (0,1), then the following is true:

sign(sv) sign(R−R−1) =−1 (9)

Proof: The parameter R is defined in (5). For the
case when sign(sv) = −1, R can be computed as R = 1−
ksign(sv) = 1+k = 2

1+ē . Hence R−R−1 = (ē+3)(1−ē)
2(1+ē) . Noting

that ē∈ (0,1), it is indeed clear that sign(R−R−1)= 1. Hence
the result sign(sv) sign(R−R−1) = −1. For the case when
sign(sv) = 1, R can be computed as R = 1−ksign(sv) = 1−
k = 2ē

1+ē . Hence R−R−1 = (3ē+1)(ē−1)
2ē(1+ē) . Noting that ē∈ (0,1),

it is indeed clear that sign(R−R−1) =−1.
Remark 2: The transformed system (8) is not a standard

double integrator system and is not a candidate of existing
methods [10] because R causes discontinuity in the right
hand side of the first equation of (8). Hence, proving finite
time stability is not as trivial as merely combining the
existing controller and existing non-smooth transformation
technique. Furthermore, finite time stability of (8) has never
been studied.
Let the two values of R be defined as follows:

R =

{
R1 =

2
1+ē , if sign(sv) =−1;

R2 =
2ē

1+ē , if sign(sv) = 1.
(10)

Then, it is trivial to note that given ē ∈ (0,1), the following
is true from the computations in Lemma 1:

R1 > R2 > 0 , R−1
1 < R−1

2 , |R1−R−1
1 |< |R2−R−1

2 |
|R1−R−1

1 |=
3+ē

2 |k| , |R2−R−1
2 |=

3ē+1
2ē |k|

(11)

Theorem 1: Given M = 0, the impact system (1), (2) and
its transformed version (6), (7) are globally finite time stable.

Proof: Lyapunov stability analysis can be performed in
the transformed coordinates since both the set of expressions
(1), (2) and (6), (7) represent the same system. Let a
Lyapunov function candidate be given as follows:

V (s,v) = µ2 |s|+ 1
2 v2 (12)
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The following temporal derivative of (12) is computed along
the system trajectories in (6), (7) with M = 0:

V̇ = µ2sign(s)Rv+ v(−µ1 R−1 sign(v)−µ2 R−1 sign(s) )
≤ µ2sign(sv) |v| R−µ2R−1 |v|sign(sv)−µ1 R−1 |v|

V̇ ≤ µ2|v| |R−R−1|sign(sv)sign(R−R−1)−µ1R−1|v|
(13)

where substitution v = sign(v)|v| has been utilised. From
Lemma 1, Eq. (13) can be simplified as,

V̇ ≤−µ2|v| |R−R−1|−µ1 R−1 |v| (14)

It can be verified that R−1 > 0 for either sign of sign(s v)
since ē ∈ (0,1). Since, the equilibrium point s = v = 0 is
the only trajectory of (8) on the invariance manifold v =
0 where V̇ (s,v) = 0, the differential inclusion (6), (7) is
globally uniformly asymptotically stable by applying the in-
variance principle [16], [17]. Moreover, the system described
in (6), (7) is globally homogeneous of the negative degree
q = −1 with respect to dilation r = (2,1) and is globally
uniformly finite time stable according to [9, Theorem 3.1].

The closed loop system (8) is a globally homogeneous
system if ω(t) = 0 ∀t ≥ 0. Given M 6= 0, the discontinuous
control law (7) can reject any disturbance ω with a uniform
upper bound (3). The following result can be stated.

Theorem 2: The closed-loop impact system (1), (2) and its
transformed version (6), (7) are globally finite time stable,
regardless of whichever disturbance ω , satisfying condition
(3) with M < µ1 < µ2−M, affects the system.

Proof: The proof is achieved in several steps.
1. Global Asymptotic Stability Under the conditions of the
theorem, the time derivative of the Lyapunov function (12),
computed along the trajectories of (6), (7) is estimated as
follows:

V̇ = µ2|v| |R−R−1|sign(sv) sign(R−R−1)
−µ1 R−1 |v|+R−1 |v|sign(sv)ω

≤−µ2|v| |R−R−1|− (µ1−M)R−1|v|
(15)

The first term in the last inequality follows from Lemma 1.
Since M < µ1 by a condition of the theorem, the global
asymptotic stability of (6), (7) is then established by applying
the invariance principle [16], [17].
2. Semiglobal Strong Lyapunov Functions.
The goal of this step is to show the existence of a param-
eterized family of local Lyapunov functions VR̃(s,v), R̃ > 0
such that each VR̃(s,v) is well-posed on the corresponding
compact set

DR̃ = {(s,v) ∈ R2 : V (s,v)≤ R̃}. (16)

In other words, VR̃(s,v) is to be positive definite on DR̃ and its
derivative, computed along the trajectories of the uncertain
system (6), (7) with initial conditions within DR̃, is to be
negative definite in the sense that,

V̇R̃(s,v)≤−WR̃(s,v) (17)

for all (s,v)∈DR̃ and some WR̃(s,v), positive definite on DR̃.
A parameterized family of Lyapunov functions VR̃(s,v), R̃ >

0, with the properties defined above are constructed by
combining the Lyapunov function V of (12), whose time
derivative along the system motion is only negative semi-
definite, with the indefinite function U(s,v) = sv:

VR̃(s,v) =V (s,v)+κR̃U(s,v) = µ2 |s|+ 1
2 v2 +κR̃ sv (18)

where the weight parameter κR̃ is chosen small enough
namely,

κR̃ < min
{

1, 2µ2
2

R̃ ,
µ2|R1−R−1

1 |+R−1
1 (µ1−M)

R1
√

2R̃

}
(19)

where R1 is defined in (10). It can be noted from (16) that
the following inequalities hold true:

|s| ≤ R̃
µ2
, |v| ≤

√
2R̃. (20)

Hence, the Lyapunov function (18) is positive definite on
compact set (16) for all (s,v) ∈ DR̃\{0,0} and κR̃ > 0
satisfying (19) as shown below:

VR̃(s,v) = µ2 |s|+ 1
2 v2 +κR̃ sv≥ µ2|s|+ 1

2 v2− 1
2 κR̃(s

2 + v2)

≥
(

µ2−
κR̃R̃
2µ2

)
|s|+ 1

2 (1−κR̃)v2 > 0
(21)

The time derivative of the indefinite function U(s,v) along
the trajectories of the uncertain system (6), (7) is obtained
as follows:

U̇(s,v) = Rv2 + s
(
−µ1 R−1 sign(v)−µ2 R−1 sign(s)
+R−1 sign(s)ω

)
= Rv2−µ1R−1|s|sign(sv)−µ2 R−1 |s|+R−1|s| ω
≤ Rv2−R−1|s|(µ2−µ1−M)

(22)
Then, by combining (15) and (22) the time derivative of (18)
can be obtained as follows:

V̇R̃ ≤−µ2|v| |R−R−1| − (µ1−M) R−1 |v|+κR̃Rv2

−κR̃R−1|s|(µ2−µ1−M)
(23)

The parameter R in (23) keeps switching between the two
values as shown in Lemma 1. In turn, the rate of decay
of the Lyapunov function (21) switches depending on R.
Considering the slowest decay, a conservative estimate of
the upper bound (23) can be readily obtained using Lemma
1 and Eq.(11) as follows:

V̇R̃ ≤−µ2|v| |R1−R−1
1 | − (µ1−M)R−1

1 |v|+κR̃R1 v2

−κR̃R−1
1 |s|(µ2−µ1−M)

(24)
Noting that, due to (15), all possible solutions of the uncer-
tain system (6), (7), initialized at t0 ∈ R within the compact
set (16), are a priori estimated by

sup
t∈[t0,∞)

V (s,v)≤ R̃, (25)

and that (20) holds true within the compact set (16), (24)
can be re-written as follows:

V̇R̃ ≤−
[

µ2 |R1−R−1
1 | +(µ1−M)R−1

1 −κR̃R1
√

2R̃
]
|v|

−κR̃R−1
1 (µ2−µ1−M)|s| ≤ −cR̃ [|s|+ |v|]

(26)
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where

cR̃ = min
{

κR̃R−1
1 (µ2−µ1−M),

µ2|R1−R−1
1 |+(µ1−M)R−1

1 −κR̃R1
√

2R̃

}
(27)

It follows from (19) that cR̃ > 0. Hence (26) results in

V̇R̃ ≤−KR̃VR̃(s,v) (28)

where

KR̃ = cR̃

[
max

{
2µ2

2+κR̃R̃
2µ2

,
√

R̃
2 (1+κR̃)

}]−1

> 0

and the upper estimate

VR̃ ≤
2µ2

2+κR̃R̃
2µ2

|s|+
√

R̃
2 (1+κR̃)|v|

of the Lyapunov function (21) on compact set (16) has been
used. Hence the desired uniform negative definiteness (17)
is obtained with WR̃(s,v) = KR̃VR̃(s,v).
3. Global Uniform Asymptotic Stability Since the inequality
(28) holds on the solutions of the uncertain system (6), (7),
initialized within the compact set (16), the function VR̃(s,v)
decays exponentially

VR̃(s(t),v(t))≤VR̃(s(t0),v(t0))e
−KR̃(t−t0) (29)

on these solutions with decay rate KR̃ which depends on the
gain parameters µ1,µ2, bound M on disturbance ω and the
system property R1. On the compact set (16), the following
inequality holds (see (21)):

LR̃V (s,v)≤VR̃(s,v)≤MR̃V (s,v) (30)

for all (s,v) ∈ DR̃ and positive constants LR̃,MR̃, satisfying

LR̃ < min
{

2µ2
2−R̃κR̃
2µ2

2
,1−κR̃

}
,MR̃ > max

{
2µ2

2+R̃κR̃
2µ2

2
,1+κR̃

}
(31)

The above inequalities (29) and (30) ensure that the function
V (s,v) decays exponentially

V (s(t),v(t))≤ L−1
R̃ MR̃V (s(t0),v(t0))e−KR̃(t−t0)

≤ L−1
R̃ MR̃R̃e−KR̃(t−t0)

(32)

on the solutions of (6), (7) uniformly in ω and the initial
data, located within an arbitrarily large set (16). This proves
that the uncertain system (6), (7) is globally uniformly
asymptotically stable around the origin (s,v) = (0,0).
4. Global Uniform Finite Time Stability.
Due to (4), the piece-wise continuous [1], [9] uncertainty
R−1

1 ω(t)sign(s) in the right hand side of the system (6), (7) is
locally uniformly bounded by R−1

1 M whereas the remaining
part of the feedback is globally homogeneous with homo-
geneity degree q = −1 with respect to dilation r = (2,1).
Noting that q + r2 ≤ 0, the globally uniformly asymptoti-
cally stable system (6), (7) and in turn the original impact
system (1), (2) are globally finite time stable according to [9,
Theorem 3.2].

Fig. 1. Finite settling time behavior of the transformed system (6),(7)

IV. SETTLING TIME ESTIMATE

A finite upper bound on the settling time of the closed-
loop system (6), (7) is computed in this section. When the
trajectories are initialized on the positive vertical semi-axis
e+1 = {x ∈ R2 : x1 = 0,x2 > 0} at O4, the factor by which it
gets closer to the origin after one revolution can be computed.
The value of the intercept (point O3) on the positive vertical
semi-axis after one revolution should be greater than the
radius r1 of the ball Br1 containing the level set DR̃ defined
in (16) (see appendix for the definition of r1 to render the
relation DR̃ ⊂ Br1 to hold true). The choice of δ , such that
δΨ > r1 where Ψ is the factor by which the trajectory
gets closer to the origin after one revolution at point O3,
will ensure that the settling time estimate will be more
conservative than the one computed with the initialization on
the level set DR̃ (point O2). The motivation for such a choice
of initialization of the trajectories on the ball Bδ stems from
the fact that the trajectory, containing O2 on the level set DR̃,
starting from any arbitrary point below O4 (see Figure 1) on
the e+1 axis cannot intersect the trajectory starting from the
point O4. The basis for this is the fact that the solutions of (8)
are unique everywhere. In fact, the solution does not remain
on the axes s = 0,v = 0 for finite time and always crosses
the axes except at the origin. Hence, different trajectories
have no intersections because otherwise they would coincide
outside the origin with each other due to the uniqueness of
the solution. The approach utilized in the following is a two
step process. Firstly, a comparison system [18], the trajectory
of which encompasses the actual system, is defined as shown
in Figure 1 (also see work on the majorant curves [10] for
the twisting controller). Secondly, the comparison system is
then initialized on the positive vertical semi-axis e+1 with the
coordinates (0,δ ). Then the finite settling time is computed
for the comparison system subject to the condition δΨ > r1.
Let the right hand side of (8) be written as follows:

φ1 = R v
φ2 =−µ1R−1sign(v)−µ2R−1sign(s)+R−1sign(s)ω(t)

(33)
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Let a comparison system corresponding to (8) be given as
follows:

ṡ = R v
v̇ =− [µ1−M]R−1sign(v)−µ2R−1sign(s) (34)

In turn, the right hand side

φ c
1 = R v

φ c
2 =− [µ1−M]R−1sign(v)+µ2R−1sign(s) (35)

of the comparison system (34) relates to (33) as

φ1 = φ c
1

φ2 = φ c
2 +∆φ

(36)

where ∆φ = −MR−1 sign(v) +R−1sign(s)ω . It is trivial to
note that,

∆φ

{
≤ 0, if (s,v) ∈ (G1∪G4);
≥ 0, if (s,v) ∈ (G2∪G3).

(37)

where

G1 = {(s,v) : s > 0,v > 0} ,G2 = {(s,v) : s > 0,v < 0}
G3 = {(s,v) : s < 0,v < 0} ,G4 = {(s,v) : s < 0,v > 0}

(38)
By virtue of (36), (37), the motion of the plant (8) is dom-
inated by that of (34) subject to the same initial condition.
In other words, the solutions (s(t),v(t)) of the system (8)
and the solutions (sc(t),vc(t)) of the comparison system (34)
rotate around the origin and in each region Gi, i = 1,2,3,4
the plot of the trajectory (s(t),v(t)) is bounded by the
plot of the trajectory (sc(t),vc(t)) and the switching lines
s = 0,v = 0. Hence it suffices for the purpose of estimating
the finite settling time to consider system (34) which can be
represented in the matrix vector notation as follows:

ζ̇ (t) = Aζ (t)+Bu (39)

where

ζ =
[

s v
]T

, A =

[
0 R
0 0

]
, B =

[
0
1

]
u =−(µ1−M)sign(v)R−1−µ2sign(s)R−1

(40)

The motion in the state space can be obtained using the
convolution integral as follows:

ζ (t) = eAt ζ 0 +
∫ t

0 eA(t−τ)Budτ (41)

ζ 0 = [s(t0) v(t0)]T is initial condition. Since the control
switches on the the axes ζ1 = s = 0,ζ2 = v = 0, the integral
(39) is required to be computed in each quadrant utilizing
Bu as follows:

Bu =

[
0

−(µ1−M)sign(v)R−1−µ2sign(s)R−1

]
(42)

It is noted that using such integrals to define the solutions of
the comparison system (34) is mathematically correct as the
control law never generates a sliding mode on the switching
lines ζ1 = 0 and ζ2 = 0. Hence the solution always crosses
these switching lines except at the origin [10], [18]. The
matrix exponential in (41) can be computed as follows:

eAt = I +At + At2

2! + . . . (43)

Fig. 2. Finite time stabilization of the system (1), (2) with jumps in velocity
and that of the jump-free transformed system (8).

Since An = 0,∀n≥ 2, (43) leads to the following:

eAt = I +At =
[

1 Rt
0 1

]
,

t∫
0

e−Aτ dτ =

[
t −Rt2

2
0 t

]
(44)

Utilizing (41), (42) and (44), the following can be obtained:

t1 = δR
µ2(1+η) , t2 =

δR
µ2
√

(1+η)(1−η)
, t3 =

δR
√

1−η

µ2(1+η)
√

1+η
, t4 = t1

(45)
where η = µ1−M

µ2
. and t1 is time taken by the trajectory to

travel from the semi-axis {ζ ∈ R2 : ζ1 = 0,ζ2 > 0} to the
semi-axis {ζ ∈R2 : ζ1 > 0,ζ2 = 0} and so on. Furthermore,
the interception of the trajectory on the positive and negative
semi-axes can be obtained as follows:

ζ1(t1) =
(δR)2

2µ2(1+η) ; ζ2(t2) =− δ
√

1−η√
1+η

;

ζ1(t3) =− (Rδ )2(1−η)
2µ2(1+η)2 ; ζ2(t4) =

δ (1−η)
1+η

,
(46)

where the intercepts ζ1(t1),ζ2(t2),ζ1(t3),ζ2(t4) are depicted
in the figure (1). Hence the time T1 taken by the trajectory
to travel from the point O4 on the ball Bδ to some point O3
on the semi-axis e+1 is obtained using (45) as follows:

T1 = t1 + t2 + t3 + t4 = R∆

µ2
δ ≤ R1∆

µ2
δ (47)

where ∆ = 2
1+η

+ 1√
(1+η)(1−η)

+
√

1−η

(1+η)
√

1+η
. It can be seen

that the time T1 taken by one revolution depends on the initial
condition δ , gain parameters (µ1,µ2), system property R1
and the bound M on the uncertainty. Hence the time T1 and
time taken by the subsequent revolutions can be computed
apriori. Furthermore, as shown by the last equality of (46),
the closed-loop trajectory decays closer to the origin by a
factor Ψ of the initial condition δ where Ψ = 1−η

1+η
< 1. A

similar computation can be repeated with the initial condition
set at ζ2(t4) to obtain the next intersection of the trajectory
with the semi-axis e+1 = 0 at the end of the second revolution
as follows:

x(T2) = x2(t4)Ψ = δΨ2 (48)

where T2 is the time at which the second revolution is
completed. Noting that one revolution takes R∆

µ2
multiplied
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by the initial value on the vertical axis (see (47) ), the total
time taken for two revolutions is estimated as follows:

T2 = T1 +
R∆

µ2
ζ2(t4)≤ R1∆

µ2
δ [1+Ψ] (49)

where the last equality of (46) and (47) are utilized. Noting
that the number of revolutions n→ ∞ as time t→ ∞, above
steps can be repeated and the following generalization for
the nth revolution can be obtained:

limn→∞ Tn ≤ limn→∞
R1∆

µ2
δ
[
1+Ψ+Ψ2 + . . .+Ψn−1

]
(50)

Noting that the inequality 0 < Ψ < 1 always holds true, the
infinite series in (50) can be represented by a convergent
geometric series. In turn, the upper-bound on the settling
time Ts of the system (8) can be obtained apriori as follows:

Ts = limn→∞ Tn ≤ limn→∞
R1∆

µ2
δ

[
1−Ψn

1−Ψ

]
≤ R1∆δ

µ2(1−Ψ) < ∞

(51)
The numerical simulation is presented in Figure 2 which
gives a comparison between the system (1), (2) with µ1 =
1,µ2 = 2,M = 0.5, ē = 0.9 and the transformed system (8).
Appropriate initial conditions x1(t0) = 2,x2(t0) = 1 and
s(t0) = 2,v(t0) = [1− k]−1 are used. It should be noted that
the jump in velocity occurs when s changes sign [3]. The
simulation is carried out using the event based Runge-Kutta
method and it is prone to exhibit departure from the physical
behaviour for both the discontinuities in the system (1), (2),
namely, the ‘sign’ function and the jump. It should be noted
that the system settles in less than 7sec which is less than
the upper-bound 23.6865sec computed using (51).

V. CONCLUSIONS AND FUTURE WORK
Robust finite time stabilization is presented for the double

integrator with jumps in the velocity. A non-smooth state
transformation is employed to generate a jump-free system.
The theoretical contribution of the presented work lies in
achieving finite time stabilization of a class of impact me-
chanical systems without having to analyze jumps in the
Lyapunov function. A finite upper-bound on the settling time
is also estimated. Deriving tuning rules for the presented
impact system is seen as future scope. From a practical
viewpoint, the results will motivate a similar development for
nonlinear impact mechanical systems such as biped robots.

APPENDIX I
DEFINITION OF THE RADIUS r1 SUCH THAT DR̃ ⊂ Br1

The aim is to define the scalar r1 > 0 such that the
expression DR̃ ⊂ Br1 holds. The following is required:

µ2|s|
R̃ + v2

2R̃ ≤ 1⇒
(

s
r1

)2
+
(

v
r1

)2
≤ 1 (52)

Impose the following inequalities:(
s
r1

)2
≤ µ2|s|

R̃ ,
(

v
r1

)2
≤ v2

2R̃
(53)

Then the expression (s,v) ∈ Br1 holds true for every given
point (s,v) ∈ DR̃ in the (s,v) state space. Note that the
following always holds true for all (s,v) ∈ DR̃:

|s| ≤ R̃
µ2

(54)

The first inequality of (53) can be simplified as follows:

|s|
(

1
r1

)2
≤ µ2

R̃
(55)

Utilizing the relationship (54), the requirement (55) can be
revised as

|s|
(

1
r1

)2
≤ R̃

µ2

(
1
r1

)2
≤ µ2

R̃
(56)

Hence, the following upper-bound on r1, obtained from (56),
suffices to satisfy the first inequality of (53).

r1 ≥ R̃
µ2

(57)

Similarly, the second inequality of (53) leads to r1 ≥
√

2R̃,
combining which with (57), the following estimate of the
parameter r1 is obtained:

r1 = max
{

R̃
µ2
,
√

2R̃
}

(58)
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