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Abstract— In this paper, we develop a computational frame-
work for fully automatic deployment of a team of unicycles
from a global specification given as an LTL formula over
some regions of interest. Our hierarchical approach consists
of four steps: (i) the construction of finite abstractions for
the motions of each robot, (ii) the parallel composition of the
abstractions, (iii) the generation of a satisfying motion of the
team; (iv) mapping this motion to individual robot control and
communication strategies. The main result of the paper is an
algorithm to reduce the amount of inter-robot communication
during the fourth step of the procedure.

I. INTRODUCTION
Motion planning and control is a fundamental problem that

have been extensively studied in the robotics literature [1].
Most of the existing works have focused on point-to-point
navigation, where a mobile robot is required to travel from
an initial to a final point or region, while avoiding obstacles.
Several solutions have been proposed for this problem,
including cell decomposition based approaches that use
graph search algorithms [1], continuous approaches involving
navigation functions and potential fields [2], and sampling-
based methods such as Rapidly-Exploring Random Trees
(RRTs) [3]. However, the above approaches cannot accom-
modate complex task specifications, where a robot might be
required to satisfy some temporal and logic constraints. In
recent years, there has been an increased interest in using
temporal logics to specify robot missions [4]–[9]. Temporal
logics [10] are appealing because they provide formal, rich,
and high level languages for describing complex missions.

To use formal languages and model checking techniques
for robot motion planning and control, a fundamental chal-
lenge is to construct finite models that accurately capture
the robot motion and control capabilities. Most current
approaches are based on the notion of abstraction [11].
Enabled by recent developments in hierarchical abstractions
of dynamical systems [12]–[14], it is now possible to model
the motions of several types of robots as finite transition
systems over a cell-based decomposition of the environment.
By using equivalence relations such as simulations and
bisimulations [15], the motion planning and control problem
can be reduced to a model checking or formal synthesis
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problem for a finite transition system, for which several
techniques are readily available [10], [16].

Some recent works suggest that such single-robot tech-
niques can be extended to multi-robot systems through the
use of parallel composition (synchronous products) [8], [17].
The main advantage of such a bottom-up approach is that
the motion planning problem can be solved by off-the-shelf
model checking on the parallel composition followed by
canonical projection on the individual transition systems. The
two main limitations are the state space explosion and the
need for inter-robot synchronization (communication) every
time a robot leaves its current region. In our previous work,
we proposed bisimulation-type techniques to reduce the size
of the synchronous product when the robots are identical
and derived classes of specifications that do not require any
inter-robot communication [17]. By drawing inspiration from
distributed formal synthesis [18], we have also proposed top-
down approaches that do not require the parallel composition
of the individual transition systems [19]. While cheaper, this
method restricts the specifications to regular expressions.

In this paper, we focus on bottom-up approaches based
on parallel composition and address one of the limitations
mentioned above. Specifically, we develop an algorithm that
takes as input a satisfying run of the parallel composition and
returns a team control and communication strategy based on
a significantly reduced amount of inter-robot communication.
Our approach is suboptimal because of two main reasons.
First, we assume that each communication moment involves
all the agents in the team, rather than allowing for subgroup
communication. Second, we use a trial-and-error approach
that reduces the total amount of communication, rather
than minimizing it by exhaustively exploring all possible
communications. Although our method does not consider
communication constraints, it reduces the amount of nec-
essary communication during robot deployment.

We integrate this algorithm into a software tool
for automatic deployment of unicycles with polyhedral
control constraints from specifications given as Linear
Temporal Logic (LTL) formulas over the regions of
an environment. The tool is freely downloadable from
http://hyness.bu.edu/~software/MRRC.htm, it
has as input a user-defined environment, an LTL formula
over some polytopes, the number of unicycles, and their
forward and angular velocity constraints. It returns a control
and communication strategy for each robot in the team. The
tool also implements triangulation and polyhedral operation
algorithms from [5], [20], [21], LTL to Büchi conversion
[22], and robot abstraction by combining affine vector field
computation [14] with input-output regulation [23].
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II. PRELIMINARIES
Definition 2.1: A deterministic finite transition system is

a tuple T = (Q,q0,→,Π,ρ), where Q is a finite set of states,
q0 ∈Q is the initial state, →⊆Q×Q is a transition relation,
Π is a finite set of atomic propositions (observations), and
ρ : Q→ 2Π is the observation map.

A trajectory or run of T starting from q0 is an infinite
sequence r = r(1)r(2) . . . with the property that r(1) =
q0, r(i) ∈ Q, and (r(i),r(i + 1)) ∈→, ∀i ≥ 1. A run r =
r(1)r(2) . . . defines an infinite word over set 2Π, w =
w(1)w(2) . . ., where w(i) = ρ(r(i)). With a slight abuse of
notation, we denote by ρ(r) the word generated by run r.
The set of all words that can be generated by T is called the
(ω-) language of T .

In this paper, we consider motion specifications given
as formulas in Linear Temporal Logic without the “next”
temporal operator (LTL−X) [10], which, for simplicity, we
will call LTL. A formal definition for the syntax and se-
mantics of LTL formulas is beyond the scope of this paper.
Informally, LTL formulas are recursively defined over a set
of atomic propositions Π, by using the standard Boolean
operators and a set of temporal operators, which include U
(“until”), � (“always”), and ♦ (“eventually”). LTL formulas
are interpreted over infinite words over 2Π, as are those
generated by transition system T . We note that the class of
LTL−X is not restrictive for our purpose, since for continuous
systems it captures the full expressivity power of LTL [5].

Definition 2.2 (Generalized Büchi automaton): A gen-
eralized Büchi automaton is a tuple B = (S,S0,Σ,→B,F),
where:
• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• Σ is the input alphabet,
• →B⊆ S×Σ×S is a transition relation,
• F ⊆ 2S is the set of sets of accepting (final) states.
An infinite input word is accepted by automaton B if and

only if there exists a run produced by that word with the
property that all sets from F are visited infinitely often. Due
to the complicated acceptance condition (multiple sets have
to be infinitely often visited), a generalized Büchi automaton
is usually converted into a regular (degeneralized) Büchi
automaton, which has only one set of final states, i.e. F ∈ 2S.
A conversion algorithm can be found in [22].

For any LTL formula φ over a set of atomic propositions
Π, there exists a (generalized or regular) Büchi automaton
Bφ with input alphabet Σ⊆ 2Π accepting all and only infinite
words over Π satisfying formula φ [24].

Given a transition system T with set of observations Π and
an LTL formula φ over Π, a trajectory r of T generating a
word that satisfies φ can be found by adapting LTL model
checking tools [5]. Although r is infinite, it has a finite
representation in the form of a finite string called prefix,
followed by infinite repetitions of another finite string called
suffix (such a run is said to be in the prefix-suffix form).
A run r minimizing a given criterion, such as the necessary
storage memory, or the cumulative cost along the transitions
of T for finitely many repetitions of the suffix, can be easily
found [5].

III. PROBLEM FORMULATION AND APPROACH
We are interested in developing a computational frame-

work for automatic deployment of a team on n identical uni-
cycle robots in a convex polygonal environment. We assume
that such a robot is described by (x,y,θ), where (x,y) ∈ R2

gives the position vector of the robot’s center of rotation, and
θ is its orientation. The control w= [v,ω]T ∈W ⊆R2 consists
of forward driving (v) and steering (ω) speeds, where W is a
polyhedral set capturing control bounds. The kinematics of
each unicycle are given by: ẋ = vcosθ

ẏ = vsinθ

θ̇ = ω

(1)

The mission is given as a temporal logic statement about
a set Π of non-overlapping convex polygonal regions in
the environment1. Specifically, we consider the following
problem:

Problem 3.1: Given a team of n unicycles and a task
specification in the form of an LTL formula φ over a set
of regions of interest Π, design individual communication
and control strategies for the mobile robots such that the
motion of the team satisfies the specification.

We assume that the unicycles are small, i.e, their size
is negligible when compared to the environment and the
predefined regions in Π. To fully specify Problem 3.1, we
need to define what it means for the motion of the team to
satisfy an LTL formula φ over Π. This means that the word
generated during the motion satisfies φ . The word generated
by a set of n continuous trajectories is a straightforward
generalization of the definition of the word generated by
a single trajectory [5]. Informally, the word generated by
the team motion consists of a sequence of elements of 2Π

containing the satisfied propositions (visited regions) as time
evolves. In a generated word, there are no finite successive
repetition of the same element of 2Π, and infinite successive
repetitions of the same element appear if and only if each
robot trajectory remains inside a region for all times.

Case study: Consider n = 3 unicycles moving in the
environment illustrated in Fig. 1 and the following task
specification: “Visit regions π1 and π4 and π6 simultaneously,
and visit regions π2 and π5 simultaneously, infinitely often,
while always avoiding π3.” This specification translates to
the following LTL formula:

φ =�¬π3∧�♦((π1∧π4∧π6)∧♦(π2∧π5)) . (2)

Note that, since the regions are disjoint, at least three robots
are necessary to accomplish the task. Indeed, π1 ∧ π4 ∧ π6
requires that π1, π4, and π6 are simultaneously occupied.

Our solution to Problem 3.1 combines various techniques
from computational geometry, motion planning, and model
checking to obtain a sequence of tuples of regions and robot
feedback control laws in each of these regions. The produced
sequence minimizes the overall number of robot movements

1Note that convex non-polygonal regions can be bounded by convex
polygonal regions with arbitrary accuracy, and non-convex regions can be
divided into adjacent convex regions
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Fig. 1. A polygonal environment, six regions of interest, and the initial
deployment of three unicycle robots. Robot 1 is green, robot 2 is blue, and
robot 3 is red; there is no relation between the robot and the region colors.

Fig. 2. Triangular partition for the environment from Fig. 1.

among the cells, which corresponds to a minimizing the
used robot memory during the deployment. This procedure
is described in the next two subsections. After this, we focus
on the main contribution of the paper, namely how to use
such a sequence to find a team control and communication
strategy such that the set of communication (synchronization)
moments among the robots is reduced (possibly minimized),
while making sure the that the specification is still satisfied.

A. Robot Abstraction

We begin by abstracting the motion capabilities of each
robot to a finite transition system. To this end, the environ-
ment is first partitioned into convex regions (cells) such that
two adjacent cells share exactly one facet, and each region
from Π consists of a set of adjacent cells. Such a partition can
be constructed with cell decomposition algorithms used in
motion planning and computational geometry, e.g. constraint
triangulations [14] or polytopal partitions [5]. We denote
the set of partition elements by C = {c1,c2, . . . ,c|C|}. For
example, Fig. 2 shows a triangular partition with 40 cells
for the environment from Fig. 1. Then, we use approaches
from [14], [23], [25] for reducing the problem of controlling
each unicycle with kinematics (1) to control a fully actuated
point (the “nose” of the robot) with speed constraints, with
details described in technical report [26].

Definition 3.1: The transition system abstracting the mo-
tion capabilities of unicycle i, i = 1, . . . ,n has the form

Ti = (Qi,q0i,→i,Π∪{ /0},ρ), where:
• Qi =C, (the set of cells from the environment partition);
• q0i ∈C is the initial cell of unicycle i;
• The transition relation →i∈C×C is defined as follows:

– (c,c) ∈→i if we can design a feedback control law
keeping robot i in cell c for all times, and

– (c,c′) ∈→i, if c and c′ are adjacent and we can
design a feedback control law such that robot i
leaves cell c in finite time by crossing the common
facet of c and c′;

• Π is the set of labels for the regions of interest and /0
corresponds to the environmental regions not labeled by
symbols from Π,

• ρ is the observation map that associates each cell from
the partition with the corresponding proposition from Π

or with /0.

B. Satisfying Behavior of the Team
Definition 3.2: The transition system TG = (QG,qG0,→G

,Π,ρG) capturing the behavior of the group of n robots is
defined as the synchronous product of Ti, i = 1, . . . ,n:
• QG = Q1× . . .×Qn,
• qG0 = (q01, . . . ,q0n),
• →G⊂ QG × QG is defined by
((q1, . . . ,qn),(q′1, . . . ,q

′
n)) ∈→G if and only if

(qi,q′i) ∈→i, i = 1, . . . ,n,
• Π is the observation set,
• ρG : QG→ 2Π, with ρG ((q1, . . . ,qn)) = ∪n

i=1{ρ(qi)}.
To find a run R of TG such that the generated word ρG(R)

satisfies φ , we use the the tool developed in [5]. In [17],
such a global run was projected to individual robot runs.
A run was implemented on a robot by using the feedback
controllers corresponding to the transitions (see Sec. III-A).
When deploying the team, to ensure the correct transitions
in TG, the robots synchronize (communicate) with each other
and wait until every member finishes the previous transition.
The synchronization occurs on the boundaries of the cells,
when crossing from one cell to another.

Case study revisited: For our example with three unicy-
cles required to accomplish mission specification (2) in the
partitioned environment from Fig. 2, we found a minimal
satisfying run of TG, R = prefix,suffix,suffix, . . ., as follows:

prefix =

 c7
c4
c28

 c2
c3
c28

 c1
c6
c28

 c10
c8
c28


 c9

c17
c25

 c18
c11
c26

 c16
c11
c24


suffix =

 c31
c12
c38

 c31
c11
c38

 c31
c17
c24

 c31
c8
c27


 c31

c6
c20

 c31
c8
c27

 c31
c17
c27

 c31
c11
c24



(3)

The robots can be deployed such that their motion corre-
sponds to run R if they synchronize (communicate) whenever
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they cross a region boundary [17].

C. Minimizing Communication
The synchronization-based deployment strategy from [17]

has two main disadvantages. First, it requires a large amount
of communication. Second, it can lead to significant delays,
since the moving robots have to wait for each other to syn-
chronize on the boundaries. To deal with these limitations,
in this paper we consider the following problem:

Problem 3.2: Given a run R of TG in prefix-suffix form
that satisfies the LTL specification φ , find a team control
and communication strategy that requires a reduced number
of inter-robot synchronizations than in the synchronization-
based deployment, while at the same time guaranteeing that
the produced motion of the team satisfies φ .

Central to our approach to Problem 3.2 is an algorithm that
takes as input the satisfying run R = R(1)R(2) . . . and returns
a reduced number of necessary synchronization moments,
where the ith moment along R is defined as the index i corre-
sponding to R(i). Motivated by the fact that synchronization
by stopping and waiting at region boundaries is not always
necessary to produce a desired tuple, we consider two types
of synchronizations: in a weak synchronization, a certain
tuple is generated because there exists an instant of time
at which the robots are in the corresponding cells; a strong
synchronization ensures that a sequence of two successive
tuples from R is observed. The latter is the stop-and-wait
strategy from [17]. Since the run is given in the prefix-suffix
form, our algorithmic framework will return a finite set of
moments that require synchronization, as well as the type for
each synchronization moment.

In our previous work [17], we developed an algorithm
to test if an unsynchronized motion of the team can lead
to a violation of the specification. If the answer was yes
(this is the case in the example considered in this paper),
then strong synchronization at each moment along R was
the only available option. The algorithm proposed in this
paper is therefore a significant improvement over [17].

IV. SOLUTION TO PROBLEM 3.2
Assume that the prefix of R has length k−1 and the suffix

has length l− k+ 1, with R( j) =
(

c1
j ,c

2
j , . . . ,c

n
j

)T
, for j =

1, . . . , l (and R(l + 1) = R(k), R(l + 2) = R(k+ 1), . . .). For
simplicity of notation, we assume that whenever an index
along R exceeds l, that index is automatically mapped to the
set {k, . . . , l}, e.g., if j = l, then index j+1 is replaced with
k. We use superscripts for identifying a robot and subscripts
for indexing the cells.

For any robot i = 1, . . . ,n and for any moment j =
1, . . . , l−1, cells ci

j and ci
j+1 are either adjacent or identical,

and the same is true for cells ci
l and ci

k. Recall that from the
abstraction process of continuous robot trajectories, R does
not contain any successive and finite repetition of a n-tuple.

A. Finding Synchronization Moments
Let S ⊆ {1, . . . , l} be an arbitrary set of synchronization

moments. We impose the type of each moment from S by
creating a map τ : S→ {weak,strong}, where τ( j) = weak

means a weak synchronization at moment j, and τ( j) =
strong means a strong synchronization at moment j, ∀ j ∈ S.

As mentioned in Sec. III-C, a weak synchronization at
moment j along run R means that the tuple R( j) is reached
by the robots, i.e., there is a moment when the robots are
in cells c1

j , c2
j , . . . ,c

n
j , respectively. A strong synchronization

at moment j along run R means that there is a weak syn-
chronization at j, and additionally the robots synchronously
enter the next tuple (R( j+ 1)). In other words, all moving
robots i cross from cells ci

j to cells ci
j+1 at the same time.

Note that a strong synchronization at moment j is not
equivalent to two weak synchronizations at j and j+1. The
strong synchronization guarantees that in the resulted team
run the tuple R( j) is immediately followed by the tuple R( j+
1). However, weak synchronizations at j and j+1 guarantee
that R( j) and R( j + 1) are generated, but there may be a
sequence of tuples between them.

For testing the correctness of a set of synchronization mo-
ments, we developed a procedure test f easibilityφ (R,S,τ),
which takes as inputs the formula φ , the run R, a set S
of synchronization moments, and a map τ . The returned
output is either “feasible” (set S with map τ guarantees
the satisfaction of the formula, no matter how the robots
move in between synchronization moments) or “not feasible”
(it is possible to violate the formula by imposing just the
moments from S with type τ). We postpone the details on
test f easibilityφ (R,S,τ) until Sec. IV-B.

We use Alg. 1 for finding a set S of necessary syn-
chronization moments and a map τ . The intuition behind
this algorithm is to start with no synchronization moment
(S = /0) and iteratively increase S until we obtain a feasible
set together with a corresponding map τ . We refer to our
technical report [26] for the proof of correctness of Alg. 1,
as well as further discussions.

Remark 4.1 (Complexity): Alg. 1 is guaranteed to fin-
ish, because in the worst case it returns the set S = {1, . . . , l},
meaning that strong synchronizations are needed at every
moment (see [26]). The worst case complexity requires
3l(l +3)/2 iterations of the test feasibility procedure.

Remark 4.2 (Optimality): Alg. 1 can be tailored such
that it returns an optimal solution (with respect to a cost
defined by weighting the weak and the strong synchroniza-
tion moments). This can be done by first constructing all
possible pairs S,τ (there are 3l such pairs). Then, these
pairs should be ordered according to their associated costs.
Finally, the pairs should be tested (in the found order) against
the test feasibility procedure, until a feasible response is
obtained. The worst case (S = {1, . . . , l} is the only feasible
solution) would require 3l iterations of test feasibility.

B. Testing a Set of Synchronization Moments

Procedure test f easibilityφ (R,S,τ) consists of the fol-
lowing main steps: (i) construction of an automaton AR,S,τ
generating all the words (infinite sequences of observed
propositions) that can result while the robots evolve and obey
synchronization moments from S (AR,S,τ has the form of a
Büchi automaton with an observation map); (ii) conversion of
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Algorithm 1 Find synchronization moments
Inputs: Run R, formula φ

Outputs: Set S, map τ

1: for synch type ∈ {weak,strong} do
2: S = /0, τ undefined
3: lowerbound = 1, moment = l
4: while moment ≥ lowerbound do
5: if test f easibilityφ (R,S,τ) = “feasible” then
6: Return set S and map τ

7: end if
8: Stemp = S∪{moment,moment +1, . . . , l}
9: τtemp(i) = τ(i), ∀i ∈ S

10: τtemp(i) = synch type, ∀i ∈ {moment +1, . . . , l}
11: for τtemp(moment) ∈ {weak,strong} do
12: if test f easibilityφ (R,Stemp,τtemp) = “feasible”

then
13: S := S∪{moment}
14: τ(moment) = τtemp(moment)
15: lowerbound = moment
16: moment = l
17: Break “for” loop on τtemp
18: else
19: moment := moment−1
20: end if
21: end for
22: end while
23: end for

AR,S,τ into a degeneralized form, if necessary; (iii) construc-
tion of the product automaton between AR,S,τ and the Büchi
automaton B¬φ corresponding to ¬φ ; (iv) if the language
of this product automaton is empty, the procedure returns
“feasible” and otherwise it returns “not feasible”.

For step (i), the run R is projected to n individual runs,
each corresponding to a specific robot. In each of these
individual runs, we collapse the finite successive repetitions
of identical states (cells) into a single occurrence (such
repetitions mean that the individual robot stays inside a cell).
Let us denote the resulted runs by Ri = qi

1 qi
2 . . .

[
qi

ki
. . .qi

li

]
. . .,

where prefix has length ki−1 (ki ≤ k) and suffix has length
li − ki + 1 (li ≤ l), i = 1, . . . ,n. Together with individual
projections and collapsing, we construct a set of maps βi :
{1,2, . . . , l}→ {1,2, . . . , li}, i = 1, . . . ,n, mapping each index
from run R to the corresponding index from the individual
run Ri (e.g. βi( j) = βi( j+1) if we have the same ith element
in tuples R( j) and R( j+1)).

Next, we obtain a generalized Büchi automaton AR,S,τ (see
Def. 2.2) whose accepting runs are the possible sequences
of tuples of cells visited during the team evolution. The
language (the set of accepted words) of AR,S,τ contains
all possible sequences of elements from 2Π observed by
the motion of the team, where each robot moves without
synchronization except for the moments from S with map τ .

Definition 4.1: The automaton AR,S,τ = (QA,qA0 ,→A
,FA,Π,ρ), is defined as:
• QA = {q1

1,q
1
2, . . . ,q

1
l1
} × {q2

1,q
2
2, . . . ,q

2
l2
} × . . . ×

{qn
1,q

n
2, . . . ,q

n
ln} is the set of states,

• qA0 = (q1
1,q

2
1, . . . ,q

n
1) is the initial state,

• →A: QA→ 2QA is the transition relation,
• FA ⊂ 2QA is the set of sets of accepting (final) states,
• Π is the observation set,
• ρA : QA → 2Π is the observation map,

ρA(q1,q2, . . . ,qn) = ∪n
i=1{ρ(qi)}.

The transition relation →A is defined as follows: ∀q,q′ ∈
QA, with q = (q1

j1 ,q
2
j2 , . . . ,q

n
jn) and q′ = (q′1j1 ,q

′2
j2 , . . . ,q

′n
jn),

(q,q′) ∈→A if and only if the following rules are simultane-
ously satisfied:
(a) q = q′ if and only if ji = ki and ki = li, i = 1, . . . ,n;
(b) q′ij ∈{qi

j,q
i
j+1} if j∈{1,2, . . . , li−1}, and q′ij ∈{qi

li
,qi

ki
}

if j = li, i = 1,2, . . . ,n;
(c) if ∃s∈ S such that ji = βi(s) for i∈ I ⊆{1, . . . ,n}, where

I is the largest possible such subset, then:
(1) if I 6= {1, . . . ,n}, then q′iji = qi

ji , ∀i ∈ I;
(2) if I = {1, . . . ,n} and τ(s) = strong, then q′iji =

qi
βi(s+1), ∀i ∈ I.

Informally, requirements (a) and (b) capture the global
movement along the individual runs, by also capturing all
the possible interleavings of individual robot motions. Re-
quirement (c) restricts transitions based on synchronization
moments. The set FA is constructed according to Alg. 2, and
the details of this procedure can be found in [26].

Algorithm 2 Set of final sets of automaton AR,S,τ

1: Ssu f f ix = S∩{k, . . . , l}
2: if Ssu f f ix = /0 then
3: FA = {q1

k1
, . . . ,q1

l1
}×{q2

k2
, . . . ,q2

l2
}× . . .×{qn

kn
, . . . ,qn

ln}
4: else
5: Assume Ssu f f ix = {s1,s2, . . . ,s|Ssu f f ix|}
6: FA = {F1,F2, . . . ,F|Ssu f f ix|}
7: for j = 1,2, . . . , |Ssu f f ix| do
8: Fj = {q1

β1(s j)
,q2

β2(s j)
, . . . ,qn

βn(s j)
}

9: end for
10: end if

Once AR,S,τ is constructed, we check if there exists a
generated word of AR,S,τ that violates the LTL formula (by
satisfying the negation of φ ). This is carried out by the
model-checking resembling steps (ii)-(iv) of our procedure.
More details on the construction of AR,S,τ , together with an
example, are given in [26].

Theorem 4.1: An output of Alg. 1 is a solution to Prob-
lem 3.2; Alg. 1 returns an output in a finite number of steps.

The proof of Theorem 4.1 can be found in [26].

C. Communication and Control Strategy
The solution to Problem 3.2 is completed by a deployment

strategy such that the synchronization moments from set
S with type τ are correctly implemented. For obtaining
individual strategies, set S and map τ are first adapted to
descriptions suitable for each robot, by constructing for each
robot i, i= 1, . . . ,n, a memory queue that contains the indices
along Ri when synchronization should be enforced and the
synchronization type. Then, each robot i follows the infinite
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run Ri, by applying feedback controllers and by inspecting its
memory queue for deciding when to synchronize with other
robots. Due to space constraints, we do not include here the
algorithms corresponding to individual robot strategies, and
we refer to [26] for these procedures.

V. CASE STUDY
This section concludes the case study illustrated through-

out the paper, by applying the procedure described in Sec. IV
to the run from (3). We obtain only two weak synchronization
moments, at indices 8 and 12 of run R (first and fifth positions
of every repetition of suffix). This makes sense, since the
propositions satisfied by the team at the two synchronization
moments are the two sets of regions ({π1, π4, π6} and
{π2, π5}) that are required to be visited for the satisfaction
of the formula. The individual runs of the robots are given
in (4), where the square brackets delimitate each suffix, and
the two weak synchronization moments are marked in bold:

R1 = c7 c2 c1 c10 c9 c18 c16 [c31] [c31] . . .
R2 = c4 c3 c6 c8 c17 c11 [c12 c11 c17 c8 c6 c8 c17 c11] . . .
R3 = c28 c25 c26 c24 [c38 c24 c27 c20 c27 c24] . . .

(4)

A movie illustrating the robot motion for the case study
is available at http://hyness.bu.edu/~software/
unicycles.mp4. For comparison, if we avoided solv-
ing Problem 3.2 and instead used the deployment strategy
from [17], we would get the team trajectory illustrated
by the movie http://hyness.bu.edu/~software/
unicycles-full-synch.mp4. In this movie, we can
see that the motions of the robots are not as “smooth” as
in our proposed approach, and the iterations for each suffix
require more time. Our approach is more suitable for real
experiments, as robots have less frequent stops at region
borders. Additional case studies can be found in [26].

Computation time: The most computationally intensive
part of the solution to Problem 3.1 is finding a run R (as in
Sec. III-A and III-B). For our case study, this took about 100
minutes on a medium performance computer. In contrast, the
solution we proposed for Prob. 3.2 (Sec. IV) took only 30
seconds. To generate a solution for Prob. 3.2, 26 iterations
of the test feasibility procedure were performed until the set
of synchronization moments was found.

VI. CONCLUSIONS
We presented a fully automated framework for deploying

a team of unicycles from a task specified as a linear temporal
logic formula over some regions of interest. The approach
consists of abstracting the motion capabilities of each robot
into a finite state representation, using model checking tools
to find a satisfying run, and mapping the solution to a
communication and control strategy for each unicycle. The
main contribution of the paper is the development of an
algorithmic procedure that returns a reduced set of moments
when the robots should communicate and synchronize, with
the guarantee that the specification is satisfied. A secondary
contribution is the integration of this algorithm as part of
a fully automatic procedure for deployment of teams of
unicycles from specifications given as LTL formulas over
regions of interest in an environment.
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