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Abstract— In raw meal calcination process, the target value
of decomposition ratio of raw meal (RMDR) is different in
easy calcination stage and difficult calcination stage because
boundary conditions of raw meal change frequently, where
RMDR cannot be guaranteed within its desirable ranges. To
solve this problem, an intelligent setting control method is
proposed. This method for raw meal calcination process consists
of five modules, namely a RMDR target value setting model
using subtraction clustering method (SCM) and adaptive-
network-based fuzzy inference system containing categorical
input (C-ANFIS), a control loop pre-setting model, a feedback
compensation model based on fuzzy rules, a feedforward com-
pensation model based on fuzzy rules, and a soft measurement
model for RMDR. The proposed method is realized by on-line
adjusting the setpoints of control loops with the change of raw
meal boundary conditions. This method has been successfully
applied to the raw meal calcination process of Jiuganghongda
Cement Plant in China and its efficiency has been validated by
the practical application results.

I. INTRODUCTION
Raw meal calcination in calciner is a complex chemical

reaction. Technology index, namely decomposition ratio of
raw meal (RMDR), indicates the quality and the efficiency
of the product processing. It is desirable to keep its required
ranges. The control objective of raw meal calcination process
is to obtain the largest possible RMDR in easy calcination
stage or difficult calcination stage. However, the RMDR
is difficult to be measure on-line. Moreover, the dynamic
characteristics between the RMDR and the calciner temper-
ature and the preheater C1 outlet temperature shows strong
nonlinearities, and coupling effects. This relationship vary
with the operation conditions. Therefore, it is difficult to
obtain the RMDR by a precise mathematical model.

In actual production processes, the RMDR was measured
offline once an hour[1]. The on-site operators would adjust
the setpoints of control loops by using laboratory measuring
results. Since boundary conditions (i.e., flow, ingredients and
particle size.) of raw meal change frequently, such manual
operation cannot adjust the setpoints of control loops in time,
which in turn implies that the RMDR cannot be controlled
within its required ranges. In this case, it would not only lead
to low production capacity but also increase next procedure
load[2].
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For raw meal calcination processes, most of the literature
focused on equipment design and simulation. To optimize
the design of the calciner, a dynamic mathematical model for
an in-line low-NOx calciner using non-isothermal diffusion-
reaction models for char combustion and limestone calci-
nation has been established in [3]. A simulation model for
RMDR has been established by Koumboulis et al. based on
coal feeder to calciner [4]. The above method on equipment
design and simulation does not consider the impact of
boundary conditions of raw meal, and the setpoints of the
control loops are consistent.

To overcome the above shortcomings, an intelligent set-
ting control method has been proposed in this paper. The
intelligent setting control method for raw meal calcination
process consists of five modules, namely a RMDR target
value setting model based on SCM and C-ANFIS, a control
loop pre-setting model, a feedback compensation model
based on fuzzy rules, a feedforward compensation model
based on fuzzy rules, and a soft measurement model for
RMDR. The proposed approach can adjust the setpoints
of the control loops on-line with the change of raw meal
boundary conditions and control the technology index into its
desirable range. This method has been successfully applied
to the raw meal calcination process and its efficiency has
been validated by the practical application results.

II. DESCRIPTION OF RAW MEAL CALCINATION
PROCESS

A. Description of Raw Meal Calcination Process

The flowsheet of the raw meal calcination process with an
annual production capacity of 0.73 million ton is shown in
Fig.1. In the suspension preheater system with the calciner
and the rotary kiln, the exhaust gas from the rotary kiln
and the calciner are passed from the bottom preheater C5
to the humidifier tower (H.T.) by the high-temperature fan
and the exhaust fan. The raw meal from homogenizing
silo is fed into the top preheater C1 inlet duct for heat
exchange with calciner and kiln exhaust gas, then collected
separately with a cyclone and charged into the inlet duct
of the next lower cyclone. Heat exchanged and collected is
then repeated. The raw meal is heated sequentially with the
stages of cyclones, calcined with the decomposition ratio of
0.85-0.94 (dimensionless) in calciner, then fed into the rotary
kiln. The coal feeding from the coal powder scale and the
auxiliary air from the auxiliary air blower are mixed into a
two-phase fuel flow, sprayed into the calciner. They are then
combusted with the tertiary air, which comes from the kiln
head hood.
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Fig. 1. Flowsheet of the raw meal calcination process

B. Control Objective

According to the physical analysis of raw meal calcination
process, these boundary conditions consist iron oxide content
B1, alumina oxide content B2, silica oxide content B3,
raw meal particle size B4, raw meal flow B5 and kiln
tail temperature B6, which affect RMDR [5]. In practical
production process, the RMDR γ(t) is related to the calciner
temperature y1 and preheater C1 outlet temperature y2. Its
dynamics can be described as follows:

γ(t) = f (y1, y2, B1, . . . , B6) (1)

where f (·) is an unknown nonlinear function varying with
the boundary conditions B = [B1, B2, B3, B4, B5, B6].

In actual production process, the content of free CaO
(f-CaO) in samples was defined as raw meal calcination
index when calcining temperature is 1450◦C [6]. To simplify,
this index denoted by fc1450. Condition was defined as
easy calcination stage when fc1450 less or equal to 1.5%;
Condition was defined as difficult calcination stage when
fc1450 greater than 1.5% and less or equal to 2.5%. The
RMDR target value in two stages is not the same. To obtain
the highest possible RMDR γ(t) in easy calcination stage
(α = 1) or difficult calcination stage (α = 0), the control
objective is described as:

min[γ∗ − γ(t)]
s.t. γ(t) = f (y1, y2, B1, . . . , B6)
αγe

L + (1− α)γd
L ≤ γ(t) ≤ αγe

H + (1− α)γd
H

αye
1L + (1− α)yd

1L ≤ y1 ≤ αye
1H + (1− α)yd

1H

αye
2L + (1− α)yd

2L ≤ y2 ≤ αye
2H + (1− α)yd

2H ,

(2)

where γ(t) = f (y1, y2, B1, . . . , B6) is the nonlinear dy-
namic function, γ∗ is the RMDR target value, γe

L ≤ γ∗ ≤
γd

H ; y1 is the calciner temperature, y2 is the preheater C1
outlet temperature; γe

L, ye
1L and ye

2L are the lower limit
of RMDR, calciner temperature and preheater C1 outlet
temperature in easy calcination stage, respectively; γd

L, yd
1L

and yd
2L are the lower limit of RMDR, calciner temperature

and preheater C1 outlet temperature in difficult calcination
stage, respectively; γe

H , ye
1H and ye

2H are the higher limit
of RMDR, calciner temperature and preheater C1 outlet
temperature in easy calcination stage, respectively; γd

H , yd
1H

and yd
2H are the higher limit of RMDR, calciner temperature

and preheater C1 outlet temperature in difficult calcination
stage, respectively.

Based on the above analysis, f (·) is the unknown non-
linear function,which varies with the boundary conditions
B = [B1, . . . , B6]. Therefore, the exiting optimization algo-
rithms cannot ensure that the RMDR be controlled within its
required range.

C. The Actual Control Status of Raw Meal Calcination
Process

The actual control state for raw meal calcination process
is shown in Fig. 2. Operational engineer determine upper
limits ymax and lower limits ymin of control loops setpoints
by considering the maximum value βe

max of content of f-CaO
in easy calcination stage, the raw calcination index fc1450,
the maximum value βd

max of content of f-CaO in difficult
calcination stage, boundary conditions B (i.e., flow, ingredi-
ents and particle size) of raw meal, and offline measurement
value γ(T ). Then the operator would adjust the setpoints of
control loops using the boundary conditions B of raw meal,
offline measurement value γ(T ), and upper limits ymax and
lower limits ymin of control loop setpoints. Since RMDR
cannot be measured online continuously, the operators have
to evaluate the RMDR through visual inspecting.

Fig. 2. The actual control state of raw meal calcination process

In fact, the operator cannot always obtain a correct set-
points ysp for the control loops by boundary conditions of
raw meal. For example, when the iron oxide content B1

in raw meal decreases, liquid phase would decrease, thus
leading to the increase in RMDR.

The main task in this paper is to determine the RMDR
target value γ∗ and the setpoints ysp of control loops so that
the RMDR can be controlled within its required range and
the production capacity is maximized.

III. INTELLIGENT SETTING CONTROL METHOD
FOR RAW MEAL CALCINATION PROCESS

A. Control Strategy

To solve problem (2), an intelligent setting control method
for raw meal calcination process has been proposed. The
optimal control system is shown in Fig.3.

In Fig.3, y = [y1, y2], and y1 and y2 are the feedback
value of the calciner temperature and the preheater C1
outlet temperature, respectively; the manipulated variables
u = [u1, u2], and u1 is the coal feeder speed and u2 is the
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high-temperature fan damper. B is the boundary conditions
of raw meal, γ∗, γsoft(t), γ and γaux are the target value
of RMDR, soft measurement value of RMDR, actual value
of RMDR and auxiliary variable set, respectively; ỹsp(t)
and ysp represent pre-setting value and final setting value of
control loop, respectively; yF (t) and yB(T ) denote feedfor-
ward compensation value and feedback compensation value,
respectively; T (T = kt) is laboratory measuring time, fc1450

is raw calcination index, βe
max and βd

max are the maximum
value of f-CaO in easy calcination stage and the maximum
value of f-CaO in difficult calcination stage, respectively.

Fig. 3. The proposed intelligent setting control method for raw meal
calcination process

In Fig.3, the intelligent setting control method for raw
meal calcination process consists of a RMDR target value
setting model, a control loop pre-setting model, a feedback
compensation model based on the fuzzy rules, a feedforward
compensation model based on the fuzzy rules, and a soft
measurement model for RMDR. A detailed description for
each module is discussed in section B.

Thus, the final setpoint of control loops is given by:

ysp = ỹsp(t) + yF (t) + yB(T ) (3)

B. Intelligent Setting Control Algorithm

In order to realize (2), the intelligent optimization control
algorithm is introduced in detail as follows.

1) RMDR Target Value Setting Model Based on SCM
and C-ANFIS: In order to analyze relationship between the
boundary conditions (i.e., B1 and B2) and the RMDR target
value γ∗, the experiments were done when decomposition
temperature is 870◦C[7]. The RMDR increased gradually
when the content of B1 or B2 in raw meal increased. On the
contrary, the RMDR decreased when the content of B1 or B2

in raw meal decrease. In addition, the RMDR target value is
also different in easy calcination stage or difficult calcination
stage. Based on the above analysis, the relationship between
RMDR, B1 and B2 can be simple proportional relation. But
change rate is unknown in different data scope. Thus, we
adopt ANFIS to establish RMDR target value γ∗. Since the
standard ANFIS cannot calculate the firing strength when
the input contain numeric and categorical. At the same time,
the model structure is difficult to determine. Based on the

above analysis, a model based on SCM [8] and C-ANFIS was
proposed to solve above problem, and its structure is shown
in Fig. 4. For simplicity, input variable set B̄ = [B1, B2]
in RMDR target value setting model can be expressed as
x = [x1, x2].

Fig. 4. RMDR target value setting model based on SCM and C-ANFIS

In Fig. 4, c is categorical input, s represents two-
dimensional vector, T denotes 2×L firing strength transform
matrix, gl(l = 1, · · · , L) is the firing strengths of the lth
rule. Input variables of C-ANFIS are both numeric and
categorical. The role of each function block in Part B and
the node functions in Part A are described as follows:

The raw meal working situations model has the following
features: If fc1450 ≤ βe

max, then categorical input c repre-
sents easily calcination; If βe

max < fc1450 ≤ βd
max , then

categorical input c represents difficult calcination.
In Fig. 4, the categorical input c is converted into two-

dimensional vector s by 1-out-2 encoding. Thus the value of
the two-dimensional vector s are [1 0] and [0 1]. In addition,
we can transform s into the firing strengths gl(l = 1, · · · , L)
using firing strength transform matrix T . Defining G is a L-
dimensional vector (i.e., [g1,...,gL]), and G can be expressed
as

G = sT. (4)

Layer 1: Each node in this layer is square node and has
the following node function

O1
h = µAhk

(xh), h = 1, 2, k = 1, · · · , n. (5)

Generally speaking, we choose µAhk
(xh) to be bell-

shaped membership function, i.e.,

µAhk
(xh) = 1

/(
1 +

[(
xh−chk

ahk

)2
]bhk

)
,

(h = 1, 2, k = 1, · · · , n),
(6)

where {ahk, bhk, chk} , h = 1, 2, k = 1, · · · , n are referred
to as premise parameters P p.

Parameter chk in (6) is the center of the membership
function µAhk

(xh), and chk is determined through SCM.
Layer 2: Each node in this layer is circle node labelled∏
. AND operator between fuzzy sets in this layer was
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performed to produce the firing strength wl of the lth fuzzy
rule. The firing strength wl can be written as

wl =
2∏
i

µl
Aik

(xi), (k = 1, 2, · · · , n, l = 1, · · · , L). (7)

Layer 3: Each node in this layer is circle node labelled
N . All the rules’ firing strengths in Part A were normal-
ized. The node function in this layer is defined as w̄l =

wlgl

/
L∑

l=1

wl, (l = 1, · · · , L), where the firing strengths

gl of the lth rule can be calculated according to (4), and be
expressed as gl = s ·T (l). The parameters in T (l) is defined
as Pm.
Layer 4: Each node l in this layer is square node with a
linear function

w̄lfl = w̄l(pl
0 + pl

1x1 + pl
2x2), l = 1, · · · , L, (8)

where fl is the final output of the i th fuzzy rule,{
pl
0, p

l
1, p

l
2

}
, l = 1, · · · , L are the consequent parameters

P c.
Layer 5: Node in this layer is circle node, and node function
has the form

γ∗ =
L∑

l=1

w̄lfl =
L∑

l=1

wlglfl

/
L∑

l=1

wl. (9)

Based on the above model, parameter identification and the
structure of the C-ANFIS are fulfilled in the same manner
as in [9].

2) Algorithm for Control Loop Pre-setting Model: Con-
trol loop pre-setting model imitate actions of excellent op-
erators by input information, i.e. RMDR target value γ∗

boundary conditions B of raw meal, and generate on-line
pre-setting points ỹsp(t) of control loops when the raw meal
boundary conditions changed. This pre-setting points ỹsp(t)
can be expressed as:

ỹsp(t) = (ỹ1sp(t), ỹ2sp(t)) = φ(γ∗, B1, . . . , B6) (10)

where φ (·) is an unknown nonlinear function varying with
the raw meal boundary conditions B, thus existing algo-
rithms can not solve (10) nonlinear mapping function. The
case-base reasoning (CBR) [10] is generally suitable to the
cases where precise mathematical model is not available.
It uses experts’ empirical knowledge to solve control loop
pre-setting points. The CBR-based control loop pre-setting
model for raw meal calcination is shown in Fig.5. This model
consists of five components: namely the Case production for
control loop pre-setting, the Case retrieval and case matching,
the Case reuse, the Case base, and the Case revision and case
retention.

Case production: According to the operators’ excellent
experience in raw meal calcinations process, the initial cases
at different operating points were established. Then the
case description of control loop pre-setting points can be
expressed as follows:

Ck : {(Tk, Xk) → Yk} , (k = 1, · · · , n),
where n is the number of stored cases, Ck represents the
kth case in case base, Tk is producing case of time, and

Xk = (xk,1, . . . , xk,7) represent conditions describing Ck in
case base. In this context, xk,1 is the RMDR target value
γ∗, xk,2, . . . , xk,7 are the boundary conditions of B1, B2,
B3, B4, B5, and B6, respectively. In addition, Yk denotes
the solution (i.e., yk,1(t), yk,2(t)) of Ck in case base, where
yk,1(t) and yk,2(t) are the control loop pre-setting points
of calciner temperature and preheater C1 outlet temperature,
respectively.

Fig. 5. CBR-based control loop pre-setting model for raw meal calcination
process

Fifteen initial cases are obtained from the operational
experience and these initial cases are stored in the Case base
for case-based reasoning.

Case retrieval and case matching: Suppose that the current
operating condition is Ccur and its description feature is
xi(i = 1, · · · , 7). The cases Ck in Case base possess the
description feature of xk,i(i = 1, · · · , 7, k = 1, · · · , n) with
n being the number of stored cases. Thus, the similarity
function sim (xi, xk,i) between the description feature xi of
current operating condition Ccur and the description feature
xk,i of the Case base is defined as

sim (xi, xk,i) = 1− (|xi − xk,i|/max (xi − xk,i)) , (11)

where k = 1, · · · , n, i = 1, · · · , 7.
Thus, the similarity SIMk between the current operating

condition Ccur and cases Ck in Case base is given by

SIMk =
7∑

i=1

λisim(xi, xk,i)
/

7∑
i=1

λi ,

(k = 1, · · · , n, i = 1, · · · , 7)
(12)

where λi denotes the weight coefficients of each case de-
scription feature obtained by expert’s empirical knowledge.
Similarity threshold SIMyl is defined as

SIMyl =





V, Max
k=1,··· ,n

(SIMk ≥ V

Max
k=1,··· ,n

(SIMk), Max
k=1,··· ,n

(SIMk) < V
,

where similarity threshold V was determined by expert’s
experience.

All cases satisfying SIMk ≥ SIMyl were retrieved to act
on the matching case.

Case reuse: Generally speaking, the situation does not exist
in which the cases in Case base don’t perfectly match the
current conditions description feature. Detailed methods are
as follows.

Suppose that we retrieve matching cases in Case base and
it can be defined as {C1, . . . , Cr}. In addition, the similarity
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between the current operating condition Ccur and Ck(k =
1, · · · , r) is SIMk and corresponding case solution is Yk =
(yk,1, yk,2), (k = 1, · · · , r). Then, the case solution ỹsp for
current operating condition Ccur is ỹsp = (ỹ1sp, ỹ2sp), where

ỹlsp =
(

r∑
k=1

λk × yk,l

)/
r∑

k=1

λk, (13)

where l = 1, 2 and wk = SIMk, (k = 1, · · · , r).
Case revision and case retention: In this unit, ỹsp is

adopted as new pre-setting points for control loop and case
revision and case retention are fulfilled in the same manner
as in [11].

3) Soft Measurement Model for RMDR: In practical pro-
duction process, since RMDR γ(t) cannot be measured on-
line by a sensor, it can only be measured off-line once an
hour. From (1), it can be seen that RMDR γ(t) is a nonlin-
ear function of the calciner temperature y1, the preheater
C1 outlet temperature y2 and varying with the boundary
conditions B. To sove this problem, a soft measurement
model based on RFMPCA and LS-SVM is established in
[12]. The auxiliary variable set of this model are listed in
[12]. The RMDR value can be on-line calculated to obtain
a feedforward compensation control.

4) Algorithm for Feedforward and Feedback Compensa-
tion: Although Pre-setting model based on CBR can give
the pre-setting points of control loops according to the target
value γ∗ and the boundary conditions B, the RMDR cannot
still be guaranteed within its desirable ranges because of the
fluctuation of the boundary conditions B. Since compensa-
tion value of control loop pre-setting points can’t build a
mechanism model, it can only be compensated by summing
up excellent experts’experience. Therefore, the feedforward
and the feedback compensators based on fuzzy rules are
designed. Firstly, take for feedforward compensation model
example, one thousand groups of input and output data were
selected to extract fuzzy rules. Input data of fuzzy rules
are the error eF (t) (i.e., eF (t) = γ∗ − γsoft(t)) and the
error of change ∆eF (t), and yF (t) = [yF1(t), yF2(t)] as
fuzzy rules output, where yF1(t) and yF2(t) denote the
feedforward compensation value of the calciner temperature
and the preheater C1 outlet temperature, respectively. The
input and output compensation value were seen as input
of subtraction clustering. Sample data set were written as
follows:

X1 = {eF (T ),∆eF (T ), yF1, yF2} ⊂ R4 (14)

The subtraction clustering algorithm, presented by Chiu
[8], was used to determine clustering results of the rules
numbers and membership functions center. Put the clustering
center xci (i = 1, · · · , n) of subtraction clustering algorithm
as the center of the membership function. There are total
five fuzzy rules after subtraction clustering. Take for eF (T )
example, the center of the membership function as clustering
center, therefore, five fuzzy set can be selected. We selected
gaussian membership function as follows:

µγi = exp
[−(eF (T )− eci)2

/
σ2

1i

]
, (i = 1, · · · , 5), (15)

where eci is error of the ith clustering center. Similarly,
we can determine fuzzy sets and membership functions of
∆eF (T ), yF1 and yF1. The operation called Mamdani type
inference was used in this condition. The center of grav-
ity(COG) method [13] can be applied to the defuzzification
to obtain the fuzzy controller output yFi(i = 1, 2).

To feedback compensation model, we use the same method
as the feedforward compensation model to obtain the fuzzy
controller output yBj(j = 1, 2).

IV. INDUSTRIAL APPLICATION

The proposed intelligent setting control method has been
successfully applied to the raw meal calcination process of
Jiuganghongda Cement Plant in China. Fig. 6 shows the
raw meal calcination process using short rotary kiln with
suspended preheater and calciner. The rotary kiln is 48m
long, 3.2m in diameter with 5 stage string preheater and a
calciner. The control strategy proposed in this paper has been
realized by using the software and hardware platform of the
SIEMENS Series PCS7 and CEMAT.

Fig. 6. Scene of raw meal calcination process in the plant

According to the production requirement, the maxi-
mum value βe

max of content of f-CaO in easy calci-
nation stage is set to βe

max = 1.5% and the maxi-
mum value βd

max of content of f-CaO in difficult stage
βd

max = 2.5%. In the control loop pre-setting model, the
weight values in (13) are defined as λ = {λ1, . . . , λ7}
= {0.235, 0.456, 0.456, 0.538, 0.538, 0.445, 0.589} and the
threshold is 0.9.

Application results of the proposed intelligent setting
control method are shown in Figs.7-9. Figs.7-9 show the
time varying trends of calciner temperature, C1 outlet tem-
perature, and the manipulated variables (i.e.,(u1, u2)) from
8:00AM to 4:00PM.

At 8:00AM, the raw meal is easy calcination since
the raw calcination index fc1450 < βe

max. Thus the
RMDR target value γ∗ is set to 0.89 using (9). The
control loop pre-setting model generated the pre-setting
points ỹsp(8 : 00) = [850◦C, 330◦C] of the control
loops using (13) according to the RMDR target value
γ∗, boundary conditions B = [B1, B2, B3, B4, B5, B6] =
[2.32%, 13.72%, 3.6%, 17.4µm, 75T/h, 1010◦C] of raw
meal. In this case, the actual RMDR and the soft
measurement values RMDR are both 0.88.
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At 11:24AM, the raw meal is difficult calcination after
11:24AM since the raw calcination index fc1450 satisfy the
following relationship: βe

max < fc1450 < βd
max. At the same

time, since B2 declined from the original 2.32% to 2.01%,
therefore, the RMDR target value γ∗ is set to 0.93, and
control loop pre-setting model generated a new pre-setting
points ỹsp(11 : 24) = [880◦C, 341◦C] using (13).

Fig. 7. The control curve of calciner temperature

Fig. 8. The control curve of preheater C1 outlet temperature

Fig. 9. The trend of RMDR

At 1:48PM, the raw meal is easy calcination since the
raw calcination index fc1450 < βe

max. In addition, since B2

increased from the original 2.01% to 2.3% and B5 declined
from the original 17.4 µm to 15.0 µm, thus the RMDR
target value γ∗ is set to 0.85 using (9), and control loop
pre-setting model generated a new pre-setting points ỹsp(1 :
48) = [855◦C, 335◦C] using (13).

The SIEMENS control system was installed in April 2009.
The raw meal calcination process was operated manually

by operators before installation of the proposed strategy.
After the control system was installed in April 2009, the
user evaluated the system performance from April 2009 to
August 2010 by RMDR, production capacity and equipment
operation ratio. The sampling period for both was 1h. Using
the proposed intelligent setting control method, RMDR is
increased by 0.07 from previous 0.86 to the current 0.93.
However, equipment operation ratio has been increased by
2.55%. Thus, production capacity is enhanced by 2.15 T/h
from previous 43.68T/h to the current 45.83T/h.

V. CONCLUSIONS

This paper proposed an intelligent setting control method
for raw meal calcination process to control the technology
index, namely the decomposition ratio of raw meal (RMDR),
with its desirable ranges according to the on-line adjusting
the setpoints of the control loops with the change of raw meal
boundary conditions. This method has been successfully
applied to the raw meal calcination process of Jiuganghongda
Cement Plant in China. Practical applications show that the
proposed method has high potential in optimal operation and
can be applied to the other complex industries.
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