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Abstract— To make full use of the amazing characteristics of
quantum states, control of open quantum systems is of great
significance in practical applications. This paper studies a more
practical control problem where the decoherence parameter is
not known exactly. The problem is considered in two phases.
First, the unknown decoherence strength is estimated based
on continuous measurements and an appropriately designed
control. Then, Markovian feedback control is designed to deal
with the decoherence effect based on the accurate parameter
estimation. It is shown that state transfer with a high prob-
ability can be achieved by designing the feedback gains and
the measurement. Moreover, good state transfer performance
can be guaranteed even there exists an estimation error on
the decoherence strength. Simulation studies are included to
demonstrate the effectiveness of the proposed approach.

Index Terms— Uncertain open quantum system, identifica-
tion, measurement, feedback control

I. INTRODUCTION

Active manipulation of quantum systems has transcended
traditional disciplinary boundaries. During the past decades,
it has attracted tremendous interest in the communities of
control, computer science, physics and chemistry. One can
refer to the articles [1]-[4] and the references therein for
a comprehensive review. As the first principle of quan-
tum mechanics, the state coherent superposition reflects the
unique characteristic of quantum states, which declares that a
quantum state could exist in all of its eigenstates simultane-
ously [5]. It is the state coherent superposition principle that
makes quantum systems exhibit amazing properties, and thus
quantum systems show an extremely powerful application
prospect, e.g., quantum computing [6]. However, if a quan-
tum system is not perfectly isolated from its environment, the
coherence will be spoilt. Therefore, control of open quantum
system is a significant problem.

After the earlier development stage, in which the research
topics range from the fundamental controllability problem
to the control of exactly known quantum systems, control
of uncertain quantum systems appears to be particularly
important due to its practical application importance. For
a real system in the laboratory, the coupling between the
system and the environment usually is not known well due
to many internal and external factors. Instead of studying the
control of exactly modeled open quantum systems, this paper
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considers a more practical control problem that the quantum
system is in the presence of an unknown decoherence pa-
rameter.

Some celebrated results have been achieved on the es-
timation of unknown dynamical parameters of open quan-
tum systems, see [7], [8]. Inspired by classical control,
closed-loop control design is a natural trend to deal with
uncertainties in quantum systems. However, compared to
the classical closed-loop control, its main difficulty comes
from the measurement effects on quantum states. Once a
measurement is performed, it disturbs the system stochasti-
cally. On the other hand, one can make use of the unique
property introduced by measurements, i.e., the non-unitary
evolution, to achieve some special control objectives, e.g.,
control of decoherence [9], [10]. Continuous measurement
based feedback control, which overcomes the limitations of
sample preparation in learning control [11], has attracted
great attention of researchers. The three general types of
feedback strategies include Markovian feedback [12], [13],
Bayesian feedback [14], [15] and coherent feedback [16]. In
addition, robust control of quantum systems has also been
considered in [17]-[21].

In this paper, a two-level system under spontaneous emis-
sion is considered. The spontaneous emission is added to the
model as decoherence in a phenomenological manner. Since
the decoherence depends on both the internal structure of
the quantum system and the external filed, the decoherence
strength may not be known exactly for a real system. Due to
the decoherence effect, the system degenerates to the ground
state |0〉. However, as far as it is known, preparation of the
eigenstates |0〉 and |1〉 with high fidelities is crucial in quan-
tum computation [6]. Hence, this paper aims to steer the state
to the excited state |1〉 with a high probability in the presence
of the unknown decoherence strength. The problem will be
studied in two phases. In the first step, the decoherence
strength is estimated based on continuous measurements. It is
shown that the decoherence strength can be estimated under
an appropriately designed control. In the second step, the
feedback control to steer the system state to the excited state
is studied firstly based on the accurate parameter estimation.
The Markovian feedback control to achieve high probability
state transfer is designed analytically. It is shown that the
state can be driven to the exited state with a high probability
by designing the feedback gains and the measurement. The
control performance is further analyzed under the case that
there exists an estimation error on the decoherence strength.
It is shown that it is possible to achieve satisfactory control
performance even with the estimation error.

The rest of the paper is organized as follows: In Section II,

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 6254



the problems considered in this paper are formulated. Section
III presents the parameter estimation strategy. Section IV
further studies the control of the state transfer. Section V
concludes the paper.

The following notations will be adopted in the sequel. The

eigenstates are denoted as |0〉 =
[

1
0

]
and |1〉 =

[
0
1

]
.

The operators Fx,y,z have the forms

Fx=−
1

2

[
0 1
1 0

]
, Fy=−

1

2

[
0 −i
i 0

]
, Fz=−

1

2

[
1 0
0 −1

]
.

The superoperators D and H are defined as

D[A]ρ = AρA† − 1

2
(A†Aρ+ ρA†A)

H[A]ρ = Aρ+ ρA† − Tr(Aρ+ ρA†)ρ.

II. PROBLEM FORMULATION

Quantum electrodynamics enables one to explain spon-
taneous emission by adding it to the model of the system
as decoherence phenomenologically. Consider the following
system under spontaneous emission [22], [23]

dρ

dt
= −is[Fz, ρ]− iu(t)[Fy, ρ] + γD[σ]ρ, (1)

where the first term with constant s on the right hand side
represents the evolution under internal Hamiltonian. The
control u(t) is added to rotate the atom in the Bloch space
around the y axis. γ > 0 represents the decoherence strength.
The atomic decay operator σ has the form

σ =

[
0 1
0 0

]
.

Here, the spontaneous emission is treated by introducing
another unobserved field Ẽ. It is modeled by coupling the
atom directly to the external field Ẽ through a dipole operator
d. Hence, the decoherence strength γ does not only depend
on the external field but also on the structure of the atom. As
a result, the decoherence strength usually may be not known
exactly for a real system controlled in the laboratory.

It is noted that, without control, the system would degener-
ate to the ground state |0〉 due to the decoherence. However,
preparation of the states |0〉 and |1〉 with high fidelities is
crucial in quantum computation. The objective of this paper
is to steer the state to |1〉 with a high probability in the
presence of the unknown decoherence strength. To achieve
the control objective, we will naturally consider the following
three problems.
• Decoherence strength estimation: How to obtain the

estimate γ̂ of the decoherence strength based on mea-
surements?

• Real-time feedback control: With the obtained accurate
estimate γ̂, how to achieve the state transfer with a high
probability by real-time feedback control?

• Control under estimation error: For the case that there
exists an estimation error on γ̂, can the closed-loop
performance be guaranteed?

III. PARAMETER ESTIMATION

To estimate the decoherence strength γ, we continuously
measure the system, and then reconstruct γ based on the
measurement results.

If the observable Fz is measured, the conditional evolution
is described by [22], [24]

dρt = −is[Fz, ρt]dt− iu(t)[Fy, ρt]dt+MD[Fz]ρtdt
+γD[σ]ρtdt+

√
MH[Fz]ρtdWt, (2)

where M represents the measurement strength. Correspond-
ingly, the observer obtains the measurement result

dYt = 2
√
M Tr(Fzρt)dt+ dWt, (3)

where the Wiener process Wt satisfies

E(dW (t)) = 0, [dW (t)]2 = dt. (4)

Since the density matrix of a two-level system can be
expressed as

ρ =
1

2

[
1 + z x− iy
x+ iy 1− z

]
(5)

with x, y and z being real numbers, (2) can be equivalently
described by

dxt = −γ +M

2
xtdt+ sytdt− u(t)ztdt+

√
MxtztdWt

dyt = −γ +M

2
ytdt− sxtdt+

√
MytztdWt

dzt = γ(1− zt)dt+ u(t)xtdt−
√
M(1− z2t )dWt. (6)

Here, we adopt the master equation to describe the quan-
tum dynamics. In practical implementation, this corresponds
to simultaneously observe a sequence of identically prepared
systems. From (6), the master equation can be obtained

dx

dt
= −γ +M

2
x+ sy − u(t)z

dy

dt
= −γ +M

2
y − sx

dz

dt
= γ(1− z) + u(t)x. (7)

Correspondingly, the measurement output is

dY

dt
= 2

√
M Tr(Fzρ)

= −
√
M z. (8)

Subsequently, the decoherence strength γ will be estimated
from the measurement outcome (8) by designing the control.
If the control signal is chosen as a constant control u(t) = U ,
we have

dx

dt
= −γ +M

2
x+ sy − Uz

dy

dt
= −γ +M

2
y − sx

dz

dt
= γ(1− z) + Ux. (9)
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The equilibrium point of (9) is

x0 = − 2γU(γ +M)

2(γ +M)U2 +M2γ + γ3 + 4s2γ + 2γ2M

y0 =
4sγU

2(γ +M)U2 +M2γ + γ3 + 4s2γ + 2γ2M

z0 =
γ(4s2 + 2Mγ +M2 + γ2)

2(γ +M)U2 +M2γ + γ3 + 4s2γ + 2γ2M
.(10)

To analyze the stability of the equilibrium point, define

x1 = x− x0, y1 = y − y0, z1 = z − z0. (11)

Under the coordinate transformation, (9) is equivalent to dx1

dt
dy1
dt
dz1
dt

 =

 −γ+M2 s −U
−s −γ+M2 0
U 0 −γ

 x1
y1
z1

 . (12)

By Routh-Hurwitz stability criterion, it can be concluded that
the equilibrium point (x0, y0, z0) is stable for an arbitrary
control U .

Furthermore, based on the measurement result of z0, three
estimate values of γ can be deduced by solving (10), only
one of which is the desired one, and the other two are not in
conformity with the expectation. Specifically, the following
estimate values can be obtained

γ̂1 = γ

γ̂2 =
−γ2−3Mγ−2M2+

√
(M+γ)(γ3+γ2M−16Ms2)

2(γ+M)

γ̂3 =
−γ2−3Mγ−2M2−

√
(M+γ)(γ3+γ2M−16Ms2)

2(γ+M)
(13)

It is obvious that Re{γ̂2} < 0, and Re{γ̂3} < 0, which are
contradict with the requirement that γ > 0. Therefore, the
accurate estimate of the decoherence strength can be obtained
theoretically. In the following, a numerical example is given
to further illustrate the idea.

Consider the system with parameters γ = 1 and s = 1.
Design the control as U = 1, and the measurement strength
as M = 1. In a real experimental implementation, a single
system evolves conditionally according to the stochastic
equation (6). Specially, Fig. 1 shows the evolution trajec-
tories for three identically prepared systems. The proposed
estimation is based on the average evolution of a sequence
of systems. Ideally, the average evolution can be described
by the master equation (7). For (7), the state evolution is
shown in Fig. 2. As illustrated, the state z finally converge
to z0 = 0.6667 under the measurements and the constant
control. By simple calculation, the following estimates can
be obtained: γ̂1 = 1.000, γ̂2 = −1.500 + 1.3228i and
γ̂3 = −1.500 − 1.3228i. It is obvious that only γ̂1 meets
the requirement.

IV. FEEDBACK CONTROL

In this section, we will study the problem of the state
transfer to |1〉, i.e., x = 0, y = 0, z = −1 in the Bloch
space. The control is investigated by designing a continuous
measurement and a feedback.
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Fig. 1. Conditional evolutions of three systems
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Fig. 2. Average evolution

A. Markovian feedback control design

Instead of measuring the observable Fz , the one related to
Fx is measured in this section. The quantum trajectory and
the corresponding measurement result are given as follows

dρt = −is[Fz, ρt]dt+MD[σm]ρtdt+ γD[σ]ρtdt
+
√
MH[σm]ρtdWt, (14)

dYt =
√
M Tr

(
(σm + σ†m)ρt

)
dt+ dWt, (15)

where the operator σm =

[
0 0
1 0

]
, and Wt is a Wiener

process. Furthermore, define the measurement output current
as

I(t) =
dYt
dt

. (16)

Design the feedback of the output current I(t) to the system
along x and y axes with feedback gains λx and λy . The
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evolution of the system can be described by [12]

dρt = −is[Fz, ρt]dt+MD[σm]ρtdt+ γD[σ]ρtdt
−iλx

√
M [Fx, σmρt + ρtσ

†
m]dt+ λ2xD[Fx]ρtdt

−iλy
√
M [Fy, σmρt + ρtσ

†
m]dt+ λ2yD[Fy]ρtdt

+H[
√
Mσm − iλxFx − iλyFy]ρtdWt. (17)

The following theorem indicates how the state can be
driven to |1〉 with a high probability by designing the
feedback gains λx and λy , and the measurement strength
M .

Theorem 1: Consider the closed-loop system (17) under
the continuous measurement and the Markovian feedback
control. Suppose there is a constraint on the measurement
strength M , M ≤Mmax. Design the feedback gains as

λx = 0 (18)

λy = − 2√
M
γ. (19)

Choose the measurement strength as

M =Mmax. (20)

Then, the state z(t) will converge to the minimal value

zTmin
= −1 +Gmin, (21)

where

Gmin =
2(γ/Mmax)

2 + 2γ/Mmax

2(γ/Mmax)2 + 3γ/Mmax + 1
.

Correspondingly, the quantum state is driven to |1〉 with
maximal probability 1− Gmin

2 .
Proof: The corresponding master equation of (17) can

be equivalently expressed as

dx

dt
=−M + γ

2
x+ λy

√
Mx− 1

2
λ2yx+ sy

dy

dt
=−M + γ

2
y − λx

√
Mx− 1

2
λ2xy − sx

dz

dt
=−M(1+z)+γ(1−z)−1

2
λ2yz−

1

2
λ2xz+(1+z)λy

√
M. (22)

The objective is to steer the state to x = 0, y = 0, z =
−1. First, we analyze the derivative of z.

dz

dt
= −(M + γ +

1

2
λ2y − λy

√
M +

1

2
λ2x)×(

1 + z −
2γ + 1

2λ
2
y +

1
2λ

2
x

M + γ + 1
2λ

2
y − λy

√
M + 1

2λ
2
x

)
.(23)

It is obvious that M+γ+ 1
2λ

2
y+

1
2λ

2
x−λy

√
M > 0. Therefore,

under the continuous measurement and the feedback, z will
converge to

zT = −1 +
2γ + 1

2λ
2
y +

1
2λ

2
x

M + γ + 1
2λ

2
y − λy

√
M + 1

2λ
2
x

. (24)

Denote

G :=
2γ + 1

2λ
2
y +

1
2λ

2
x

M + γ + 1
2λ

2
y − λy

√
M + 1

2λ
2
x

. (25)

Next, it will be shown that G can be minimized by de-
signing the feedback gains λx and λy , and the measurement
strength M .

Since 2γ+ 1
2λ

2
y > 0, M +γ+ 1

2λ
2
y−λy

√
M > 0, and we

expect M+γ+ 1
2λ

2
y−λy

√
M > 2γ+ 1

2λ
2
y , we should design

λx = 0 to minimize G. Then, we calculate the following
partial derivatives

∂G

∂λy
=
− 1

2λ
2
y

√
M + λy(M − γ) + 2

√
Mγ

(M + γ + 1
2λ

2
y − λy

√
M)2

(26)

∂G

∂M
=

(2γ + 1
2λ

2
y)(1− 1

2λy/
√
M)

(M + γ + 1
2λ

2
y − λy

√
M)2

. (27)

Let ∂G
∂λy

= 0, we can obtain λy = 2
√
M or λy = − 2√

M
γ.

Let ∂G
∂M = 0, we have λy = 2

√
M . For λy = 2

√
M , G

reaches the maximum value G = 2. Therefore, we design
λy = − 2√

M
γ. Then, we have

G =
2(γ/M)2 + 2γ/M

2(γ/M)2 + 3γ/M + 1
. (28)

Correspondingly,

zT = −1 + 2(γ/M)2 + 2γ/M

2(γ/M)2 + 3γ/M + 1
. (29)

It can be checked that G monotonously decreases with
respect to γ

M . Therefore, we design M = Mmax to obtain
the minimal value of G, Gmin.

Furthermore, for λy = − 2√
M
γ, we have

dx

dt
= −M + γ

2
x− 2γx− 2

M
γ2x+ sy

dy

dt
= −M + γ

2
y − sx. (30)

Consider the following Lyapunov function candidate

V =
1

2
x2 +

1

2
y2. (31)

The derivative of V is

dV

dt
= −M + γ

2
x2 − 2γx2 − 2

M
γ2x2 − M + γ

2
y2

Hence, x, y converge to zero. The obtained density matrix
ρ has the following form

ρ =

[
Gmin

2 0
0 1− Gmin

2

]
, (32)

which means that the state can be steered to |1〉 with maximal
probability 1− Gmin

2 .
Remark 1: If choose the feedback gains as λx = 0, λy =

0 and the measurement strength as M =∞, we have G = 0
and zT = −1. This is consistent with the quantum Zeno
effect [9], which means that one can defeat the decoherent
effect by very frequent instant observations.

Remark 2: The measurement operator plays a significant
role in the control design. Suppose we still measure the
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observable Fz as in Section III. Under Markovian feedback,
the following master equations can be obtained

dx

dt
= −

M + γ + λ2y
2

x+ sy + λy
√
M

dy

dt
= −M + γ + λ2x

2
y − sx− λx

√
M

dz

dt
= γ(1− z)− 1

2
λ2xz −

1

2
λ2yz. (33)

Analyzing the derivative of z

dz

dt
= γ − (γ +

1

2
λ2x +

1

2
λ2y)z, (34)

the following equilibrium point can be obtained

zT =
γ

γ + 1
2λ

2
x +

1
2λ

2
y

(35)

which is far away from the desired state z = −1.

B. Control analysis in the presence of an estimation error

In this section, the performance of the closed-loop system
will be further investigated under a parameter estimation
error in γ̂. We have the following theorem.

Theorem 2: Suppose there exists a small estimation error
in γ̂, which satisfies

|γ̂ − γ| < ε. (36)

Design the feedback gains as

λx = 0

λy = − 2√
M
γ̂. (37)

Choose the measurement strength as

M =Mmax. (38)

Then, the state z(t) converges to a small neighborhood
around the ideal one zTmin in the form of (21). Specifically,
we have

zγTmin
− zTmin

< Kε2, (39)

where

K =
2

Mmax

(
1 + 2γ̂+2γ̂2/Mmax

Mmax+γ

)(
1 + 2γ+2γ2/Mmax

Mmax+γ

) ,
and zγTmin

represents the final value of z(t) obtained in the
presence of the estimation error.

Proof: With the control (37), we have

Gγ =
2γ + 1

2λ
2
y +

1
2λ

2
x

M + γ + 1
2λ

2
y − λy

√
M + 1

2λ
2
x

=
2γ + 2γ̂2/M

M + 2γ̂ + γ + 2γ̂2/M
. (40)

The derivative of z is
dz

dt
= −(M + γ +

1

2
λ2y − λy

√
M) (1 + z −Gγ) . (41)

Hence, z will converge to

zγT = −1 +Gγ . (42)
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Fig. 3. Control performance with different measurement strengths

The state error between the obtained state zγT and the ideal
one zT is

zγT − zT = Gγ −G. (43)

From (25) and (40), we have

Gγ−G=
2(γ̂ − γ)2(M + γ)

M(M + 2γ̂ + γ + 2γ̂2/M)(M + 3γ + 2γ2/M)

<
2

M
(
1 + 2γ̂+2γ̂2/M

M+γ

)(
1 + 2γ+2γ2/M

M+γ

)ε2. (44)

Denote

K :=
2

M
(
1 + 2γ̂+2γ̂2/M

M+γ

)(
1 + 2γ+2γ2/M

M+γ

) . (45)

Then, Gγ − G < Kε2 with bounded K. For an arbitrary
small ε, Gγ − G is small. Therefore, zγT − zT is small.
From (38), we can further obtain (39).

C. Simulation studies

To verify the proposed control approach, the average
evolution is simulated firstly based on the master equation.
Consider the system with parameters γ = 1, s = 1
in the simulation. The initial state is [x(0), y(0), z(0)] =
1
3 [−
√
3,
√
3,
√
3 ]. Control results with different values of

the measurement strength M are shown in Fig. 3. As
shown, both x(t) and y(t) converge to zero. The state is
finally transferred to |1〉 with a higher probability with the
increase of the measurement strength. In addition, the control
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Fig. 4. Control performance in the presence of an estimation error
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Fig. 5. Closed-loop evolution for two systems

performance with an estimation error in γ̂ is simulated. Here,
we assume γ̂ = 0.95. As seen in Fig. 4, the control results
have no much difference compared to the results in Fig. 3.

As to the real experimental feedback for a single quantum
system, the system evolves under conditional evolution. To
illustrate the closed-loop performance of a single system, the
evolutions of two identically prepared systems are shown in
Fig. 5. The measurement strength is chosen as M = 5.
For a single system, it is shown that good state transfer
performance can be guaranteed with the designed control.

V. CONCLUSIONS AND FUTURE WORKS

This paper has studied the control of an uncertain open
quantum system, which is closely related to practical ap-
plications. The proposed estimation method can estimate
the decoherence strength based on continuous measurements
and an appropriately designed control. The control strategy
is capable of steering the system state to the excited state

with a high probability by designing the feedback gains
and the measurement. It has been shown that satisfactory
performance can also been achieved even in the presence of
a parameter estimation error.

This paper provides an effective support for the further
exploration on more general state transfer problem and
more complex uncertain open quantum systems. We wish to
extend the work to the observer based estimation and control
problems in our future research.
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