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Abstract— This work focuses on model predictive control of
nonlinear singularly perturbed systems. A composite control
system using multirate sampling (i.e., fast sampling of the fast
state variables and slow sampling of the slow state variables)
and consisting of a “fast” feedback controller that stabilizes the
fast dynamics and a model predictive controller that stabilizes
the slow dynamics and enforces desired performance objectives
in the slow subsystem is designed. Using stability results for
nonlinear singularly perturbed systems, sufficient conditions for
closed-loop system stability are derived. A nonlinear reactor-
separator process network which exhibits two-time-scale behav-
ior is used to demonstrate the controller design.

I. INTRODUCTION

Chemical processes and plants are characterized by non-
linear behavior and strong coupling of physico-chemical
phenomena occurring at disparate time-scales. Examples
include fluidized catalytic crackers, distillation columns,
biochemical reactors as well as chemical process networks
in which the individual processes evolve in a fast time-
scale and the network dynamics evolve in a slow time-scale.
Singular perturbation theory provides a natural framework
for modeling, analysis, order reduction and controller design
for nonlinear two-time-scale processes (e.g., [1], [2]). Within
this framework, methods for controller design based on
optimal control (e.g., [3]), geometric control (e.g., [1], [2])
and Lyapunov-based control [4] have been developed.

Model predictive control (MPC) is a practically-important
control framework which can be used to design and coor-
dinate control systems and can explicitly handle input and
state constraints. MPC utilizes a model to predict the future
evolution of the plant at each sampling time according to the
current state over a given prediction horizon. MPC utilizes
these predictions in an on-line optimization framework to
obtain an optimal control input trajectory which minimizes
an objective function subject to state and input constraints.
To reduce the dimensionality and computational burden of
the optimization problem, optimization is performed over the
set of piecewise constant trajectories with fixed sampling
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time and finite prediction horizon. Once the optimization
problem is solved, only the first step of the optimal input
is implemented by the actuators, the rest of the trajectory
is discarded and the optimization is repeated in the next
sampling step (e.g., [5], [6]). In [7], a Lyapunov-based MPC
(LMPC) design was proposed by incorporating a Lyapunov
function based constraint in the MPC optimization problem
to guarantee the closed-loop stability. This LMPC design
inherits the stability properties of a pre-existing Lyapunov-
based controller and has an explicitly characterized stability
region. In the context of control of large-scale process
networks within a centralized MPC framework, the compu-
tational complexity of MPC may increase significantly with
the increase of the number of state variables and manipulated
inputs. Moreover, a centralized control system for large-scale
systems may be difficult to organize and maintain and is
vulnerable to potential process faults. To overcome these
issues, distributed MPC (DMPC) can be utilized. In a DMPC
framework, optimal input trajectories are obtained by solving
a number of lower-dimension MPC problems compared to
the fully centralized MPC (see, for example, [8] for a recent
review of results in this area). In the context of MPC of
singularly perturbed systems, most of the efforts have been
dedicated to linear systems [9] or to MPC of specific classes
of two-time-scale processes [10], [11].

This work focuses on MPC of nonlinear singularly per-
turbed systems in standard form where the separation be-
tween the fast and slow state variables is explicit. The key
contribution is the design of a composite control system
using multirate sampling and consisting of a “fast” feedback
controller that stabilizes the fast dynamics and a centralized
MPC that stabilizes the slow dynamics and enforces desired
performance objectives in the slow subsystem. The closed-
loop system is analyzed and sufficient conditions for stability
are derived. Even though the main stability result is derived
in the case of using a centralized MPC in the slow subsystem,
this results continuous to hold when a distributed MPC, that
enforces the stability properties of the centralized MPC in
the slow subsystem, is used. A nonlinear reactor-separator
process network is used to demonstrate the application of
the method including a distributed implementation of the
predictive controller.

II. PRELIMINARIES

A. Notation

The operator | · | is used to denote Euclidean norm of
a vector and the symbol Ωr is used to denote the set
Ωr := {x ∈ Rnx : V (x) ≤ r} where V is a positive

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 8125



definite scalar function. For any measurable (with respect
to the Lebesgue measure) function w : R≥0 → Rl, ||w||
denotes ess.sup.|w(t)|, t ≥ 0. A function γ : R≥0 → R≥0 is
said to be of class K if it is continuous, nondecreasing, and is
zero at zero. A function β : R≥0×R≥0 → R≥0 is said to be
of class KL if, for each fixed t, the function β(·, t) is of class
K and, for each fixed s, the function β(s, ·) is nonincreasing
and tends to zero at infinity. The symbol diag(v) denotes a
matrix whose diagonal elements are the elements of vector
v and all the other elements are zeros.

B. Class of nonlinear singularly perturbed systems

In this work, we focus on nonlinear singularly perturbed
systems in standard form with the following state-space
description:

ẋ = f(x, z, ε, us, w), x(0) = x0

εż = g(x, z, ε, uf , w), z(0) = z0

(1)

where x ∈ Rn and z ∈ Rm denote the vector of state
variables, ε is a small positive parameter, w ∈ Rl denotes the
vector of disturbances and us ∈ U ⊂ Rp and uf ∈ V ⊂ Rq

are two sets of manipulated inputs. The sets U and V are
nonempty convex sets which are defined as follows:

U := {us,i(t) : |us,i(t)| ≤ umax
s,i , i ∈ [1, p]}

V := {uf,j(t) : |uf,j(t)| ≤ umax
f,j , j ∈ [1, q]} (2)

where umax
s,i and umax

f,j are positive real numbers, specifying
the input constraints. The disturbance vector is assumed to
be absolutely continuous and bounded, i.e., W := {w(t) ∈
Rl : |w(t)| ≤ θ} where θ is a positive real number. Since the
small parameter ε multiplies the time derivative of the vector
z in the system of Eq. 1, the separation of the slow and fast
variables in Eq. 1 is explicit, and thus, we will refer to the
vector x as the slow states and to the vector z as the fast
states. We assume that the vector fields f and g are locally
Lipschitz in Rn×Rm× [0, ε̄)×Rp×Rq×Rl for some ε̄ > 0
and that the origin is an equilibrium point of the unforced
nominal system (i.e., system of Eq. 1 with us = 0, uf = 0
and w = 0).

With respect to the control problem formulation, we
assume that the fast states z are sampled continuously and
their measurements are available for all time t (for exam-
ple, variables for which fast sampling is possible usually
include temperature, pressure and hold-ups) while the slow
states x are sampled synchronously and are available at
time instants indicated by the time sequence {tk≥0} with
tk = t0 + kΔ, k = 0, 1, . . . where t0 is the initial time
and Δ is the sampling time (for example, slowly sampled
variables usually involve species concentrations). The set
of manipulated inputs uf is responsible for stabilizing the
fast dynamics of Eq. 1 and for this set the control action
is assumed to be computed continuously, while the set of
manipulated inputs us is evaluated at each sampling time
tk and is responsible for stabilizing the slow dynamics and
enforcing a desired level of optimal closed-loop performance.

C. Two-time-scale system decomposition

The explicit separation of the slow and fast variables
in the system of Eq. 1 allows decomposing it into two
separate reduced-order systems evolving in different time-
scales. To proceed with such a two-time-scale decomposition
and in order to simplify the notation of the subsequent
development, we will first address the issue of stability of
the fast dynamics. Since there is no assumption that the fast
dynamics of Eq. 1 are asymptotically stable, we assume the
existence of a “fast” feedback control law uf = p(x, z) that
renders the fast dynamics asymptotically stable in a sense
to be made precise in Assumption 2 below. Substituting
uf = p(x, z) in Eq. 1 and setting ε = 0 in the resulting
system, we obtain:

dx

dt
= f(x, z, 0, us, w) (3a)

0 = g(x, z, 0, p(x, z), w) (3b)

Assumption 1: The equation g(x, z, 0, p(x, z), w) = 0
possesses a unique root

z = ĝ(x,w) (4)

with the properties that ĝ : Rn × Rl → Rm and its partial

derivatives
∂ĝ

∂x
,

∂ĝ

∂w
are locally Lipschitz.

Using z = ĝ(x, w), we can re-write Eq. 3 as follows:

dx

dt
= f(x, ĝ(x,w), 0, us, w)

=: fs(x, us, w)
(5)

We will refer to the subsystem of Eq. 5 as the slow
subsystem.

Introducing the fast time scale τ =
t

ε
and the deviation

variable y = z − ĝ(x,w), we can rewrite the nonlinear
singularly perturbed system of Eq. 1 as follows:

dx

dτ
= εf(x, y + ĝ(x,w), ε, us, w)

dy

dτ
= g(x, y + ĝ(x,w), ε, uf , w) − ε

∂ĝ

∂w
ẇ

−ε
∂ĝ

∂x
f(x, y + ĝ(x,w), ε, us, w)

(6)

Setting ε = 0, we obtain the following fast subsystem:

dy

dτ
= g(x, y + ĝ(x,w), 0, uf , w) (7)

where x and w can be considered as “frozen” to their initial
values. Below we state our assumption on the stabilization
of the fast subsystem:

Assumption 2: There exists a feedback control law uf =
p(x, z) = p(x, y + ĝ(x,w)) ∈ V where p(x, z) is a locally
Lipschitz vector function of its arguments, such that the
origin of the closed-loop fast subsystem:

dy

dτ
= g(x, y + ĝ(x,w), 0, p(x, y + ĝ(x, w)), w) (8)
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is globally asymptotically stable, uniformly in x ∈ Rn and
w ∈ Rl, in the sense that there exists a class KL function
βy such that for any y(0) ∈ Rm:

|y(t)| ≤ βy(|y(0)|, t

ε
) (9)

for t ≥ 0.
Remark 1: Assumption 1 is a standard requirement in

singularly perturbation theory (see, for example, [3]) and it
is made to ensure that the system has an isolated equilibrium
manifold for the fast dynamics. On this manifold, z can be
expressed in terms of x and w using an algebraic expression.
This assumption does not pose any practical limitation in the
example but it is a necessary one in the singular perturba-
tion framework to construct a well-defined slow subsystem.
Assumption 2 is also a standard requirement in composite
control design for singularly perturbed systems in that the
fast controller should asymptotically stabilize the fast dynam-
ics. In assumption 2, we state that this should be achieved
globally in the presence of constraints (because it allows
us to get a semi-global type stability result for the overall
closed-loop system in Theorem 1 below) but this requirement
can be relaxed to local or regional asymptotic stability at the
expense of a weaker stability result in Theorem 1.

D. Lyapunov-based controller

We assume that there exists a Lyapunov-based locally
Lipschitz control law h(x) = [h1(x) . . . hp(x)]T with
us,i = hi(x), i = 1, . . . , p, which renders the origin of
the nominal closed-loop slow subsystem (i.e., Eq. 5 with
us = h(x) and w = 0) asymptotically stable while satisfying
the input constraints for all the states x inside a given
stability region. Using converse Lyapunov theorems [12],
[13], [14], this assumption implies that there exist functions
αi(·), i = 1, 2, 3, 4 of class K and a continuously differen-
tiable Lyapunov function V (x) for the nominal closed-loop
slow subsystem that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
(fs(x, h(x), 0)) ≤ −α3(|x|)

h(x) ∈ U

(10)

for all x ∈ D ⊆ Rn where D is an open neighborhood of the
origin. We denote the region Ωρ ⊆ D as the stability region
of the closed-loop slow subsystem under the Lyapunov-based
controller h(x). By continuity, the local Lipschitz property
assumed for the vector fields fs(x, us, w) and taking into
account that the manipulated inputs ui, i = 1, . . . , p, and
the disturbance w are bounded in convex sets, there exists a
positive constant M such that

|fs(x, us, w)| ≤ M (11)

for all x ∈ Ωρ, us ∈ U , and w ∈ W . In addition,
by the continuous differentiable property of the Lyapunov
function V (x) and the Lipschitz property assumed for the

vector field fs(x, us, w), there exist positive constants Lx

and Lw such that

|∂V

∂x
fs(x, us, w) − ∂V

∂x
fs(x′, us, w)| ≤ Lx|x − x′|

|∂V

∂x
fs(x, us, w) − ∂V

∂x
fs(x, us, w

′)| ≤ Lw|w − w′|
(12)

for all x, x′ ∈ Ωρ, us ∈ U , and w, w′ ∈ W .

E. Lyapunov-based MPC formulation

The longer sampling time of the slow state variables
allows utilizing MPC to compute the control action us.
Specifically, we use the LMPC controller proposed in [7]
which guarantees practical stability of the closed-loop system
and allows for an explicit characterization of the stability
region. The LMPC controller is based on the Lyapunov-
based controller h(x). The controller h(x) is used to define
a stability constraint for the LMPC controller which guar-
antees that the LMPC controller inherits the stability and
robustness properties of the Lyapunov-based controller h(x).
The LMPC controller is based on the following optimization
problem:

min
us∈S(Δ)

∫ NcΔ

0

[x̃T (τ)Qcx̃(τ) + uT
s (τ)Rcus(τ)]dτ (13a)

s.t. ˙̃x(τ) = fs(x̃(τ), us, 0), x̃(0) = x(tk) (13b)
us(τ) ∈ Us (13c)
∂V (x(tk))

∂x
fs(x(tk), us(0), 0)

≤ ∂V (x(tk))
∂x

fs(x(tk), h(x(tk)), 0)

(13d)

where S(Δ) is the family of piece-wise constant functions
with sampling period Δ, Nc is the prediction horizon, Qc

and Rc are positive definite weight matrices that define the
cost, x(tk) is the state measurement obtained at tk, x̃ is the
predicted trajectory of the nominal system with us, the input
trajectory computed by the LMPC of Eq. 13. The optimal
solution to this optimization problem is denoted by u∗

s(τ |tk),
and is defined for τ ∈ [0, NcΔ).

The optimization problem of Eq. 13 does not depend on
the uncertainty and guarantees that the system in closed-loop
with the LMPC controller of Eq. 13 maintains the stability
properties of the Lyapunov-based controller. The constraint
of Eq. 13d guarantees that the value of the time derivative
of the Lyapunov function at the initial evaluation time of
the LMPC is lower or equal to the value obtained if only
the Lyapunov-based controller h(x) is implemented in the
closed-loop system in a sample-and-hold fashion. This is the
constraint that allows proving that the LMPC inherits the
stability and robustness properties of the Lyapunov-based
controller. The manipulated inputs of the closed-loop slow
subsystem under the LMPC controller are defined as follows

us(t) = u∗
s(t − tk|tk), ∀t ∈ [tk, tk+1). (14)

The main property of the LMPC controller is that the
origin of the closed-loop system is practically stable for all
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initial states inside the stability region Ωρ for a sufficient
small sampling time Δ and disturbance upper bound θ. The
main advantage of LMPC approaches with respect to the
Lyapunov-based controller is that optimality considerations
can be taken explicitly into account (as well as constraints on
the inputs and the states [7]) in the computation of the con-
troller within an online optimization framework improving
closed-loop performance.

Proposition 1 (c.f. [7], [15]): Consider the slow subsys-
tem of Eq. 5 in closed-loop under the LMPC design of Eq. 14
based on a Lyapunov-based controller h(x) that satisfies the
conditions of Eq. 10. Let εw > 0, Δ > 0 and ρ > ρs > 0,
θ > 0 satisfy the following constraint:

−α3(α−1
2 (ρs)) + LxMΔ + Lwθ ≤ −εw/Δ. (15)

There exists a class KL function βx and a class K function
γ such that if x(0) ∈ Ωρ, then x(t) ∈ Ωρ for all t ≥ 0 and

|x(t)| ≤ βx(|x(0)|, t) + γ(ρ∗) (16)

with ρ∗ = max{V (x(t + Δ)) : V (x(t)) ≤ ρs}.

III. STABILITY ANALYSIS

The closed-loop stability of the system of Eq. 1 under the
control of the controller p(x, z) and the LMPC of Eq. 13
is established in the following theorem under appropriate
conditions.

Theorem 1: Consider the system of Eq. 1 in closed-loop
with uf = p(x, z) and us determined by the LMPC of Eq. 13
based on a controller h(·) that satisfies the conditions of
Eq. 10. Let also assumptions 1 and 2 and the condition of
Eq. 15 hold. Then there exist functions βx and βy of class
KL, a pair of positive real numbers (δ, d) and ε∗ > 0 such
that if max{|x(0)|, |y(0)|, ||w||, ||ẇ||} ≤ δ and ε ∈ (0, ε∗],
then,

|x(t)| ≤ βx(|x(0)|, t) + γ(ρ∗) + d

|y(t)| ≤ βy(|y(0)|, t

ε
) + d

(17)

for all t ≥ 0.
Proof: When uf = p(x, z) and us = u∗

s is determined
by the LMPC of Eq. 14, the closed-loop system takes the
following form:

ẋ = f(x, z, ε, u∗
s, w), x(0) = x0

εż = g(x, z, ε, p(x, z), w), z(0) = z0.
(18)

We will first compute the slow and fast closed-loop subsys-
tems. Setting ε = 0 in Eq. 18, we obtain:

dx

dt
= f(x, z, 0, u∗

s, w)

0 = g(x, z, 0, p(x, z), w).
(19)

Using that the second equation has a unique, isolated solution
z = ĝ(x,w) (assumption 1), we can re-write 19 as follows:

dx

dt
= f(x, ĝ(x,w), 0, u∗

s, w)

= fs(x, u∗
s, w)

(20)

According to Proposition 1, the state x(t) of the closed-loop
slow subsystem of Eq. 20 starting from x(0) ∈ Ωρ stays in
Ωρ (i.e., x(t) ∈ Ωρ ∀t ≥ 0) and satisfies the bound of Eq.16.

We now turn to the fast subsystem. Using τ =
t

ε
and

y = z − ĝ(x,w), the closed-loop system of Eq. 18 can be
written as:

dx

dτ
= εf(x, y + ĝ(x,w), ε, us(x), w)

dy

dτ
= g(x, y + ĝ(x, w), ε, p(x, y), w) − ε

∂ĝ

∂w
ẇ

−ε
∂ĝ

∂x
f(x, y + ĝ(x,w), us(x), w)

(21)

Setting ε = 0, the closed-loop fast subsystem is obtained:

dy

dτ
= g(x, y + ĝ(x, w), 0, p(x, y), w) (22)

According to Assumption 2, the origin of the system of
Eq. 22 is globally asymptotically stable, uniformly in x ∈ Rn

and w ∈ Rl in the sense that there exists a class KL
function βy such that for any y(0) ∈ Rm, the bound of
Eq. 9 holds for t ≥ 0. Therefore, the closed-loop system of
Eq. 18 satisfies the assumptions 1, 2 and 3 of Theorem 1
in [16]. Thus, there exist functions βx and βy of class
KL, positive real numbers (δ, d) (note that the existence
of δ such that |x(0)| ≤ δ implies that x(0) ∈ Ωρ follows
from the smoothness of V (x)), and ε∗ > 0 such that if
max{|x(0)|, |y(0)|, ||w||, ||ẇ||} ≤ δ and ε ∈ (0, ε∗], then,
the bounds of Eq.17 hold for all t ≥ 0.

IV. APPLICATION TO A CHEMICAL PROCESS NETWORK
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Fig. 1. Process schematic.

A. Process description and control system design

The process considered in this study is a reactor-
distillation process network, shown in Fig. 1 (see also [2]).
It consists of a continuously stirred tank reactor (CSTR), a
distillation tower including a reboiler and a condenser, and

8128



a recycle loop. A set of elementary exothermic reactions in
series takes place in the reactor of the form A

k1−→ B
k2−→ C,

in which A is the reactant, B is the desired product and C is
the by-product. The reactor is fed with a fresh feed of pure
species A at flowrate F0. The outlet of the reactor is fed
into the distillation tower, where most of the reactant A is
separated overhead and recycled back to the CSTR, and most
of the product and the by-product leave the system through
stream Bt. There are three heat/coolant inputs, labeled as
Q1, Q2, and Q3, that are assigned to the CSTR, the reboiler,
and the condenser, respectively. The flow rates of streams
F , D and Bt are regulated by three valves, labeled as V 1,
V 2, and V 3, respectively. The dynamic equations describing
the behavior of the process are obtained through material
and energy balances under standard modeling assumptions.
Specifically, the dynamic model of the CSTR is as follows:

ṀR = F0 + D − F (23a)

ẋA,R =
F0(1 − xA,R) + D(xA,0 − xA,R)

MR

− k1e
−E1/RT xA,R (23b)

ẋB,R =
−F0xB,R + D(xB,0 − xB,R)

MR

+ k1e
−E1/RT xA,R − k2e

−E2/RT xB,R (23c)

ḢL,R =
F0(HL,F0 − HL,R) + D(HL,0 − HL,R)

MR

+
Q1

MR
− k1e

−E1/RT xA,RΔHr1 (23d)

− k2e
−E2/RT xB,RΔHr2 (23e)

The dynamic model of the condenser is as follows:

Ṁ0 = V − R − D (24a)

ẋi,0 =
V

M0
(yi,1 − xi,0) (24b)

ḢL,0 =
V

M0
(HV,1 − HL,0) +

Q2

M0
(24c)

where i = A,B, C. The dynamic model of the distillation
column is as follows:

ẋi,j =
1

Mj
[V (yi,j+1 − yi,j) + R(xi,j−1 − xi,j)],

1 ≤ j < f (25a)

ḢL,j =
V

Mj
(HV,j+1 − HV,j) +

R

Mj
(HL,j−1 − HL,j),

1 ≤ j < f (25b)

ẋi,f =
1

Mf
[V (yi,f+1 − yi,f ) + R(xi,f−1 − xi,f )

+ F (xi,R − xi,f )], j = f (25c)

ḢL,f =
V

Mf
(HV,f+1 − HV,f ) +

R

Mf
(HL,f−1 − HL,f )

+
F

Mf
(HL,R − HL,f ), j = f (25d)

ẋi,j =
1

Mj
[V (yi,j+1 − yi,j) + (R + F )(xi,j−1 − xi,j)],

TABLE I
PROCESS PARAMETERS

ΔHr1 2, 500 [J/mol] ΔHr2 5, 500 [J/mol]

E1 9, 500 [J/mol] E2 12, 000 [J/mol]

k1 2.4 [1/s] k2 4.0 [1/s]

F0, F̃0 100 [mol/s] HL,F0 61.06 [J/mol]

f < j ≤ N (25e)

ḢL,j =
V

Mj
(HV,j+1 − HV,j) +

R + F

Mj
(HL,j−1 − HL,j),

f < j ≤ N (25f)

where i = A,B, C and N is the number of column stages.
Finally, the dynamic model of the reboiler is as follows:

ṀN+1 = R + F − V − Bt (26a)

ẋi,N+1 =
1

MN+1
[(R + F )(xi,N − xi,N+1)

− V (yi,N+1 − xi,N+1)] (26b)

ḢL,N+1 =
R + F

MN+1
(HL,N − HL,N+1) +

Q3

MN+1

− V

MN+1
(HV,N+1 − HL,N+1) (26c)

where i = A, B,C. The nominal values of the process
parameters are given in Table I and in Table II, respectively.

The model of the CSTR assumes perfect mixing and
spatially uniform heat conduction. Both reactions in the
reactor are first-order elementary reactions. The composition
of species C can be computed by the following relationship,
xA,R + xB,R + xC,R = 1. For the derivation of the dynamic
model of the multicomponent distillation, we apply stage-by-
stage methods and batch rectification. To apply this approach,
we assume vapor-liquid equilibrium in each stage, perfect
mixing of liquid and vapor in each stage, negligible vapor
holdup, constant-molar-liquid holdup, Mj , on each stage,
and adiabatic process for the entire distillation process. In
this work, the thermodynamic properties of the mixtures are
obtained by assuming ideal behavior in both liquid phase
and vapor phase. Specifically, the enthalpy of each species
in vapor state is described by the following expression:

hV,i = ho
V,i + CPV ,i(T − T0)

where T0 is the reference temperature and its value is
373.15 K, ho

V,i is the enthalpy of a species at the reference
temperature and CPV ,i is the heat capacity of a species and
is assumed to be a constant. The derivation of the enthalpy of
a vapor mixture and the enthalpy of a liquid mixture, based
on above assumptions, is given by:

HV =
A,B,C∑

i

yih
0
V,i + (T − T0)

A,B,C∑
i

yiCpV ,i

HL =
A,B,C∑

i

xi(h0
V,i−ΔHV ap

i ) + (T − T0)
A,B,C∑

i

xiCpV ,i

(27)
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TABLE II
PROCESS PARAMETERS

A B C

CpV ,i [J/mol · K] 1.86 2.01 2.00

ΔHV ap
i [J/mol] 83.333 86.111 85.556

ho
V,i [J/mol] 283.889 369.844 394.444

αi 5.5 1.2 1.0

TABLE III
FINAL STEADY-STATE MANIPULATED INPUT VALUES

Q̃1 2.85·105 [J/s] Q̃2 -1.93·105 [J/s]

Q̃3 2.31·105 [J/s] D̃ 1780 [mol/s]

Ṽ 2070 [mol/s] B̃t 100 [mol/s]

F̃ 1880 [mol/s] R̃ 290 [mol/s]

If the enthalpy of a liquid mixture is known, we can obtain
the temperature using the following expression:

T =
HL −

A,B,C∑
i

xi(h0
V,i−ΔHV ap

i )

A,B,C∑
i

xiCpV ,i

+ T0

Furthermore, the enthalpy of the vapor mixture can be
obtained by substituting the computed temperature value
back into Eq. 27. For ideal liquid-vapor mixture, Raoult’s
law determines the relationship between the vapor phase
molar composition and the liquid phase molar composition
of each species. In this model, we assume that the vapor
pressure of each species, or the relative volatility of each
species, is a constant. Hence, the following equation, based
on Raoult’s law, can be used to compute the vapor phase
molar composition, once the liquid phase molar composition
is known:

yi =
αixi

A,B,C∑
k

αkxk

For the other thermodynamic parameters, one can refer to
Table II for their nominal values. The distillation tower has a
total of 15 trays, and the reactor outlet is fed into tray 12. The
entire process network has a total of 57 states which consist
of the compositions of A, B, and C in the reactors, column
stages, reboiler and condenser, as well as the enthalpy in
each of the vessels. The desired (final) operating point of the
process, corresponding to the seven steady-state manipulated
input values, F̃ , Ṽ , B̃, R̃, D̃, Q̃1, Q̃2, and Q̃3 (Table III), is
given in Table V.

The goal of the controller is to drive the system from the
initial stable operating point to the desired operating point.
The initial steady-state values for the manipulated inputs and
the states of the CSTR, reboiler and condenser are given in
Table VI and in Table IV, respectively. Before proceeding
with the control design, we note that via extensive simulation
we have verified that the process exhibits two-time-scale
behavior owing to the use of large recycle, D, relative to the
feed input, F0, which motivates defining ε = F̃o/D̃ = 0.056.

TABLE IV
INITIAL STEADY STATE VALUES OF THE STATES

MR 1300 xA,R 0.763

M0 1125 xA,0 0.806

MN+1 1425 xA,N+1 0.00159

xB,R 0.210 HL,R 1.966 ×102

xB,0 0.176 HL,0 2.047 ×102

xB,N+1 0.800 HL,N+1 3.880 ×102

TABLE V
FINAL STEADY-STATE VALUES OF THE STATES

M̃R [mol] 1100 M̃0 1050 M̃N+1 1200

x̃A,R 0.897 x̃A,0 0.948 x̃A,N+1 0.00666

x̃B,R 0.0965 x̃B,0 0.0505 x̃B,N+1 0.916

H̃L,R [J/mol] 184.9 H̃L,0 195.2 H̃L,N+1 382.6

We also define the following dimensionless manipulated
inputs, u1 = F/F̃ , u2 = V/Ṽ , u3 = Bt/B̃t, u4 = D/D̃,
u5 = Q1/Q̃1, u6 = Q2/Q̃2 and u7 = Q3/Q̃3. Through
extensive simulations, we found that the manipulated inputs,
u1, u2, u3 and u4 can be used to control the liquid hold-ups
(fast dynamics), and u5, u6 and u7 can be used to control the
process state in the slow time-scale. With respect to control
design, we propose to design a control system that utilizes
proportional control to compute the inputs associated with
the fast dynamics and MPC to compute the inputs associated
with the slow dynamics. Specifically, four different propor-
tional controllers are used to regulate each of the flow rates,
F, D, V, and B with respect to the final steady-state input
values in Table III and the steady-state liquid holdups in
Table V:

u1 = F/F̃ = 1 − kc1(M̃R − MR) (28a)

u2 = V/Ṽ = 1 − kc2(M̃N+1 − MN+1) (28b)

u3 = B/B̃ = 1 − kc3(M̃0 − M0) (28c)

u4 = D/D̃ = 1 − kc4(M̃0 − M0) (28d)

in which kc1, kc2, kc3 and kc4 are all equal to 0.0001. The
controllers of Eq. 28 utilize feedback of the hold-ups that can
be sampled fast and can stabilize the liquid hold-up levels
of the CSTR, the reboiler and the condenser.

The control of the slow dynamics involves the application
of MPC. Three MPC strategies are applied and compared in
this study. Specifically, a centralized LMPC which calculates
all the inputs in one optimization problem, a sequential
distributed MPC (DMPC) in which the control inputs are
calculated by distributed optimization problems in sequence,
and an iterative DMPC in which the control inputs are eval-
uated by parallel distributed optimization problems solved in
an iterative fashion. For more discussion on the sequential
and iterative DMPC, please refer to [17]. We define the term
evaluation number to indicate the number of evaluations for
the optimization problem solved in each controller at each
sampling time. For instance, an evaluation number of one
implies that there is no information sharing between the
controllers, and each one of them returns the manipulated
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TABLE VI
INITIAL STEADY-STATE MANIPULATED INPUT VALUES

Q1 3.58·105 [J/s] Q2 -2.00·105 [J/s] Q3 2.335·105 [J/s]

V 2070 [mol/s] Bt 100 [mol/s] D 1780 [mol/s]

F 1880 [mol/s] R 290 [mol/s]

input values after the end of one evaluation. Three distributed
LMPCs are designed for both DMPC control strategies. In
both strategies, LMPC 1 determines the input Q1, LMPC 2
determines the input Q2, and LMPC 3 determines the input
Q3. In order to formulate each of the optimization problems
of the DMPCs (see [17]), the following feedback laws are
used as the reference control laws in the design of the three
LMPCs:

u5 = Q1/Q̃1 = 1 + kc5(T̃1 − T1) (29a)

u6 = Q2/Q̃2 = 1 + kc6(T̃2 − T2) (29b)

u7 = Q3/Q̃3 = 1 + kc7(T̃2 − T3) (29c)

where kc5 = 0.008, kc6 = 0.0002, kc7 = 0.0002, T̃1 =
360.25, T̃2 = 367.97 and T̃3 = 421.72. In the design of
the LMPCs, a quadratic Lyapunov function V (x) = xT Px
where P is an identity matrix is used. In the simulations, the
inputs associated with the slow dynamics are subject to the
following constraints:

0.9 ≤ u5 ≤ 1.3, 0.9 ≤ u6 ≤ 1.2, 0.9 ≤ u7 ≤ 1.2

With respect to the controller implementation in a practical
setting, we note that the fast feedback controllers use hold-up
(level) measurements that can be easily obtained in practice
nearly continuously and the MPC requires measurements of
temperature and species concentrations every 30 seconds (the
MPC sampling time) which can be also obtained in practice.
Finally, the proposed control scheme can be combined with
a state observer that can estimate process states that cannot
be measured on-line from available output measurements.

B. Simulation results

The simulations were performed in Microsoft Visual Stu-
dio by a Core2 Quad Q6600 computer. The total process
evaluation time for each run is 3000 seconds. Four different
cases are studied here. The first one applies the centralized
LMPC scheme. The second case is for the sequential DMPC
approach. In the third and fourth case study, the iterative
DMPC scheme with one evaluation and two evaluations are
used. Two different prediction horizons are used for each
of the MPC methods, N = 1 and N = 2. Only the first
input value from the output of the optimization problems
is implemented following a receding horizon scheme. The
sampling time of the optimization problems is Δ = 30 s,
and as a result, the total number of sampling times along
one simulation is 100. By assumption, all state measurements
are available to the MPC controllers at each sampling time
and are available continuously to the proportional controllers.
The numerical method that is used to integrate the process
is explicit Euler with a fixed time step of 0.1 s.
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Fig. 2. The costs of the closed-loop system under the centralized LMPC (◦),
the sequential DMPC (∗), and the iterative DMPC with one evaluation (�)
and with two evaluations (×), and the iterative DMPC with one evaluation
(�) under uncertainty. The prediction horizon N = 1.

The cost function used in each MPC scheme is as follows:

J =
∫ tk+N

tk

[
x(t)T Qcx(t) +

2∑
i=1

Ui(t)T RciUi(t)

]
dt

where tk is time when the controller is evaluated, UT
1 =

[u5 − 1 u6 − 1 u7 − 1] and UT
2 = [u1 − 1 u2 − 1 u3 −

1 u4 − 1]. The weighting matrix Qc is a diagonal matrix
with its diagonal element Qc,i = 1/xset,i, where xset,i is
the steady state value of the corresponding state variable. The
weighting matrices Rc1 and Rc2 are also diagonal matrices
with Rc1 = diag([10000 10000 10000 10000 10000]) and
Rc2 = diag([10000 10000 10000]). We first verified that
all three different control schemes stabilize the close-loop
system and give very close results in terms of trajectories of
V (x); Figures are omitted due to space limitations.

Next, we investigate the instantaneous closed-loop perfor-
mance at each sampling time measured by x(tk)T Qcx(tk)+
2∑

i=1

Ui(tk)T RciUi(tk), k = 0, 1, . . . under the centralized

LMPC and the two DMPC schemes. The results are shown in
Fig. 2. From Fig. 2, we see that, as expected, the centralized
LMPC gives the best closed-loop performance. Another
observation from this figure is that the performance cost of
the iterative DMPC converges to the performance cost of
the centralized LMPC as the evaluation number increases.
When uncertainty is included in the process parameters, i.e.
5% errors associated with k1, k2 and CpV,A, simulations (not
shown) indicate that all MPC schemes are able to stabilize
the closed-loop system; the resulting closed-loop cost in this
case, under iterative DMPC scheme with one evaluation and
N = 1, is shown in Fig. 2. In the last set of simulations,
attention is given to the evaluation time of the MPC schemes,
as shown in Fig. 3 (N = 1), in Fig. 4 (N = 2) and in Fig. 5
(N = 5). Because of the different structure of the two DMPC
architectures, it is important to note that the total evaluation
time required for the sequential DMPC in one sampling time
is the sum of the evaluation times of the three LMPCs; on the
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Fig. 3. The total evaluation time needed for each evaluation of each MPC
method. Centralized LMPC (solid line with ∗), sequential DMPC (dashed
line with ◦), and iterative DMPC with one evaluation (dotted line with �).
The prediction horizon N = 1.
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Fig. 4. The total evaluation time needed for each evaluation of each MPC
method. Centralized LMPC (solid line with ∗), sequential DMPC (dashed
line with ◦), and iterative DMPC with one evaluation (dotted line with �).
The prediction horizon N = 2.

other hand, the total evaluation time required for the iterative
DMPC with one evaluation in one sampling time is the
maximum evaluation time among all the three LMPCs. Both
Figures clearly demonstrate that the iterative DMPC with one
evaluation has the smallest total evaluation time compared
with the other MPC schemes, and the sequential DMPC
requires more evaluation time than the centralized LMPC in
this set of simulations. In Fig. 3, the average evaluation time
of the iterative DMPC with one evaluation over the entire
simulation is 1.70 s, which is about 70% of the average
time needed for the centralized LMPC and 2.6 times faster
than the average time needed for the sequential DMPC.
Similarly, in Fig. 4, the average total evaluation time of the
iterative DMPC with one evaluation along the simulation
is 4.25 seconds, which is about 63% of the average time
needed for the centralized LMPC and 2.3 times faster than
the average time needed for the sequential DMPC. Finally,
we note that the spikes observed in Fig. 3, Fig. 4 and Fig. 5
are due to the varying evaluation times needed to compute
the optimal solution by the various MPC schemes; owing to
process nonlinearity the number of iterations (and thus, the
evaluation time) needed to compute the optimal solution with
the desired accuracy changes as the process state evolves
with time in its state space.
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Fig. 5. The total evaluation time needed for each evaluation of each MPC
method. Centralized LMPC (solid line with ∗) and iterative DMPC with
one evaluation (dotted line with �). The prediction horizon N = 5.
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