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Abstract— We consider several stability properties in the
framework of input-to-state stability for time-varying systems
with delays. By following a natural approach to convert a time-
varying system to an auxiliary time-invariant system, we obtain
several results including Razumikhin-type stability criteria,
Razumikhin-Lyapunov functions with non-strict decay rates,
and cyclic small-gain theorems for time-varying systems with
delays.

Index Terms. time-varying systems, delays, input-to-
state stability, nonlinear small-gain, Razumikhin theo-
rems.

I. INTRODUCTION

Time-varying systems with delays are frequently seen
in practice (see for instance, [2] and [8] for examples
from mechanical systems, models of nuclear reactors, and
microbiological systems). In this work, we consider stability
properties of time-varying systems with delays in the input-
to-state stability framework.

A frequently used tool in stability analysis for systems
with delays is the Razumikhin theorem (see [2] and [8]).
It was first recognized in [16] that the Razumikhin theorem
can be re-stated as a small-gain theorem in the context of
input-to-state stability. The significance of the work [16] is
that it illustrated how the Razumikhin approach makes many
results on robust stability analysis for delay-free systems
available to systems with delay. In our recent work [17],
it was shown that the Razumikhin method can be extended
to stability analysis based on trajectories without involving
Lyapunov functions. In this work, we develop results on
uniform stability properties for time-varying systems based
on Lyapunov-Razumikhin functions with non-strict decay
rates.

In the context of stability for systems without delays, one
can often find a Lyapunov function with a non-strict (i.e.,
nonnegative) decay rate, while it is much harder to find one
with a strict (i.e., negative) decay rate at every moment.
The works [12] and [13] focused on constructing Lyapunov
functions with strict decay rates based on Lyapunov functions
with non-strict decay rates. Other works, as in [10], [11]
and [3], have also focused on stability analysis based on
Lyapunov functions with non-strict decay rates. It is thus
natural to consider stability properties for time-varying sys-
tems with delays based Lyapunov-Krasovskii functionals or
Lyapunov-Razumikhin functions with non-strict decay rates.

This work was supported partially by NSF grant DMS-0906918.
The authors are with the Department of Mathematical Sciences, Florida

Atlantic University, Boca Raton, FL 33431, USA. Email: {stiwari1,
ywang}@fau.edu

Some past work on stability analysis for time-varying
systems with delays can be found in [6] and [7], where
Lyapunov-like characterizations were obtained for uniform
and non-uniform output stability properties. More specifi-
cally, in [6] and [7], non-strict Lyapunov-Krasovskii func-
tionals or Lyapunov-Razumikhin functions are associated
with non-uniform stability properties, and strict Lyapunov-
Krasovskii functionals or Lyapunov-Razumikhin function are
associated with uniform stability properties. What distin-
guishes our work from [6] and [7] is that we focus on
obtaining uniform stability properties based on non-strict
Lyapunov-Razumikhin functions, much in the spirit of [12]
and [3].

Our main approach in dealing with a time-varying system
with delays is to convert a system into an auxiliary time-
invariant system with an output map defined by the state
variables of the original system. This way, many results on
output stability properties for time-invariant systems can be
applied to time-varying systems. As a consequence of the
relationship between ISS of time-varying systems and IOS of
the auxiliary system, we have extended our recent work [17]
on cyclic small-gain theorems to time-varying systems with
delays. Much work has been done on small-gain theorems for
systems with delays, see e.g., [5], [4], and [1], where various
stability properties of interconnected systems are obtained
based on Lyapunov-like functionals or other types of auxilary
functions. The small-gain theorems obtained in this work will
be based directly on trajectories of the systems.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss basic definitions of stability properties
of systems with delays, and derive some Razumikhin-type
criteria. In Section III, we discuss Razumikhin-Lyapunov
functions whose decay rates are affected by persistently
exciting functions. In Section IV, we obtain cyclic small-gain
theorems, and in Section V we discuss how the main results
can be proved by exploring the output stability properties of
an auxiliary time-invariant system corresponding to a time-
varying system.

Notations. Throughout this work, we use | · | to de-
note the Euclidean norm of vectors, and ‖ · ‖I to denote
the L∞ norm of measurable functions on the interval I .
For φ = (φ1, · · · , φk) defined on an interval I , we let
‖φ‖I = max

1≤i≤k
{‖φi‖I}. A function α : R≥0 → R≥0 is of

class K if it is continuous, positive definite, and strictly
increasing; and is of class K∞ if it is also unbounded. A
function β : R≥0×R≥0 → R≥0 is said to be of class KL if
for each fixed t ≥ 0, β(·, t) is of class K, and for each fixed
s ≥ 0, β(s, t) decreases to 0 as t→∞. For any K-function

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 314



κ, we say that κ < id if κ(s) < s for all s > 0.

II. TIME-VARYING SYSTEMS

Let θ > 0 be given, and let X = C ([−θ, 0]) be the space
of continuous functions from [−θ, 0] to R, equipped with the
sup-norm ‖·‖[−θ,0]. For a function q defined on some interval
[t0 − θ, t1), we define, for each t ∈ [t0, t1), the map (q)t by
(q)t(s) = q(t+ s) for all s ∈ [−θ, 0].

Consider a time-varying delay system as given below:

ẋ(t) = f (t, x(t), (x)t, u(t)) , (1)

with the initial condition x(t0 + s) = ξ(s) for s ∈ [−θ, 0]),
where for each t, x(t) ∈ Rn, u(t) ∈ Rm; ξ is a continuous
function defined on [−θ, 0], and the map f : R×Rn×Xn×
Rm → Rn is completely continuous (i.e., f is continuous
and maps closed and bounded sets to bounded sets), and
Lipschitz on compacts, that is, for any compact subset Ω ⊆
R× Rn ×Xn × Rm, f is Lipschitz on Ω.

The inputs of the system, denoted by u, are measurable
and locally essentially bounded functions defined on some
interval [t0, Tu). With the assumptions on f stated above,
the existence and uniqueness properties hold for (1) (c.f. [2],
[17]), that is, for each input u, for each t0 ≥ 0 and ξ ∈ Xn,
there is a unique solution to the system (1) defined on some
maximum interval [t0 − θ, r) satisfying the initial condition
x(t0 + s) = ξ(s) for s ∈ [−θ, 0). We use x(t; t0, ξ, u)
to denote such a solution. A system is said to be forward
complete if for all t0 ≥ 0, ξ ∈ Xn and all u defined on
[0,∞), the trajectory x(t; t0, ξ, u) is defined for all t ≥ 0.

For a time-varying delay system as in (1), the input-to-
state stability properties are defined in the same way as for
delay-free systems (refer to [9] for time-varying ISS in the
delay-free case).

Definition 2.1: A time-varying delay system as in (1) is
said to be:
• uniformly input-to-state stable (U-ISS) if there exist some
β ∈ KL and ρ ∈ K such that the following holds along
every trajectory:

|x (t+ t0; t0, ξ, u)| (2)

≤ max
{
β
(
‖ξ‖[−θ,0], t

)
, ρ
(
‖u‖[t0,∞)

)}
∀ t ≥ 0,

• semi-uniform input-to-state stable (SEMI-UISS) if for some
σ and ρ ∈ K, the following two conditions are satisfied along
each trajectory:

|x(t; t0, ξ, u)| ≤ max
{
σ
(
‖ξ‖[−θ,0]

)
, ρ
(
‖u‖[t0,∞)

)}
, (3)

for all t ≥ t0, and

lim
t→∞
|x (t; t0, ξ, u)| ≤ ρ

(
‖u‖[t0,∞)

)
. (4)

Remark 2.2: It was show that in the delay-free case, the
SEMI-UISS property is equivalent to the existence of β ∈ KL,
σ ∈ K and ρ ∈ K such that

|x(t+ t0; t0, x0, u)| (5)

≤ max
{
β

(
|x0| ,

t

1 + σ(t0)

)
, ρ
(
‖u‖[t0,∞)

)}
(6)

for all t ≥ 0 (see [9]). However, it is still not clear if for
systems with delays the SEMI-UISS property is equivalent to
an estimation as in (5) with x0 and |x0| replaced by ξ and
‖ξ‖ respectively. 2

Observe that the type of system represented by (1) also
includes systems of the type ẋ(t) = f(t, (x)t, u(t)). A
main reason for considering a system as in (1) where state
variables with delays are presented separately is that it is
often convenient to treat the state variables with delays as
disturbances as discussed below. For a system as in (1),
consider the (state) delay-free system

ż(t) = f(t, z(t), (w)t, u(t)), (7)

where (w, u) is considered the input of the system. Though
this system appears to have time-delays, it is in fact delay-
free, since it can be presented as

ż(t) = f(t, z(t), u(t)),

where for each t, u(t) takes values in the infinite dimentional
spapce Xn × Rm.

The time-varying z-system represented by (7) is U-ISS if
for some β ∈ KL, some κ, ρ ∈ K, it holds that

|z(t+ t0; t0, z0, w, u)| ≤ max
{
β(z0, t), (8)

κ
(
‖w‖[t0−θ,∞)

)
, ρ
(
‖u‖[t0,∞)

)}
∀ t ≥ 0.

Note that if (8) holds along each z-trajectory, then the
following holds along each x-trajectory on its maximum
interval:

|x (t+ t0; t0, ξ, u)| ≤ max {β (|ξ(0)| , t) , (9)

κ
(
‖x‖[t0−θ,t)

)
, ρ
(
‖u‖[t0,∞)

)}
.

As defined in [9], we say that a delay-free system as in (7)
is SEMI-UISS if for some K-functions σ, κ, ρ, the following
hold:

|z(t; t0, z0, w, u)| ≤ max
{
σ(|z0|), (10)

κ(‖w‖[t0−θ,∞)), ρ(‖u‖[t0,∞))
}
∀ t ≥ t0,

and

lim
t→∞
|z (t; t0, z0, w, u)| (11)

≤ max
{
κ(‖w‖[t0−θ,∞)), ρ

(
‖u‖[t0,∞)

)}
.

Similar to the time-invariant case (see [17]), we have the
following Razumikhin-type result:

Theorem 1: Consider system (1).
(a.) The system is U-ISS if the corresponding delay-free z-

system (7) satisfies a U-ISS estimation as in (8) with κ < id.
(b.) The system is SEMI-UISS if the corresponding delay-

free z-system (7) satisfies the SEMI-UISS estimations as in
(10)–(11) with κ < id.

The following is a slightly more general result than part
(a.) of Theorem 1:

Lemma 2.3: System (1) is U-ISS if and only if for some
β ∈ KL, κ, ρ ∈ K with κ < id, the U-ISS-like estimation
(9) holds on the maximum interval along each trajectory.
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We view Lemma 2.3 as a more general result than part (a)
of Theorem 1 for the following reason. If property (8) holds,
then, with w(t) = x(t; t0, ξ, u) defined on the maximum
interval of x(t; t0, ξ, u), one sees that (9) holds. However,
it is still not clear whether under the assumpution that (9)
holds, condition (8) would hold for all inputs w.

III. LYAPUNOV FUNCTIONS

One of the central approaches used in stability analysis for
systems with delays is via the construction of Razumikhin-
type Lyapunov functions (see e.g., [2] and [16]).

A C1-function V : R≥0 × Rn → R≥0 is called an ISS-
Razumikhin-Lyapunov function for a system as in (1) if the
following holds:
• there exist α, α ∈ K∞ such that

α(|p|) ≤ V (t, p) ≤ α(|p|) ∀ p ∈ Rn, (12)

• there exist α ∈ K, κ, χ ∈ K∞ with κ < id, such that
for all ξ ∈ Xn, and all u ∈ Rm, the following holds:

V (t, ξ(0)) ≥ max{ max
s∈[−θ,0]

{κ(V (t+ s, ξ(s))}, χ(|u|)}

=⇒ V̇ (t, ξ(0)) ≤ −α(V (t, ξ(0))),

where V̇ (t, ξ(0)) = d
dτ

∣∣
τ=0+

V (t+ τ, x(t+ τ ; t, ξ, u)).
The Razumikhin-type Lyapunov theorem (see [16]) states

that if a system as in (1) admits a Razumikhin-Lyapunov
function, then the system is U-ISS. When treating the state
variables as disturbances, this result can be stated as in the
following.

Proposition 3.1: Consider system (1). Assume that the
corresponding delay-free system (7) admits a C1 ISS-
Lyapunov function V satisfying (12), and for some κ, χ, α ∈
K∞, the following holds for all z ∈ Rn, w ∈ Xn and
u ∈ Rm:

V (t, z) ≥ max{ max
s∈[−θ,0]

{κ(V (t+ s, w(s)))}, ρ(|u|)}

⇒ DtV (t, z) +DzV (t, z)f(t, z, w, u) ≤ −α(V (t, z)).

If the small-gain condition κ < id holds, then the system
(1) is U-ISS. 2

By converting the stability analysis for a delay system to
one for the corresponding delay-free system, many tools for
robust stability analysis, in the ISS context for delay-free
systems, are made available to the delay system. However,
finding a Lyapunov function for a time-varying system, even
in the delay-free case, with a decay rate that is uniform in
the intial time can be a hard task. Analogous to the work in
[12] and [3], we consider a type of Lyapunov function with
a weaker requirement on the decay rate. A C1 function V
is called a p-Lyapunov function for (7) if
(a.) for some α, α ∈ K∞, it holds that

α(|z|) ≤ V (t, z) ≤ α(|z|) ∀ z ∈ Rn; (13)

(b.) for some κ, χ, α ∈ K∞ and some locally integrable
function p defined on [0,∞), the following holds for all

z ∈ Rn, w ∈ Xn and u ∈ Rm:

V (t, z) ≥ max{ max
s∈[−θ,0]

{κ(V (t+ s, w(s)))}, ρ(|u|)} (14)

⇒ DtV (t, z) +DzV (t, z)f(t, z, w, u) ≤ −p(t)α(V (t, z)).

Theorem 2: Consider system (1). Assume that the corre-
sponding delay-free system (7) admits a p-Lyapunov function
V satisfying (13)–(14). Suppose the following holds:
(a.) p(t) ≥ 0 a.e., and there exist δ > 0 and r > 0 such that∫ t+δ

t

p(s) ds ≥ r ∀ t ≥ 0;

(b.) (small-gain condition): κ < id.
Then system (1) is U-ISS.

One may weaken the condition on p(·) to get the following
result on SEMI-UISS which extends a result in [9] to systems
with delays (see also [6] and [7] for related results on
non-uniform ISS-like properties associated with Lyapunov-
Krasovskii functionals):

Theorem 3: Consider system (1). Assume that the corre-
sponding delay-free system (7) admits a p-Lyapunov function
V satisfying (13)–(14). Suppose the following conditions
hold:
(a.) p(t) ≥ 0 a.e., and ∫ ∞

0

p(s) ds =∞; (15)

(b.) (small-gain condition): κ < id.
Then system (1) is SEMI-UISS.

To illustrate the meaning of the above two theorems, we
consider the following examples (with u ≡ 0 for simplicity):

ẋ(t) = − sin2 t(x(t) + bx(t− θ)); (16)

and

ẋ(t) = − 1

1 + t

(
x(t) + b

∫ t

t−θ
x(s) ds

)
. (17)

For system (16), the corresponding delay-free z-system is

ż(t) = − sin2 t(z(t) + bw(t− θ)); (18)

and for system (17), the corresponding delay-free z-system
is

ż(t) = − 1

1 + t

(
z(t) + b

∫ t

t−θ
w(s) ds

)
. (19)

Let V (z) = z2. Then, for system (18), it holds that

DzV f(z, w) = −2 sin2 t · z(z + bw(t− θ)),

and hence, for any 0 < c < 1, one has the following:

V (z) ≥ max
s∈[−θ,0]

κ0 · V (w(s))

⇒ DzV (z)f(z, w(−θ)) ≤ −2(1− c) sin2 t · V (z),

where κ0 = ( |b|c )2. Since∫ t+δ

t

sin2 s ds =
δ

2
− 1

4
sin 2(t+ δ) +

1

4
sin 2t,
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the function p(t) := 2(1 − c) sin2 t satisfies property (a) in
Theorem 2 with δ = 2 and r = 1−c. By Theorem 2, one sees
that the x-system (16) is uniformly-GAS whenever |b| < 1.

For system (19), with V (z) = z2, one has

DzV (z, w) = − 2z

1 + t

(
z + b

∫ 0

−θ
w(s) ds

)
≤ − 2z

1 + t
(z + bθ ‖w‖)

Consequently, for any 0 < c < 1, it holds that

V (z) ≥ max
s∈[−θ,0]

κ1 · V (w(s))

⇒ DzV (z)f(z, w(−θ)) ≤ −2(1− c) 1

1 + t
· V (z),

where κ1 = (θ |b| /c)2. It can be seen that the function
p(t) := 2(1−c)

1+t satisfies property (a) of Theorem 3. Hence,
the system (17) (which has distributed delays) is semi-
uniformly GAS.

Observe that the function 1
1+t slows down the decay

rate of the trajectories of system (17). It can, in fact, be
shown rigorously that (17) is not uniformly-GAS, due to this
“slowing down” effect.

IV. INTERCONNECTED SYSTEMS

Consider now a time-varying interconnected system with
delays

ẋ1(t) = f1 (t, x1(t), (x1)t, (v̂1)t, u1(t)) ,

ẋ2(t) = f2 (t, x2(t), (x2)t, (v̂2)t, u2(t)) ,

... (20)
ẋk(t) = fk (t, xk(t), (xk)t, (v̂k)t, uk(t)) ,

where v̂i = (v1, . . . , vi−1, vi+1, . . . vn)T , together with ui,
is treated as the input of the xi-subsystem. To consider the
U-ISS property of the large-scale system (20)

vi(t) = gi(x(t)), (21)

where gi is a C1 function satisfying |gi(x)| ≤ |xi|, we im-
pose the following U-ISS estimation on each xi-subsystem:

|xi(t+ t0; t0, ξi, v̂i, ui)| (22)
≤ max

i6=j
{βi(‖ξi‖ , t), γij(‖vj‖ , ρi(‖ui‖)}.

For the SEMI-UISS property for (20)-(21), we impose the
following SEMI-UISS estimations on each xi-subsystem:

|xi(t; t0, ξi, v̂i, ui)| (23)
≤ max

i 6=j
{σi(‖ξi‖), γij(‖vj‖), ρi(‖ui‖)}

for all t ≥ t0, and

lim
t→∞
|xi(t; t0, ξi, v̂i, ui)| ≤ max

i 6=j
{γij(‖vij‖), ρi(‖ui‖)} (24)

where σ,κi, γij , ρi ∈ K.
The collection of gain functions {γij} is said to satisfy

the (cyclic) small-gain condition if for each r = 2, . . . , k:

γi1i2 ◦ γi2i3 ◦ · · · ◦ γiri1 < id, (25)

for 1 ≤ ij ≤ k, where ij 6= ij′ if j 6= j′. The set of the
small-gain conditions given by (25) can be more succinctly
stated as: the composition of the gain functions along every
closed cycle is a contraction.

As in the time-invariant case, we have the following small-
gain theorem:

Theorem 4: Consider the large scale system (20) with the
interconnection (21). Assume that each xi-subsystem satis-
fies the U-ISS estimation (22) (the SEMI-UISS estimations
(23)-(24) respectively). Suppose that the cyclic small-gain
condition holds for {γij}. Then the interconnected system
(20)-(21) is U-ISS (SEMI-UISS, respectively).

To consider a Razumikhin-type small-gain theorem, we
associate to each xi-subsystem a delay-free zi-subsystem:

żi(t) = fi (t, zi(t), (wi)t, (v̂i)t, ui(t)) .

For the U-ISS property of (20)–(21), we consider the U-ISS
property for each zi-subsystem

|zi(t+ t0)| ≤ max
i 6=j
{βi(|zi(t0)| , t), (26)

κi(‖wi‖), γij(‖vij‖ , ρi(‖ui‖)}.

To consider the SEMI-UISS property for system (20)–(21),
we assume the following SEMI-UISS estimations for each
zi-system:

|zi(t)| ≤ max
i 6=j
{σi(|zi(t0)|), (27)

κi(‖wi‖), γij(‖vij‖), ρi(‖ui‖)},

for all t ≥ t0, and

lim
t→∞
|z(t)| ≤ max

i 6=j
{κi(‖wi‖), γij(‖vij‖), ρi(‖ui‖)} (28)

where σ,κi, γij , ρi ∈ K.
Below we present a small-gain theorem when various

stability properties are imposed on the state-delay-free zi-
subsystems:

Theorem 5: Consider the interconnected system (20)–
(21). Assume for each xi-subsystem, the corresponding zi-
system satisfies the U-ISS estimation (26) (the SEMI-UISS
estimations (27)-(28) respectively). Suppose κi < id for
each i and the cyclic small-gain condition holds for {γij}.
Then the interconnected system (20)-(21) is U-ISS (SEMI-
UISS, respectively).

V. INPUT-TO-OUTPUT STABILITY PROPERTIES

A time-varying system as in (1) can be treated as a time-
invariant system with an output map as in the following:

ẋ(t) = f(λ(t), x(t), (x)t, (v)t, u(t))

λ̇(t) = 1, (29)
y(t) = x(t),

where the initial conditions are (x)0 = ξ (i.e., x(t) = ξ(t)
for t ∈ [−θ, 0]) and (λ)0 = t0. (Note: We define λ(s) := t0
for all s ∈ [−θ, 0]. Instead of defining it to be a constant
function, one could use λ(s) := t0 − s for all s ∈ [−θ, 0].)
This motivates the consideration of input-to-output stability
properties for the more general systems with outputs.
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Consider the following time-invariant system with an
output map:

ẋ(t) = f
(
x(t), (x)t, (v)t, u(t)

)
,

y(t) = h(x(t)), (30)

where f : Rn × Xn × X p × Rm → Rn is completely
continuous and Lipschitz on compacts, and h : Rn → Rp
is continuous, and h(0) = 0. For system (30), we use
x(t; ξ, v, u) to denote the solution of the system with initial
value x(t) = ξ(t) on [−θ, 0] and the input (v, u), and we
denote the output h(x(t; ξ, v, u)) by y(t; ξ, v, u). We follow
[15] to define the following output stability properties.

Definition 5.1: A forward complete system as in (30) is
said to satisfy:
• the state-independent-input-to-output-stable (SI-IOS) prop-
erty, if there exist some β ∈ KL, γ, ρ ∈ K such that

|y (t; ξ, v, u)| ≤ max
{
β
(
‖y‖[−θ,0], t

)
, (31)

γ
(
‖v‖[−θ,∞)

)
, ρ
(
‖u‖[0,∞)

)}
∀ t ≥ 0,

• the output Lagrange global stability (OL-GS) property, if
there are K-functions σy(·), σv(·) and σu(·) such that

|y(t; ξ, v, u)| ≤ max
{
σy
(
‖y‖[−θ, 0]

)
, (32)

σv
(
‖v‖[−θ,∞)

)
, σu

(
‖u‖[0,∞)

)}
∀ t ≥ 0,

• the output asymptotic gain (O-AG) property, if there are
K-functions γv(·) and γu(·) such that

lim
t→∞

|y(t; ξ, v, u)| (33)

≤ max
{
γv
(
‖v‖[−θ,∞)

)
, γu

(
‖u‖[0,∞)

)}
.

For more detailed studies of these output stability proper-
ties, we refer the reader to [15] and [17].

A system as in (30) is said to be unboundedness observ-
able (UO) if for every input (v, u) and on any finite interval
[t0, t) on which x(t) is defined, x(t) stays bounded on
[t0, t) whenever (y(t), v(t), u(t)) is bounded on [t0, t). In
particular, a forward complete system is UO.

It can be seen that the auxiliary system (29) associated
with a time-varying system as in (1) is always UO.

The following result illustrates the relation between the
stability properties of a time-varying system (1) and the
output stability properties of its auxiliary system (29).

Proposition 5.2: A time-varying system with delays as
in (1) satisfies the U-ISS property (SEMI-UISS property,
respectively) if and only if its auxiliary time-invariant system
(29) with output y = x satisfies the SI-IOS property (OL-GS
and O-AG properties, respectively).

To prove Proposition 5.2, we associate with a time-varying
system

ẋ(t) = f(t, (x)t, (w)t), (34)

(where f is completely continuous, Lipschitz on compacts,
and (w)t = ((v)t, u(t)), the auxiliary system defined by

q̇(t) = f(λ(t), (q)t, (w)t)

λ̇(t) = 1, y(t) = q(t) (35)

We denote by x(t; t0, ξ, w) the trajectory of (34) with the
initial condition x(t0 + s) = ξ(s) on [−θ, 0] and the input
w; and by (q(t; (λ0, ξ), w), λ0+t) the trajectory of (35) with
the initial condition (q(s), λ(s)) = (ξ(s), λ0) on [−θ, 0].

Proposition 5.2 follows from the the following property:

x(t+ t0; t0, ξ, Tt0w) = q(t; (t0, ξ), w) ∀ t ≥ 0, (36)

where Tt0w(t) = w(t− t0).
Proposition 5.2 allows one to treat a time-varying system

as a time-invariant system, and as a result, various stability
results for time-invariant systems can be extended to time-
varying systems. Theorems 4 and 5 in the previous section
thus follow directly from the small-gain theorems provided
in [17].

A. A Sketched Proof of Theorem 1

Part (a.) of Theorem 1 follows from Lemma 2.3. To prove
Lemma 2.3, we consider the following result on the SI-IOS
property of a time-invariant system as in (30):

Proposition 5.3: A UO system as in (30) is SI-IOS if and
only if for some β ∈ KL, κ, γ, ρ ∈ K with κ < id such that
the following holds on the maximum interval along each
trajectory:

|y (t; ξ, v, u)| ≤ max
{
β
(
‖y‖[−θ,0], t

)
, (37)

κ
(
‖y‖[−θ,t)

)
, γ
(
‖v‖[−θ,∞)

)
, ρ
(
‖u‖[0,∞)

)}
.

Then the system satisfies the SI-IOS property.
Proposition 5.3 can be proved by following the same ideas

as in the proof of Theorem 1 in [17].

B. A Sketched Proof of Theorem 2

For a system as in (1), we assume that its correspond-
ing delay-free system (7) admits a p-Lyapunov function V
satisfying (13)–(14) with κ < id.

First of all, by Proposition 13 in [14], one sees that there
exists a K∞ function λ which is C1 on (0,∞) such that
λ′(s)α(s) ≥ λ◦α(s) for all s > 0. LetW(t, z) = λ(V (t, z)).
It then follows that

W(t, z) ≥ max{ max
s∈[−θ,0]

{κλ(W(t+ s, w(s)))}, ρλ(|u|)}

⇒ DtW(t, z) +DzWf(t, z, w, u) ≤ −p(t)W(t, z),

where κλ = λ ◦ κ ◦ λ−1, ρλ = λ ◦ ρ.
Let t0, ξ, w, u be given, and let z(t) denote the correspond-

ing trajectory. By some standard arguments, one can show
that

W(t+ t0, z(t+ t0)) ≤ max
{
W(t0, z(t0))e−

∫ t+t0
t0

p(s)ds,

κλ(‖W(s, w(s))‖[t0−θ,∞)), ρλ(‖u‖[t0,∞))
}

for all t ≥ 0. Note that property (15) implies that for some
b > 0 and M > 0 (for more details, see [3]), it holds that

e−
∫ t+t0
t0

p(s)ds ≤Me−bt.
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It then follows that

W(t+ t0, z(t+ t0)) ≤ max
{
β0(W(t0, z0), t)

κλ(‖W(s, w(s))‖[t0−θ,∞)), ρλ(‖u‖[t0,∞))
}
,

where β0(r, t) = Mre−bt. Observe that κλ still satisfies the
small-gain condition κλ < id. By the same idea in the proof
of Theorem 1 in [17], one can show that there exist some
β̂ ∈ KL, ρ̂ ∈ K such that, for all t ≥ 0,

W(t+ t0, x(t+ t0)) ≤ max
{
β̂(α(‖ξ‖), t), ρ̂(‖u‖[t0,∞))

}
From this one concludes that system (1) is U-ISS.

C. A Sketched Proof of Theorem 3

First consider a trajectory z(t) of the delay-free system
(7) with the initial data (t0, ξ) and input (w, u). As in the
proof of Theorem 1, one can show the following:

W(t+ t0, z(t+ t0)) ≤ max
{
W(t0, z(t0))e−

∫ t+t0
t0

p(s)ds,

κλ(‖W(s, w(s))‖[t0−θ,∞)), ρλ(‖u‖[t0,∞))
}

for all t ≥ 0. From this, we get the following:

W(t+ t0, z(t+ t0)) ≤ max
{
W(t0, z(t0)),

κλ(‖W(s, w(s))‖[t0−θ,∞)), ρλ(‖u‖[t0,∞))
}

(38)

for all t ≥ 0, and

lim
t→∞
W(t+ t0, z(t+ t0)) (39)

≤ max{κλ(‖W(s, w(s))‖[t0−θ,∞)), ρλ(‖u‖[t0,∞))}.

Note that (38)–(39) hold for all inputs (w, u), and by
causality, (38)–(39) can be rewriten as

W(t+ t0, z(t+ t0)) ≤ max
{
W(t0, z(t0)),

κλ(‖W(s, w(s))‖[t0−θ,t)), ρλ(‖u‖[t0,∞))
}

(40)

for all t ≥ 0, and

lim
t→∞
W(t+ t0, z(t+ t0)) ≤ max

{
ρλ(‖u‖[t0,∞)),

lim
t→∞

κλ(‖W(s, w(s))‖[t−θ,∞))
}
. (41)

To get the stability property for the x-system (1), consider a
trajectory x(t) with the initial data (t0, ξ) and the input u.
Property (40) implies the following on the maximum interval
of x(·):

W(t+ t0, x(t+ t0)) ≤ max
{
W(t0, x(t0)),

κλ(‖W(s, x(s))‖[t0−θ,t0+t)), ρλ(‖u‖[t0,∞))
}
.

One can then conclude that the maximum interval of x(·) is
[0,∞), and, for some σ ∈ K.

W(t+ t0, x(t+ t0))

≤ max
s∈[−θ,0]

{
σ(W(t0 + s, ξ(s))), ρλ(‖u‖[t0,∞))

}

for all t ≥ 0. Moreover,

lim
t→∞
W(t+ t0, x(t+ t0)) ≤ ρλ

(
‖u‖[t0,∞)

)
.

The SEMI-UISS property follows readily.

VI. CONCLUSION

In this work, we have shown that the U-ISS and SEMI-
UISS properties of a time-varying system can be obtained
by studying the robust stability properties of a delay-free
system resulted by treating the state variables with delays
as disturbances. Along the line of Razuminkhin-type results,
we show that the existence of Razumikhin-Lyapunov func-
tions whose decay rates are affected by persistently exciting
functions are sufficient for stability properties. By converting
a time-varying system to a time-invariant auxiliary system,
we extend our recent work on cyclic small-gain theorems to
time-varying systems with delays.
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