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Abstract— We study the problem of optimally controlling a
set of non-ideal rechargeable batteries that can be shared to
perform a given amount of work over some specified time
period. We seek to maximize the minimum residual energy
among all batteries at the end of this period by optimally
controlling the discharging and recharging process at each
battery. Modeling a battery as a dynamic system, we adopt a
Kinetic Battery Model (KBM) and formulate an optimal control
problem under the constraint that discharging and recharging
cannot occur at the same time. We show that the optimal
solution must result in equal residual energies for all batteries
as long as such a policy is feasible. This simplifies the task of
subsequently deriving explicit solutions for the problem.

I. INTRODUCTION

With the increasing use and dependence on wireless
and mobile devices, batteries are playing a critical role in
areas such as communications, automotive, transportation,
robotics, and consumer electronics. Due to their limited
power capacity, especially for small and light devices, re-
search on energy management of battery-powered systems
has become increasingly active. The opportunity to recharge
batteries through energy harvesting for small devices or
connecting to the grid for electric vehicles adds an extra
level of flexibility and power control. Energy-aware systems
of this type have been studied with techniques such as
Dynamic Voltage Scheduling (DVS) [1], [2], [3] where a
battery is modeled as a queueing system [4], usually based
on the assumption that the battery is “ideal,” i.e., it maintains
a constant voltage throughout the discharge process and a
constant capacity for all discharge profiles. However, because
of the rate capacity effect [5] and the recovery effect [6], both
characterizing real batteries, the voltage as well as energy
amount delivered by the battery heavily rest on the discharge
profile. Therefore, when dealing with energy optimization, it
is necessary to take that into account along with nonlinear
variations in a battery’s capacity. As a result, there are several
proposed models to describe a non-ideal battery. They are
broadly classified into models based on Partial Differential
Equations (PDE) [7], [8], diffusion-based models [9], [10],
[11], and the Kinetic Battery Model (KBM) [12], [13].
Since an efficient battery model in energy-aware systems
requires not only accuracy but also computational speed
in quantifying battery discharge behaviors under various
profiles, the use of PDE-based and diffusion-based models
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is limited, especially in real-time application settings [14],
[13]. In contrast, a KBM combines speed with sufficient
accuracy, as reported, for instance, in embedded system
applications [12]. It is also suitable for large-scale systems
such as wireless sensor networks [15] where batteries are
distributed over the nodes in the network.

With this motivation, in [16] we studied an optimal control
problem based on a KBM with the added feature of a
recharging capability so that the battery may be in either
discharging or recharging mode at any time. We showed
that an optimal policy maximizing the work performed by
the battery over a given time interval with the requirement
that its energy is at a desired level at the end of this
interval is of bang-bang type with an optimal time to switch
from discharging to recharging within the constraints of the
problem. In this paper, we are interested in studying systems
with multiple rechargeable batteries which can be shared
in performing a certain amount of work, viewing this as a
first step toward battery-powered networked systems with
renewable energy. Along these lines, in [4], a dynamic node
activation problem in networks of rechargeable sensors is
addressed by modeling the battery as a queueing system
processing energy tasks. In [17] an optimal control policy
is presented for cross-layer resource allocation in wireless
networks operating with rechargeable batteries. In [18] ad-
vantage is taken of battery energy storage in optimal power
flow problems, while in [19] a network resource allocation
problem is presented for energy-harvesting sensor platforms
with time-varying battery recharging rates. However, in all
these cases the battery models used are simple and assume
ideal behavior.

In this paper, we use a KBM for multiple batteries that can
be shared and are fully rechargeable. We seek to maximize
the minimum residual energy among all batteries at the end
of a given time interval [0, T ] with the requirement that the
total battery output should reach a desired level at the end
of [0, T ], subject to certain rechargeability constraints. We
assume that recharging a battery is possible only while it
is not being discharged, a requirement which is application-
dependent (e.g., it applies to electric vehicles, but not most
small wireless devices.) Relaxing this constraint is a special
case of the more general problem we have analyzed and
leads to a simpler solution. We first prove some properties
of an optimal policy, the main one being the fact that it must
result in equal residual energies for all batteries at time T .
This enables us to subsequently derive explicit solutions for

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 1497



the problem. As already mentioned, we view this as a first
step toward studying similar problems where the batteries
are not all shared at a single location, but rather distributed
over a network of devices with one or more batteries placed
on board and powering each device. We may then address
resource allocation and network lifetime maximization prob-
lems where the non-ideal nature of the batteries is not only
taken into account but also taken advantage of.

In section II, a multi-battery optimal control problem
based on a KBM is formulated. Significant properties of the
optimal solution are identified and proved in section III. In
section IV, with the help of these properties, we provide a full
characterization of the optimal control solution. Conclusions
and a description of ongoing research are given in section V.

II. PROBLEM STATEMENT

We consider N batteries that may be shared to serve a
common load, as shown in Fig. 1. Each battery is modeled by

Fig. 1. A multi-battery system

a KBM as in prior work [16]. To briefly review, a KBM views
each battery, indexed by i = 1, . . . , N , as consisting of two
communicating wells, a “bound-charge well” whose content
(energy level) is bi(t) and an “available-charge well” whose
content is ri(t). The dynamics in such a model are given
by (2)-(3) below (further details are given in [16]). In our
prior work involving a single battery we sought to control the
discharging and recharging processes so as to maximize the
battery output over a given interval while maintaining some
required residual energy level. However, when dealing with
multiple rechargeable batteries we adopt an objective which
is motivated by the desire to maximize a system’s “lifetime”
often viewed as the time until the first battery is depleted
(e.g., [20],[15]). Thus, we seek to maximize the minimum
residual energy after finishing a prescribed workload within a
time interval [0, T ]. Let S be the battery index set with |S| =
N , and let U(t) = (u1(t), h1(t), . . . , uN (t), hN (t))T , where
ui(t) and hi(t) for i = 1, . . . , N denote the instantaneous
discharge and recharge rate of battery i respectively. We then
formulate the problem as follows:

max
U(t)

min
i∈S

ri(T ) (1)

ṙi(t) = −c1ui(t) + k(bi(t)− ri(t)) (2)

ḃi(t) = c2hi(t)− k(bi(t)− ri(t)) (3)
ri(t) ≥ 0, bi(t) ≤ B (4)

ui(t)hi(t) = 0 (5)
0 ≤ ui(t) ≤ 1, 0 ≤ hi(t) ≤ 1 (6)

0 ≤
N∑

i=1

ui(t) ≤ 1 (7)∫ T

0

∑
i

ui(t)dt = Q (8)

Here, (2) and (3) capture the battery dynamics through the
KBM, where k depends on the battery characteristics and
c1, c2 are battery-specific influencing factors for discharge
and recharge processes, satisfying c1 > c2 ≥ 0 (this indi-
cates that a battery discharges faster than it recharges.) The
constraint (5) requires that the discharging and recharging
processes cannot occur simultaneously (this can be relaxed,
depending on the application) and (6) imposes limits on the
corresponding process rates. The state variables ri(t), bi(t)
are physically constrained as in (4) with bi(0) ≥ ri(0). The
overall load to be served can be supported by either one
or multiple batteries at any time as indicated in (7) and
consistent with (6). Finally, (8) captures the fact that the
load is required to complete a specific amount of work Q
within [0, T ].

III. OPTIMAL CONTROL PROPERTIES

We begin with the solution of (2) and (3) under the
assumption that a control policy {ui(t), hi(t), i ∈ S} is
feasible over some interval [t1, t2] ⊆ [0, T ], including a
possible boundary arc where ri(τ) = 0 or bi(τ) = B,
τ ∈ [t1, t2]. It is straightforward to derive this solution, which
is

ri(τ) =
1
2

[
bi(t1) + ri(t1)− (bi(t1)− ri(t1))e−2k(τ−t1)

]
−

∫ τ

t1

1
2
c1ui(t)[1 + e2k(t−τ)]dt

+
∫ τ

t1

1
2
c2hi(t)[1− e2k(t−τ)]dt (9)

bi(τ) =
1
2

[
bi(t1) + ri(t1) + (bi(t1)− ri(t1))e−2k(τ−t1)

]
−

∫ τ

t1

1
2
c1ui(t)[1− e2k(t−τ)]dt

+
∫ τ

t1

1
2
c2hi(t)[1 + e2k(t−τ)]dt (10)
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Using ρi(t1, τ) and βi(t1, τ) for the first term in (9) and (10)
respectively, we can therefore write

ri(T ) =ρi(0, T )−
∫ T

0

c1ui(r)
1 + e2k(r−T )

2
dr

+
∫ T

0

c2hi(r)
1− e2k(r−T )

2
dr (11)

bi(T ) =βi(0, T )−
∫ τ

0

c1ui(r)
1− e2k(r−T )

2
dr

+
∫ τ

0

c2hi(t)
1 + e2k(r−T )

2
dr (12)

as long as the feasibility of {ui(t), hi(t)} over [0, T ] is
assumed. Since bi(0) ≥ ri(0), obviously βi(0, T ) >
ρi(0, T ) > 0.

Let us denote an optimal control policy by {u∗i (t), h∗i (t),
i ∈ S}. We can immediately observe that {0, 0} for all i ∈ S
cannot be an optimal policy, i.e., a policy that maximizes
mini∈S ri(T ). This follows from the constraint (5) and the
fact that {0, 0} in (11) is dominated by any control {0, hi(t)}
with hi(t) > 0 which would give a larger value for ri(T ).
Moreover, (8) requires ui(t) > 0, hi(t) = 0 for some i and
over some interval [t1, t2] ⊆ [0, T ]. Thus, at least some i ∈ S
must include ui(t) > 0; for the remaining i ∈ S an optimal
control would be {0, hi(t)} with hi(t) > 0. Therefore, an
optimal control for any i ∈ S has the property that either
u∗i (t) > 0, h∗i (t) = 0 or u∗i (t) = 0, h∗i (t) > 0 (with h∗i (t) =
1 when bi(t) < B).

The main result in this section (Theorem 1) is that, under
optimal control, all r∗i (T ), i ∈ S, are equal provided there
is at least one feasible policy under which all ri(T ), i ∈ S,
are equal. In order to establish this result, we will make use
of a perturbed policy {u′i(t), h′i(t), i ∈ S} relative to any
feasible one {ui(t), hi(t), i ∈ S}. We define such a policy
by perturbing two of the controls indexed by i and j 6= i
respectively as follows:{

u′i(t) = ui(t), h′i(t) = hi(t) t ∈ [0, T ]/[τi, τi + ∆i]
u′i(t) = ui(t)−∆ui, h′i(t) = 0 t ∈ [τi, τi + ∆i]

(13){
u′j(t) = uj(t), h′j(t) = hj(t) t ∈ [0, T ]/[τj , τj + ∆j ]
u′j(t) = uj(t) + ∆uj , h′j(t) = 0 t ∈ [τj , τj + ∆j ]

(14)

where ∆ui, ∆uj , ∆i and ∆j are all positive constants.
For notational convenience, we shall refer to the perturbed
optimal control for i above as π−[ui, τi,∆i,∆ui] and the
one for j as π+[uj , τj ,∆j ,∆uj ]. In simple terms, under
π−[ui, τi,∆i,∆ui] the discharging control ui(t) is reduced
by ∆ui > 0 over an interval [τi, τi + ∆i] and uj(t) is
increased by ∆uj > 0 over an interval [τj , τj + ∆j ]; in
both cases, the recharging control over these intervals is 0
to satisfy (5) and the controls remain unchanged over the
rest of [0, T ]. Assuming for the moment the feasibility of
{u′i(t), h′i(t)} and {u′j(t), h′j(t)}, let ∆ri(t) = r′i(t)− ri(t),
∆bi(t) = b′i(t)− bi(t) and observe that for any t ∈ [τi, T ] it

follows from (9)-(10):

∆ri(t) =

{
1
2c1∆ui

∫ t

τi
[1 + e2k(r−t)]dr t < τi + ∆i

1
2c1∆ui

∫ τi+∆i

τi
[1 + e2k(r−t)]dr t ≥ τi + ∆i

(15)

∆bi(t) =

{
1
2c1∆ui

∫ t

τi
[1− e2k(r−t)]dr t < τi + ∆i

1
2c1∆ui

∫ τi+∆i

τi
[1− e2k(r−t)]dr t ≥ τi + ∆i

(16)

and note that ∆ri(t) > ∆bi(t) > 0. Similarly, for any t ∈
[τj , T ],

∆rj(t) =


− 1

2

∫ t

τj

[
c1∆ui[1 + e2k(r−t)]

+c2hj(r)[1− e2k(r−t)]
]
dr t < τj + ∆j

− 1
2

∫ τj+∆j

τj

[
c1∆ui[1 + e2k(r−t)]

+c2hj(r)[1− e2k(r−t)]
]
dr t ≥ τj + ∆j

(17)

∆bi(t) =


− 1

2

∫ t

τj

[
c1∆ui[1− e2k(r−t)]

+c2hj(r)[1 + e2k(r−t)]
]
dr t < τj + ∆j

− 1
2

∫ τj+∆j

τj

[
c1∆ui[1− e2k(r−t)]

+c2hj(r)[1 + e2k(r−t)]
]
dr t ≥ τj + ∆j

(18)

and note that ∆rj(t) < ∆bj(t) < 0. Regarding the feasibility
of {u′i(t), h′i(t)} and {u′j(t), h′j(t)}, we need to satisfy all
problem constraints. This can be accomplished under certain
conditions, as expressed in the next two lemmas. (Due to
space limitations, only proofs of Lemma 3 and Theorem 2
are given. The others can be found in [21].)

Lemma 1: Let {ui(t), hi(t)}, {uj(t), hj(t)} be controls
for i, j in a feasible policy. If rj(t) > 0 for all t ∈ [0, T ] un-
der this policy, then the following conditions ensure that there
are feasible perturbed controls {u′i(t), h′i(t)}, {u′j(t), h′j(t)}:

(C1) There exists an interval [τi, τi + ∆i] with ui(t) > 0,
t ∈ [τi, τi + ∆i].

(C2) There exists an interval [τj , τj + ∆j ] such that∑
k∈S uk(t) < 1, t ∈ [τj , τj + ∆j ]/[t1, t2], where [t1, t2] =

[τi, τi + ∆i] ∩ [τj , τj + ∆j ] and [τi, τi + ∆i] satisfies (C1).
Under certain conditions, (C2) in Lemma 1 can be re-

laxed and the result requires only (C1) as expressed in the
following corollary.

Corollary 1: For the setting of Lemma 1, suppose ti = tj
and ∆i = ∆j . Then, the result holds under (C1).

Before establishing our main result, we need one more
lemma as follows which ensures the existence of some j
with rj(t) > 0 whenever

∑
i∈S ui(t) = 1.

Lemma 2: Suppose
∑

i∈S ui(t) = 1 over some interval
[t1, t2] ⊂ (0, T ]. Then, among all j with uj(t) > 0 over
[t1, t1 + ε] ⊆ [t1, t2] for some ε > 0, there exists at least one
with rj(t) > 0 over [t1, t1 + ε].

Theorem 1: Let Π be the set of feasible policies for the
problem (1)-(8). If there exists π0 ∈ Π under which ri(T ) =
rj(T ) for all i, j ∈ S, then there exists an optimal policy
π∗ ∈ Π such that r∗i (T ) = r∗j (T ) for all i, j ∈ S.

We will now tackle the situation where there exists no
π0 ∈ Π under which ri(T ) = rj(T ) for all i, j ∈ S. Let us
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start by defining r̄i(T ) as the maximum reachable value in
(11) based on the initial condition ρi(0, T ) and setting hi(t)
to its maximum feasible value subject to bi(t) ≤ B. Let

r̄L(T ) = min
i∈S

{r̄i(T )} (19)

L = argmin
i∈S

{r̄i(T )} (20)

We will show in Theorem 2 that r̄L(T ) is the optimal
value of the objective function in (1). We will accomplish
this with the help of the following lemma.

Lemma 3: If there exists no feasible policy π0 ∈ Π such
that ri(T ) = rj(T ) for all i, j ∈ S, then under an optimal
control policy π∗, there exists k ∈ S such that r∗k(T ) >
r̄L(T ).

Proof : We will use a contradiction argument and assume
that under π∗ we have r∗i (T ) ≤ r̄L(T ) for all i ∈ S. We
have already established that in an optimal policy we have
u∗i (t) > 0, h∗i (t) = 0 or u∗i (t) = 0, h∗i (t) > 0. Therefore, if
r∗L(T ) = r̄L(T ) we have

∫ T

0
u∗i (t)dt > 0 for all i ∈ S/{L},

and if r∗L(T ) < r̄L(T ) we have
∫ T

0
u∗i (t)dt > 0 for all

i ∈ S. Since r∗i (T ) = r̄L(T ) for all i ∈ S is excluded by
the assumption that a policy π0 is not feasible, let us define
two sets

S1 = {i : r∗i (T ) < r̄L(T )}, S2 = {i : r∗i (T ) = r̄L(T )}

Note that regardless of whether L ∈ S1 or L ∈ S2, we
have

∫ T

0
u∗j (t)dt > 0 for all j ∈ S1. Next, there are two

cases to consider.
First, suppose S2 6= ∅. Then, we can perturb the controls

of all j ∈ S1 and all k ∈ S2 to increase rj(T ) and
decrease rk(T ) respectively. Since r̄L(T ) = mini∈S{r̄i(T )},
it is feasible for each rj(T ) to increase and reach the
value r′j(T ) = r̄L(T ). Moreover, from (11), ri(T ) can
be continuously perturbed for all i ∈ S. Therefore, we
can fix a value r′i(T ) < r̄L(T ) which is attainable by all
i ∈ S. This contradicts the assumption that π0 does not exist.
Consequently, it is not possible to satisfy r∗i (T ) ≤ r̄L(T ) for
all i ∈ S under π∗ and it follows that r∗k(T ) > r̄L(T ) for
some k ∈ S.

Second, suppose S2 = ∅, i.e., S1 = S. Then, we can
always find some l = arg maxi∈S{r∗i (T )} and similarly
perturb the controls of all j ∈ S/{l} and of l so as
to increase rj(T ) and decrease rl(T ) through (11). Since∫ T

0
u∗i (t)dt > 0 for all i ∈ S, it follows that r∗l (T ) is not the

smallest value that l can reach. In addition, each rj(T ) can
be increased to r̄L(T ) since r∗j (T ) ≤ r̄L(T ). Thus, we can
fix a value r′i(T ) < r̄L(T ) which is attainable by all i ∈ S.
This again contradicts the assumption that π0 does not exist.
Consequently, it is not possible to satisfy r∗i (T ) ≤ r̄L(T )
for all i ∈ S under π∗ and it follows that r∗k(T ) > r̄L(T )
for some k ∈ S. �

Theorem 2: If there exists no feasible policy π0 ∈ Π
such that ri(T ) = rj(T ) for all i, j ∈ S, then the optimal
value of the objective function is r̄L(T ) in (19).

Proof : We will use a contradiction argument. Assume the
optimal value of the objective function is r∗ < r̄L(T ). Let

us define three sets

S1 = {i : r∗i (T ) < r̄L(T )}, S2 = {i : r∗i (T ) = r̄L(T )},
S3 = {i : r∗i (T ) > r̄L(T )}

By Lemma 3 , S3 6= ∅. On the other hand, if S1 = ∅, then
it directly contradicts the assumption r∗ < r̄L(T ). Therefore,
S1 6= ∅ in the following argument. Since we have established
that in an optimal policy we have u∗i (t) > 0, h∗i (t) = 0
or u∗i (t) = 0, h∗i (t) > 0 and in view of the definition of
r̄L(T ) in (19), we have

∫ T

0
u∗j (t)dt > 0 for all j ∈ S1.

We can now proceed similar to the argument used in Cases
1 and 2 in the proof of Theorem 1. We can always find
some l ∈ S3 to increase rj(T ) for all j ∈ S1 through
perturbations π−[uj , τj ,∆j ,∆uj ] for all j ∈ S1 and decrease
rl(T ) through π+[ul, τj ,∆j ,∆ul] for l ∈ S3 as long as
r′j(T ) ≤ r̄L(T ) and l ∈ S3. If r′l(T ) decreases to a value
r′l(T ) = r̄L(T ), i.e., l ∈ S2, and not all r′j(T ) increase to
r′j(T ) = r̄L(T ), i.e., S1 6= ∅, then we can select some other
m ∈ S3 to repeat the process. By Lemma 3 , S3 will never
be empty. However, we will eventually reach the point where
all r′j(T ) = r̄L(T ) for all j ∈ S1, thus emptying S1. Then,
we contradict the assumption that r∗ < r̄L(T ) and thus prove
the theorem. �

IV. OPTIMAL CONTROL CHARACTERIZATION

In this section, we provide a characterization and structure
of the optimal solution that exploits the two main results
in Section III. A detailed explicit solution requires further
analysis because of the possibility of singular, as well as
boundary, arcs in the optimal state trajectories and will be
provided in a forthcoming paper.

If there exists no feasible policy π0 ∈ Π such that
ri(T ) = rj(T ) for all i, j ∈ S, we can directly determine the
optimal objective function value by Theorem 2. Therefore,
let us concentrate on the case where π0 ∈ Π exists. Then,
by Theorem 1, we can add a terminal state constraint to the
problem without affecting its solution:

ri(T ) = rj(T ), ∀i, j ∈ S (21)

so that in the original objective function (1) we have
mini∈S ri(T ) =ri(T ) for any i ∈ S. Since maxU(t) ri(T ) =
maxU(t)

∑N
i=1 ri(T ) in light of (21), we can rewrite (1) as

min
U(t)

−
N∑

i=1

ri(T )

As for the integral constraint (8), we define an additional
state variable q(t) and replace (8) by

q̇(t) =
N∑

i=1

ui(t), q(0) = 0, q(T ) = Q (22)

Now the original max-min problem becomes a typical state-
constrained optimal control problem with terminal state
constraints. However, we have totally 2N + 1 states and the
problem is not easy to solve if N is large. In order to have a
clear picture of the solution, we start with N = 2 and index
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the batteries so that ρ1(0, T ) ≥ ρ2(0, T ). Accordingly, the
control is U(t) = (u1(t), h1(t), u2(t), h2(t))T . Moreover,
referring to (11) and (21), we require U(t) to satisfy the
feasibility condition:

ρ1(0, T )− ρ2(0, T ) =
∫ T

0

(
c1(u1(r)− u2(r))

1 + e2k(r−T )

2

− c2(h1(r)− h2(r))
1− e2k(r−T )

2

)
dr (23)

Based on the definition of Π in Theorem 1, we denote the
set of feasible policies in Π satisfying (21) by Π0. Subject
to the control constraints (5)-(8), no feasible solution exists
if ρ1(0, T )−ρ2(0, T ) > ᾱ where ᾱ is determined from (23):

ᾱ = max
π∈Π0

∫ T

0

(
c1(u1(r)− u2(r))

1 + e2k(r−T )

2

− c2(h1(r)− h2(r))
1− e2k(r−T )

2

)
dr

Since (1 + e2k(t−T )) is monotonically increasing in t, ᾱ is
attained by letting u1(t) = 0 over [0, T −Q) and u1(t) = 1
over [T−Q,T ], h1(t) = 0, u2(t) = 0, h2(t) = 1 over [0, T ]:

ᾱ =
∫ T

T−Q

c1
1 + e2k(r−T )

2
dr +

∫ T

0

c2
1− e2k(r−T )

2
dr

Then, ρ1(0, T )− ρ2(0, T ) ≤ ᾱ must be satisfied to ensure a
feasible solution.

In order to obtain an explicit optimal control U∗(t), we
proceed as in [16] by first analyzing the unconstrained case
in which (4) is relaxed and the optimal state trajectories
for both batteries consist of an interior arc over the entire
interval [0, T ]. Let x(t) = (r1(t), b1(t), r2(t), b2(t), q(t))T

and λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t))T denote the
state and costate vector respectively. The Hamiltonian for
this problem is then

H(x, λ, u1, h1, u2, h2) = λ(t)T ẋ(t)
= [−c1λ1(t) + λ5(t)]u1(t) + c2λ2(t)h1(t)
+ [−c1λ3(t) + λ5(t)]u2(t) + c2λ4(t)h2(t)
+ k[λ1(t)− λ2(t)][b1(t)− r1(t)]
+ k[λ3(t)− λ4(t)][b2(t)− r2(t)] (24)

The costate equations λ̇ = −∂H
∂x give

λ̇1(t) = k(λ1(t)− λ2(t)), λ̇2(t) = −k(λ1(t)− λ2(t))

λ̇3(t) = k(λ3(t)− λ4(t)), λ̇4(t) = −k(λ3(t)− λ4(t))

λ̇5(t) = 0 (25)

and, due to (21) and (22), we must satisfy λ(T ) = ∂Φ(x(T ))
∂x

where Φ(x(T )) = −r1(T )− r2(T ) + ν1(r1(T )− r2(T )) +
ν2(q(T )−Q) and ν1, ν2 are unknown multipliers, so that

λ1(T ) = −1 + ν1, λ2(T ) = 0
λ3(T ) = −1− ν1, λ4(T ) = 0, λ5(T ) = ν2 (26)

Solving (25) with the boundary conditions (26), we get
λ1(t) = ν1−1

2 [1 + e2k(t−T )]
λ2(t) = ν1−1

2 [1− e2k(t−T )]
λ3(t) = −ν1−1

2 [1 + e2k(t−T )]
λ4(t) = −ν1−1

2 [1− e2k(t−T )]
λ5(t) = ν2

(27)

Looking at (24), we define the switching functions
s1(t), s2(t) and s3(t), s4(t) corresponding to u1(t), h1(t)
and u2(t), h2(t) respectively:

s1(t) = −c1λ1(t) + λ5(t), s2(t) = c2λ2(t)
s3(t) = −c1λ3(t) + λ5(t), s4(t) = c2λ4(t) (28)

and apply the Pontryagin minimum principle:

H(x∗, λ∗, u∗i , h
∗
i ) = min

(ui,hi)
H(x, λ, ui, hi) (29)

where u∗i (t), h∗i (t) for i = 1, 2, t ∈ [0, T ), denote the optimal
controls. We can then see that

u∗1(t) =
{

1 s1(t) < 0
0 s1(t) > 0 , h∗1(t) =

{
1 s2(t) < 0
0 s2(t) > 0

u∗2(t) =
{

1 s3(t) < 0
0 s3(t) > 0 , h∗2(t) =

{
1 s4(t) < 0
0 s4(t) > 0

Singular cases may arise when ν2 = 0 and ν1 = 1 or
−1, making s1(t) = s2(t) = 0 or s3(t) = s4(t) = 0
respectively. Let us proceed by setting these aside for the
time being. Given the constraint ui(t)hi(t) = 0, as well
as the already excluded u∗i (t) = h∗i (t) = 0, we can set
h∗i (t) = 1 − u∗i (t) in this unconstrained case and rewrite
H(x, λ, ui, hi) as follows:

H(x, λ, ui, hi) = σ1(t)u1(t) + σ2(t)u2(t) + c2λ2(t)
+ c2λ4(t) + k[λ1(t)− λ2(t)][b1(t)− r1(t)]
+ k[λ3(t)− λ4(t)][b2(t)− r2(t)] (30)

where σ1(t) = −c1λ1(t)+λ5−c2λ2(t), σ2(t) = −c1λ3(t)+
λ5 − c2λ4(t) are the new switching functions of u1, u2

respectively. Using (27), σ1, σ2 become

σ1(t) =
1− ν1

2

[
c1 + c2 + (c1 − c2)e2k(t−T )

]
+ ν2 (31)

σ2(t) =
1 + ν1

2

[
c1 + c2 + (c1 − c2)e2k(t−T )

]
+ ν2 (32)

Thus, to minimize (30), the optimal control on the interior
arc is {

u∗i (t) = 0, h∗i (t) = 1 if σi(t) > 0
u∗i (t) = 1, h∗i (t) = 0 if σi(t) < 0 (33)

for i = 1, 2. We immediately observe in (33) that u∗1(t) =
u∗2(t) = 1 when σ1(t) < 0 and σ2(t) < 0, which violates
the constraint (7). In this case, (i) u∗1(t) = 1, u∗2(t) = 0 if
σ1(t) < σ2(t) < 0; (ii) u∗1(t) = 0, u∗2(t) = 1 if σ2(t) <
σ1(t) < 0; and (iii) either u∗1(t) = 1, u∗2(t) = 0 or u∗1(t) =
0, u∗2(t) = 1 if σ1(t) = σ2(t) < 0. Correspondingly, h∗i (t) =
1 − u∗i (t), i = 1, 2. In other words, the optimal control in
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the interior arc depends on the sign of σ1(t) − σ2(t) when
σ1(t) < 0, σ2(t) < 0. By (31) and (32),

σ1(t)− σ2(t) = −ν1

(
c1 + c2 + (c1 − c2)e2k(t−T )

)
Therefore, along with (33), the optimal control can be
summarized as

U∗(t) = (0, 1, 0, 1)T if σ1(t) > 0, σ2(t) > 0 (34)

U∗(t) = (0, 1, 1, 0)T if
σ2(t) < 0 < σ1(t) or

σ2(t) < σ1(t) < 0 (35)

U∗(t) = (1, 0, 0, 1)T if
σ1(t) < 0 < σ2(t) or

σ1(t) < σ2(t) < 0 (36)

Note that by (31)-(32), σ1(t) = σ2(t) when ν1 = 0, but
one can see that σ1(t) = σ2(t) = 0 is not possible for any
finite-length time interval. Thus, when σ1(t) = σ2(t), we
only need to consider the solution with σ1(t) = σ2(t) > 0
or σ1(t) = σ2(t) < 0. The solution to the former is given in
(34) and for the latter it is either (1, 0, 0, 1)T or (0, 1, 1, 0)T

as already analyzed earlier for the case where σ1(t) < 0 and
σ2(t) < 0.

Moreover, in view of (31)-(32), σi(t) = 0 over [0, T ] for
i = 1 or 2 when ν1 = 1 or −1 and ν2 = 0. This is a singular
case implying (u∗i (t), h

∗
i (t)) can be any feasible value on the

singular arc. Even though the optimal solution is still subject
to the constraint (8) and (21), we can clearly recognize
the presence of non-unique solutions to the multi-battery
optimal control problem when (i) σ1(t) = σ2(t) < 0 or (ii)
σi(t) = 0, i = 1 or 2. A complete explicit solution requires
analyzing all possible values of the unknown constants ν1, ν2

and studying the case where any one of the constraints in (4)
becomes active. As already mentioned, this final analysis will
be included in a forthcoming paper.

V. CONCLUSIONS

We have used a Kinetic Battery Model (KBM) to study the
problem of optimally controlling the discharge and recharge
processes of multiple non-ideal batteries so as to maximize
the minimum residual energy among all the batteries at
the end of a given time period [0, T ] while performing a
prescribed amount of work Q over this period. We have
shown that the optimal policy has the property that the
residual energies of all batteries are equal at T as long as
such a policy is feasible. This helps transform the original
max-min optimization problem into a typical optimal control
problem with terminal state constraints. Moreover, through
the analysis of the N = 2 case, exploiting this property,
we can characterize the optimal policy and show that it is
generally not unique.

Our ongoing work is to complete the entire solution of
this problem with N = 2 and extend it to N > 2. Future
work aims at extending this approach to problems where
the batteries are not all shared at a single location, but
rather distributed over a network of devices with one or
more batteries placed on board and powering each device.
Thus, we will tackle resource allocation and network lifetime
maximization problems where a non-ideal battery model is
employed.
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