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Abstract— A repetitive controller has been applied owing to
its prominent capability for attenuating periodic disturbances
and/or tracking periodic reference commands. A repetitive
controller is generally added on the existing feedback control
system to improve the tracking performance. However, the
repetitive controller has been designed without utilizing the ef-
fective information such as the performance weighting function
used in the design of the feedback controller. In this paper, we
deal with the problem of a robust repetitive controller design
for an uncertain feedback control system using its explicit
performance information. We first show that a robust stability
condition of repetitive control systems is closely related with the
well-known robust performance condition of general feedback
control systems. It is also shown that the steady-state tracking
error of the repetitive control system is described in a simple
form without time-delay element. From this result, we explain
how different loop properties of the repetitive control system are
from those of the feedback control system. Moreover, sufficient
conditions are provided, which ensure that the power of the
steady-state tracking error generated by the repetitive control
system is less than or equal to that only by the feedback control
system. Based on the obtained results, we present repetitive
controller design criteria. Finally, to show the validity of the
proposed method, application studies on the track-following
control system of optical disk drives are performed.

I. INTRODUCTION

Given a periodic reference signal or disturbance, repetitive

control is a special control scheme to reduce a tracking error

effectively. Its highly accurate tracking property originates

from a periodic signal generator implemented in the repeti-

tive controller. However, the positive feedback loop and the

time-delay term to generate the periodic signal decreases the

stability margin. Therefore, the tradeoff between stability and

tracking performance has been considered as an important

factor in the repetitive control system. Hara et al. [1] de-

rived sufficient conditions for the stability of a repetitive

control system and a modified repetitive control system

which sacrifices tracking performance at high frequencies for

system stability. Güvenç [2] applied the structured singular

value to repetitive control systems in order to determine

their stability and performance robustness in the presence

of structured parametric modeling error in the plant. Li

and Tsao [3] addressed analysis and synthesis of robust
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stability and robust performance repetitive control systems.

Doh and Chung [4] proposed a method to design a repetitive

control system ensuring robust stability for linear systems

with time-varying uncertainties. M.-C. Tsai and W.-S. Yao

derived upper and lower bounds of the repetitive controller

parameters ensuring the stability and the desired performance

[5] and an upper bound for square integral of the tracking

error over one time period of periodic input signals based on

Fourier analysis [6], respectively. Steinbuch et al. presented

a design method of high-order repetitive controllers which

is obtained by solving a convex optimization problem [7].

Doh and Ryoo presented a robust stability condition for

the repetitive control system from the robust performance

condition by selecting the performance weighting function

as q filter [8].

However, there are two explicit problems to be solved

to use a repetitive controller effectively. First, although a

repetitive controller is added on the existing feedback control

system, we have solved a totally separate problem to design

a repetitive controller irrespective of a feedback controller

design problem. Moreover, the cutoff frequency of the q
filter in the repetitive controller should be found by many

trials and errors. Therefore, we should consider positively

finding a method to reduce design efforts. Second, not only

the delay element in the repetitive controller decreases the

phase margin but also plant uncertainty threatens overall

system stability. Hence, the added repetitive controller should

guarantee robust stability.

In this paper, a systematic design method of the add-on

type repetitive control system is presented for the feedback

control system with plant modeling perturbation. The real

plant is represented as a multiplicative uncertainty model.

We assume that a feedback controller is given, which is

designed based on the performance weighting function de-

scribing the reference servo and ensures robust performance.

We first propose a robust stability condition of repetitive

control systems closely related with the well-known robust

performance condition of general feedback control systems.

Based on the robust stability condition, a q filter to satisfy the

robust stability condition is obtained from the performance

weighting function. It is also shown that if the robust stability

condition is satisfied, the steady-state tracking error can be

described in a simple form without the time-delay element.

Through the analysis on the steady-state tracking errors of

the repetitive control system and the feedback control system,

we show the change of the loop gain and propose conditions

under which it can be ensured that the steady-state tracking

error of the repetitive control system is less than that of
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Fig. 1. Feedback Control System.

Fig. 2. Repetitive control system.

the feedback control system in the sense of power. From

the obtained results, several design criteria of q filter are

proposed to improve the tracking performance and satisfy the

robust stability condition. Application studies on the track-

following control system of optical disk drives are performed

to show the validity of the proposed method.

II. ROBUST STABILITY CONDITION OF REPETITIVE

CONTROL SYSTEMS

Consider the feedback control system in Fig. 1. In this

figure, yr(t) is the reference trajectory and is assumed to

be periodic and bounded within the period T , y(t) is the

plant output, and u(t) is the feedback control input. C(s) is

the feedback controller that stabilizes the feedback control

system and ensures robust performance. The plant G(s) is

described in the following multiplicative uncertain form:

G(s) = (1 + ∆(s)Wu(s))Gn(s) (1)

where Gn(s) is the nominal plant model, Wu(s) is a known

stable uncertainty weighting function, and ∆(s) is an un-

known stable function satisfying ‖∆‖∞ ≤ 1.

The following lemma, which is widely known as the robust

performance condition in the robust control theory, will be

used to derive our results.

Lemma 1: [9] Consider the feedback control system in

Fig. 1 with the plant G(s) described in (1). Then a necessary

and sufficient condition for robust performance is

‖WuTn‖∞ < 1 and

∥

∥

∥

∥

WpSn

1 + ∆WuTn

∥

∥

∥

∥

∞

< 1

which is equivalent to

‖|WpSn| + |WuTn|‖∞ < 1 (2)

where Wp(s) is assumed to be a known stable performance

weighting function, Sn(s) = 1/(1 + Gn(s)C(s)) is the

nominal sensitivity function, and Tn(s) = 1 − Sn(s) is the

nominal complementary sensitivity function.

In order to effectively track the periodic reference signal,

the repetitive controller Crc(s) is added to the existing

feedback control system as an add-on module shown in Fig. 2

where q(s) is a low-pass filter to ensure system stability. Note

that Crc(s) is equivalent to the modified repetitive controller

with a(s) = 1 as proposed by Hara et al. [1].

Theorem 1: Consider the repetitive control system in

Fig. 2. Then the repetitive control system is robustly stable

if there exists a q(s) such that

‖|qSn| + |WuTn|‖∞ < 1 (3)

is satisfied.

Corollary 1: Consider the repetitive control system in

Fig. 2. Then the repetitive control system in Fig. 2 is robustly

stable if the robust performance condition (2) of a general

feedback control system is guaranteed.

According to Corollary 1, the feedback controller satis-

fying the robust performance condition can directly guar-

antee the robust stability of the repetitive control system.

Therefore, there is no need to design a q(s) in the repetitive

controller ensuring robust stability in comparison with other

methods [2]–[6]. The reason why this result can be obtained

is that the performance weighting function Wp(s), which

is used to design the feedback control system satisfying

the robust performance condition, plays a role of the q
filter to ensure the robust stability of the repetitive control

system. This result is equivalent to that of [8]. However,

since ‖Wp‖∞ is generally much larger than 1 to reduce

the tracking error in the design of the feedback controller,

Corollary 1 should be modified to solve practical problems.

Corollary 2: Consider the repetitive control system in

Fig. 2. Assume that there exists a C(s) such that the robust

performance condition (2) is satisfied. Then the repetitive

control system is robustly stable if there exists a q(s)
ensuring

‖q(s)/Wp(s)‖∞ ≤ 1 (4)

is satisfied.

Corollary 2 provides a design guideline of q(s) to robustly

stabilize the repetitive control system when the repetitive

controller is added on to the feedback control system en-

suring robust performance. In general, Wp(s) has the in-

formation about the controlled system such as the control

bandwidth, the amount of the tracking error, and so on.

Therefore, it is a proper approach to determine the bandwidth

of q(s) using Wp(s).
(Criterion 1) (Robust Stability) According to (4), the

relative degree of q(s) is more than or equal to that of Wp(s).
The cutoff frequency of q(s) is selected in order for the

magnitude envelope of q(s) to exist inside that of Wp(s).
The condition (4) is equivalent to the inequality

‖|qSn| + |WuTn|‖∞ < 1. (5)

The inequality ‖WuTn‖∞ < 1 in (5) is the robust stability

condition of the feedback control system as shown in Fig. 1.

(5) can be rewritten as

‖|qSn| + |WuGnCSn|‖∞

= ‖|Sn|(|q| + |WuGnC|)‖∞ = ρ (6)

where ρ is defined as robustness measure of the repetitive

control system. In other words, if a small ρ can be achieved
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by designing an adequate q filter, then the repetitive control

system can be stabilized in spite of the large plant uncer-

tainties. Since |WuGnC| and |Sn| are already fixed in (6)

when C(s) is designed, ρ can be determined according to

the properties of the q filter. ρ increases as the magnitude of

the q filter approaches to 1 irrespective of other terms. Since

a low pass filter is selected as the q filter, the bandwidth and

the relative degree of the q filter have significant effects on

the robustness. The narrower bandwidth of the q filter is, the

smaller ρ can be obtained. Moreover, a large relative degree

of the q filter makes ρ small since the magnitude of the q
filter decrease abruptly as the frequency increases.

(Criterion 2) (Robustness of Repetitive Control System)

The robustness of the repetitive control system can be better

as the bandwidth of the q filter is narrow. Also, for the case

of the same bandwidth, the increase of relative degree of the

q filter makes the robustness better.

III. ANALYSIS ON THE STEADY-STATE TRACKING ERROR

The following theorem shows that the steady-state tracking

error of the repetitive control system in Fig. 2 can be obtained

irrespective of the time-delay element if the robust stability

condition of the repetitive control system is satisfied.

Theorem 2: Consider the repetitive control system in

Fig. 2. The tracking error e(t) approaches to

ess(t) = lim
t→∞

L−1

{

Sn(1 − q)

1 + ∆WuTn − qSn

Yr(s)

}

(7)

as t → ∞ if the repetitive control system satisfies the

condition (3).

From this result, we analyze the loop gain closely related

with the steady-state tracking error. Let the transfer function

form yr(t) to ess(t) of the repetitive control system be

defined as

Src(s) =
1 − q

1 − q + CGn(1 + ∆Wu)
(8)

which means the sensitivity function of the repetitive control

system in the steady state. Similarly, that of the feedback

control system is equivalent to the sensitivity function and

can be rewritten as

Sfb(s) =
1

1 + CGn(1 + ∆Wu)
=

1

1 + Lfb

(9)

where Lfb(s) = C(s)Gn(s)(1 + ∆(s)Wu(s)) is the loop

transfer function of the feedback control system. (8) can be

written as a similar form with (9):

Src(s) =
1

1 + (CGn(1 + ∆Wu))/(1 − q)

=
1

1 + Lfb/(1 − q)
=

1

1 + Lrc

(10)

where Lrc(s) = Lfb(s)/(1 − q(s)).
Corollary 3: Consider the feedback control system in

Fig. 1 and the repetitive control system in Fig. 2. |Lrc(s)| is

greater than or equal to |Lfb(s)| if

‖1 − q(s)‖∞ ≤ 1. (11)

Corollary 3 means that if the condition (11) is satisfied, the

repetitive control system has a much higher loop gain in the

steady state than the feedback control system and then the

steady-state tracking error of the repetitive control system is

reduced much less than that of the feedback control system.

(10) explains that the steady-state error of the repetitive

control system reduces to zero as q is close to 1. Although it

is the best choice that q(s) is 1, the repetitive control system

in Fig. 2 with a strictly proper plant cannot be stable [1]. As a

result, a low pass filter with magnitude of 1 is generally used

as q filter. The bandwidth of the q filter is selected sufficiently

wider than that of yr(t) to reduce the tracking error. For the

case of the same bandwidth, a lower relative degree of the

q filter makes a better tracking performance since the error

generated by the harmonics of yr(t) is reduced.

(Criterion 3) (Steady-State Tracking Error) The tracking

performance can be improved as the relative degree of the

q filter decreases and the bandwidth of the q filter becomes

wider.

Although the loop gain of the repetitive control system

is higher than that of the feedback control system, it does

not always ensure that the steady-state tracking error of the

repetitive control system is less than that of the feedback

control system because |Sfb(jω)| may be equal to or less

than |Src(jω)| in some frequency regions. In other words,

even if the condition (11) is satisfied, there are frequency

regions where |Sfb(jω)| may be equal to or less than

|Src(jω)|. Now, using Sfb(s) and Src(s) directly related

with the steady-state tracking error, we determine conditions

under which it can be ensured that the steady-state tracking

error of the repetitive control system is less than that of

the feedback control system in the sense of power. Before

analyzing the steady-state tracking error in a view of power,

we first define the powers of steady-state tracking errors of

the repetitive control system and the feedback control system

Prc =
1

T

∫

T

|src(t) ∗ yr(t)|
2dt, (12)

Pfb =
1

T

∫

T

|sfb(t) ∗ yr(t)|
2dt, (13)

where src(t) = L−1{Src(s)} and sfb(t) = L−1{Sfb(s)},

respectively. The complex Fourier series representation of

yr(t) is given by

yr(t) =

n
∑

k=−n

ckejkω0t (14)

where ck is the kth Fourier coefficient and ω0 = 2π
T

. Let

us select q(s) as a low-pass filter with its magnitude of

1 according to the suggested design criteria. In the low-

frequency region, |Src(jω)| approaches to 0 and is much

less than |Sfb(jω)| as q(jω) ≈ 1 and in the high-frequency

region, |Src(jω)| ≈ |Sfb(jω)| as q(jω) ≈ 0. However, there

are some frequency regions between in the low frequency

and in the high frequency where |Src(jω)| − |Sfb(jω)| is

larger than zero. By solving the equation

|Src(jω)| = |Sfb(jω)|, (15)
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we can find the frequencies where the sign of |Src(jω)| −
|Sfb(jω)| is changed. Let q(jω) and Sfb(jω) be defined

as |q(jω)|ejφq(jω) and |Sfb(jω)|ejφs(jω), respectively, where

φq(jω) = � q(jω) and φs(jω) = � Sfb(jω). Then, since the

both sides have a common term |Sfb(jω)|ejφs(jω), (15) can

be written as
∣

∣

∣

∣

1 − |q|(cos(φq) + j sin(φq))

1 − |q||Sfb|{cos(φq + φs) + j sin(φq + φs)}

∣

∣

∣

∣

= 1. (16)

After some mathematical manipulation, we can get

(1 − |Sfb|
2)|q| = 2 cos(φq) − 2|Sfb| cos(φq + φs) (17)

which is a simple form of (15). The following theorem gives

analysis results on the steady-state tracking error in the sense

of power.

Theorem 3: Consider the repetitive control system shown

in Fig. 2. Assume that q(s) has the frequency characteristics:

a) q(jω) = 1, |ω| ≤ ωq0

b) |q(jω)| < 1, |ω| > ωq0

and ωq1 ≥ ωq0 is the least frequency satisfying (17).

i) Let yr(t) be a band-limited signal represented as (14)

and nω0 ≤ ωq0. Then Prc is zero.

ii) Let yr(t) have the same properties as i) except nω0 ≤
ωq1. Then Prc ≤ Pfb.

iii) Let yr(t) have the same properties as i) except nω0 >
ωq1. Then Prc ≤ Pfb if

m
∑

k=−m

|ck|
2
(

|Src(jkω0)|
2 − |Sfb(jkω0)|

2
)

≤ −2

n
∑

k=m+1

|ck|
2
(

|Src(jkω0)|
2 − |Sfb(jkω0)|

2
)

(18)

where m is the integer satisfying mω0 ≤ ωq1 < (m +
1)ω0.

iv) Let yr(t) be a band-unlimited signal represented as

yr(t) =
∑∞

k=−∞ ckejkω0t. Then Prc ≤ Pfb if

m
∑

k=−m

|ck|
2
(

|Src(jkω0)|
2 − |Sfb(jkω0)|

2
)

≤ −2

∞
∑

k=m+1

|ck|
2
(

|Src(jkω0)|
2 − |Sfb(jkω0)|

2
)

.

(19)

Theorem 3 offers useful information in which case the

repetitive control system is effective through the Fourier

series analysis. In other words, the repetitive control system

has effects on reducing the steady-state tracking error rather

than the feedback control system if the conditions proposed

in Theorem 3 are satisfied.

IV. APPLICATION STUDIES

To verify the feasibility of the proposed method, we

perform simulation studies on the track-following control

system in DVD drives. A repetitive track-following control

system is shown in Fig. 3 where d(t) is a periodic disturbance

Fig. 3. Repetitive track-following control system.

TABLE I

PARAMETERS OF THE PLANT.

1st Resonance Frequency (ωn) 62 Hz ζ 0.08

2nd Resonance Frequency 20 kHz K 5.031×10−4

2nd Resonance Magnitude 10 dB KPD 5.4 × 106 (V/m)

with unknown magnitude, epd(t) is an amplified signal of the

tracking error e(t) by the photo detector gain KPD.

A nominal tracking actuator is modeled as

G0
n(s) =

K · ω2
n

s2 + 2ζωns + ω2
n

. (20)

Although (20) is nearly exact in the low-frequency region,

G0
n(s) is different from the actual tracking actuator G0(s)

in the high-frequency region. In addition to the unmod-

eled component, resonances at high frequencies are barely

considered in the plant model. To take into account the

effect of the unmodeled dynamics, G0(s) should be modeled

with consideration of the uncertainty. For the purpose, a

multiplicative uncertainty model is adequate [9], [10] and

G0(s) is given as

G0(s) = (1 + ∆(s)Wu(s))G0
n(s) (21)

where Wu(s) is a known uncertainty weighting function

given by 2s2/(s + 4000π)2 and ∆(s) is an unknown stable

function satisfying ‖∆‖∞ ≤ 1. KPD is the conversion ratio

of the position sensor from the distance between the track

center and the laser spot to the electrical error signal. The

track pitch of DVD disk is 0.74µm and the measurable range

is ±0.37µm, which corresponds to the tracking error signal

amplitude of ±2.0V. Therefore, KPD is 5.4×106 V/m. The

plant G(s) is KPDG0(s) and has the characteristics given

by Table I.

A feedback compensator satisfying robust performance is

designed based on the reference servo for track-following

recommended by the DVD standard [11]. Let the allowable

disturbance, the maximum tracking error, and the expected

maximum radial acceleration be ±50µm, ±0.022µm, and

1.1m/s2, respectively, as explained in the DVD standard.

Then, a minimal open-loop gain |Hmin(jω)| (dash-dot) of

the reference servo for track-following is depicted in Fig. 4.

For an open-loop transfer function H(s) of the reference

servo, |1 + H(jω)| is limited as schematically shown by

the shaded surface of Fig. 4. A performance weighting

1647



Fig. 4. Reference servo for track-following: |1 + H(jω)| (the shaded
surface), |Hmin(jω)| (dash-dot).

Fig. 5. Frequency properties of the designed q(s) based on the reference
servo for track-following.

function is selected from the relationship between the robust

performance condition and the reference servo.

The performance weighting function is selected as

Wp(s) =
6.0755 × 107

s2 + 145.14s + 21066
. (22)

to satisfy

|Wp(jω)| < |H(jω)|, ∀ω. (23)

A feedback controller is selected as

C(s) =
19.5(s + 17592)(s + 35186)

(s + 87965)(s + 105560)
(24)

to consider the minimum stability margin for stable track-

following pull-in [12].

Fig. 5 depicts frequency properties of the designed q(s)
based on the reference servo for track-following. q(s) should
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have a gain of 1 between the maximum rotational frequency

(23.1Hz) and the 0dB cross-over frequency of Wp(s), fp by

the proposed criterions. To satisfy Criterion 1, the relative

degree of q(s) should be equal to or higher than that of

Wp(s). Moreover, to satisfy Criterion 2 and Criterion 3

simultaneously, we select a value between the maximum

rotational frequency and fp as the cutoff frequency of q(s).
Considering the design specifications, we select the following

2nd order filter with the cutoff frequency of 1kHz and the

DC gain of 1

q(s) =
3.948 × 107

s2 + 8885.8s + 3.948 × 107
(25)

as q(s). Fig. 6 shows the magnitude plots of the open loop

with the real plant, Wp(s), Hmin(s), and q(s) obtained from
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(22), (24), and (25). This result leads to

‖|qSn| + |WuTn|‖∞ = 0.671,

‖|WpSn| + |WuTn|‖∞ = 0.897,

respectively, as shown in Fig. 7. Therefore, the robust stabil-

ity of the repetitive control system is ensured with preserving

the robust performance of the feedback control system.

The track-following control system including the repetitive

controller was digitally implemented on a 32-bit floating

point DSP, TMS320C6727. The program for the track-

following control was executed at a sampling rate of 200kHz,

which is an extremely high sampling rate for control applica-

tions but common in commercial DVD drives. The controller

designed in continuous-time domain was transformed to a

discrete-time controller by the pole-zero-mapping method.

In the experiment, the repetitive controller was turned

on at 0.43sec. Fig. 8 shows the tracking error before and

after the application of the repetitive controller. Although the

results are affected by the measurement noise, the effect of

a repetitive controller is evident in the results. The external

disturbance of the disk rotational frequency 12Hz is almost

completely attenuated by the repetitive controller. The repet-

itive controller enabled the track-following control system

to reduce the tracking error to a value(±0.1µm) below the

maximum allowable boundary(±0.022µm), resulting in more

reliable reading/writing of data from/to the optical disk.

The improved performance is clearly illustrated by the fast

Fourier transform (FFT) results shown in Fig. 9. The repeti-

tive controller reduced the tracking error remarkably at 12Hz,

the frequency of disk rotation, which leads to the improved

tracking accuracy. However, because the bandwidth of q(s)
is restricted to 1kHz, high-order harmonics of tracking error

is hardly decreased.

V. CONCLUSIONS

This paper considered the problem of repetitive controller

design for an uncertain feedback system. The robust stability

condition of the repetitive control system was obtained using

the robust performance condition of the feedback control

system. Through the analysis on the steady-state tracking

error, the loop and the power of the steady-state tracking

error in the repetitive control system was compared with

those of the feedback control system. Based on the ob-

tained results, several design criteria proposed to design a
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Fig. 9. FFT results of tracking errors without(dash line)/with(solid line)
repetitive controller.

repetitive controller. Finally, the application study on the

track-following control in optical disk drives were performed

and the experimental results were presented to validate the

effectiveness of the proposed method.
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