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Abstract— We address the average consensus problem for
a distributed system whose components (nodes) can exchange
information via interconnections (links) that form an arbitrary,
strongly connected but possibly directed, topology (graph).
Specifically, we discuss how the nodes can asymptotically reach
average consensus (i.e., obtain the average of their initial
values) with linear-iterative algorithms in which each node
updates its value using a weighted linear combination of its own
value and the values of neighboring nodes. In the process, the
strategies we develop allow the nodes to adapt their weights in a
distributed fashion, so that asymptotically they obtain a doubly
stochastic weight matrix, which is useful for many algorithms
that utilize linear- or nonlinear-iterative schemes to perform
various estimation and optimization tasks.

I. INTRODUCTION AND BACKGROUND

Over the past few decades, the design of protocols and
algorithms for distributed computation and control/decision
tasks has attracted significant attention by the computer
science, communication, and control communities (e.g., [1],
[2], [3] and references therein). In a generic consensus
problem, each node possesses an initial value and the nodes
need to follow a distributed strategy to agree on some
function of these initial values. The consensus problem has
received extensive attention from the control community due
to its applicability to topics such as cooperative control,
multi-agent systems, and modeling of flocking behavior in
biological and physical systems (e.g., [3], [4], [5], [6], [7],
[8] and references therein). In these works, the approach
to consensus is to use a linear iteration, where each node
in the network repeatedly updates its value as a weighted
linear combination of its own previous value and the pre-
vious values of its neighbors. In the context of this class
of linear iterative algorithms for consensus, a variety of
pertinent issues, including convergence properties [9], [10],
and weight choices that achieve faster convergence [8], have
been investigated. Asymptotic average consensus is reached
if the nodes (following the linear iterative strategy described
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above) asymptotically converge to the average of their initial
values.

Most existing studies on (asymptotic) average consensus
have assumed that the underlying interconnection topology is
described by an undirected graph (which implies that if node
j receives information from node i, then node i necessarily
receives information from node j). This paper relaxes this
assumption and focuses on the average-consensus problem
when the interconnection topology is described by a possibly
directed graph. This situation can arise in a variety of realistic
scenarios (e.g., if nodes transmit at different power strengths
or if interference levels are not uniform at each node). In
such topologies, our previous work in [11] proposed a class
of algorithms that solve the average-consensus problem by
having each node appropriately choose positive weights on
its out-going links in an iterative and distributed fashion,
so that they asymptotically obtain a weight matrix that is
primitive doubly stochastic. The approach in [11] treats all
out-going links in the same manner (which is ideal when
broadcasting is possible, e.g., in wireless networks) and only
requires that each node knows the number of nodes it can
send information to. In this paper, we generalize the class of
algorithms developed in [11] by establishing that there exists
significant flexibility in the weight updates performed by the
nodes in their effort to reach a doubly stochastic matrix. This
flexibility could be important when additional information
about the topology is available at each node (e.g., the number
of out-going links of each of their neighbors); as we will
see, such information can be used to improve the rate with
which the nodes converge to a weight matrix that is doubly
stochastic—at the cost of additional setup time.

The techniques in [12], [13], [14] are related to (but are
quite distinct from) the class of algorithms we propose. These
works investigate conditions and algorithms that allow us
to assign nonnegative weights to the edges of a directed
graph (without self-loops) so as to achieve weight balance.
A major difference between our work and the work in [12],
[13], [14] is the communication modality, which in our case
allows each node to simply broadcast a single value without
requiring it to send specific messages to specific neighboring
nodes (also, the receiving nodes do not need to know which
node has transmitted the incoming message). This is a major
departure from the distributed algorithms proposed in [14]
for obtaining a doubly stochastic (or weight balanced) matrix
because in that setting each node needs to be able to directly
communicate with each neighbor separately.

It is worth pointing out that several authors have in-
vestigated methods for reaching average consensus using
techniques that not require the nodes to obtain a set of
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weights that forms a doubly stochastic matrix. For example,
[15] proposes gossip algorithms based on broadcasts that
appear to converge to the exact average on arbitrary strongly
connected digraphs. Similarly, [16] considers the effect of
random and asymmetric packet losses during the linear
iteration process and handles them by introducing additional
variables at each node and by using periodic corrective
operations. Finally, [17] reaches average consensus by having
the nodes simultaneously run two gossip-based iterations and
taking the ratio of the values obtained in each iteration. Note,
however, that [15], [16], [17] implicitly require acknowl-
edgments or the existence of a reverse direction for each
link (which does not necessarily imply bi-directional links—
because the acknowledgment could occur via a different
path—but nevertheless imposes some overhead). It is difficult
to directly compare our approach in this paper with the
approaches in [15], [16], [17] due to the different underlying
assumptions.

The remainder of this paper is organized as follows. Sec-
tion II provides necessary background on graph theory and
discusses the general form of the class of iterative distributed
algorithms that we study. In Section III, we present a class
of algorithms that allow the nodes to follow a distributed
strategy and reach a set of nonnegative weights that solves
the average-consensus problem. In Section IV, we discuss
and compare various choices of weight updates, all of which
asymptotically lead to weights that form a doubly stochastic
matrix. Concluding remarks are presented in Section V.

II. PRELIMINARIES

The exchange of information between components (nodes)
of a distributed system can be conveniently described by a
directed graph G = {V, E}, where V = {1, 2, . . . , n} is the
vertex set (each vertex corresponds to a component/node),
and E ⊆ V ×V is the set of directed edges, where (j, i) ∈ E
if node j can receive information from node i. By convention,
we assume no self-loops in G (i.e., (j, j) /∈ E for all j ∈ V).
The graph is undirected if and only if whenever (j, i) ∈ E ,
then also (i, j) ∈ E , i.e., if node j can receive information
from node i, then node i can also receive information from
node j. All nodes that can transmit information to node j
are said to be neighbors of node j and are represented by
the set Nj = {i ∈ V | (j, i) ∈ E}. The number of neighbors
of j is called the in-degree of j and is denoted by D−j (i.e.,
D−j = |Nj |). The number of nodes that have j as neighbor,
i.e., the number of nodes that receive information from j,
is called the out-degree of j and is denoted by D+

j . We
will assume that the graph remains invariant throughout the
process.

Let xj be the initial value of node j. The objective of
average-consensus is to have all the nodes calculate the
average of these initial values, which we denote by µ, i.e.,

µ =

∑n
j=1 xj

n
. (1)

Depending on the assumptions, nodes may or may not
know n, and they will presumably require several rounds of

message exchanges in order to obtain µ (perhaps obtaining
the values of xj , j = 1, 2, . . . , n, in the process).

In the algorithms we consider, in order to obtain µ, each
node j maintains some value πj [k] at round k, and performs
a linear iteration of the form

πj [k + 1] = pjj [k]πj [k] +
∑
i∈Nj

pji[k]πi[k] , (2)

where the pji[k], i ∈ Nj ∪ {j}, are time-varying weights
(that will be described in detail soon). In other words, each
node j updates its value to be a linear combination of its
own previous value and the values of its neighbors. If we let
π[k] = [π1[k], π2[k], . . . , πj [k], . . . , πn[k]]′, then for analysis
purposes (2) can be written in matrix form as

π[k + 1] = P [k]π[k], π[0] = π0, (3)

where the weight matrix P [k] = [pji[k]] (with pji[k] as the
entry at the jth row-ith column of matrix P [k]) and π0 =
[x1, x2, . . . , xj , . . . , xn]′.

In (2), the pji[k]’s are a set of (time-varying) weights
that will be chosen so that all πj [k] converge for large k to
µ. Node j can only choose its self-weight and the weights
on its out-going links, i.e., node j can choose values for
{pij [k] | i = 1, 2, . . . , n}, with the constraint that pij [k] = 0
for all i such that j /∈ Ni. It is assumed that each node can
observe but cannot control the (likely different) values on
each of its incoming links, and cannot necessarily identify the
sender node associated with each value. These assumptions
hold naturally for most interconnection topologies that form a
directed graph (in fact, in many practical situations additional
information may be available at each node). In the work in
[11] each node uses the same weight for all of its out-going
links, but in this paper we show that a node can use fairly
arbitrary weights on its out-going links (as long as these
weights are strictly positive). In particular, we will see that
if additional information about the in- and out-degrees of
nodes is available, then it might be beneficial to incorporate
this information in the choice of weights.

Remark 1: For the case when the weights pji[k]’s are
fixed for all k ≥ 0, as stated in [7], [8], [18] in various
forms, the necessary and sufficient conditions for the iteration
in (3) (with P [k] = P ) to asymptotically reach average-
consensus are: (i) P has a simple eigenvalue at 1, with left
eigenvector [1, 1, 1, ..., 1] and right eigenvector [1, 1, 1, ..., 1]′,
and (ii) all other eigenvalues of P have magnitude strictly
less than 1. If one focuses on nonnegative weights, these
conditions are equivalent to the weight matrix P being a
primitive doubly stochastic matrix; in general, however, this
condition on P would only be sufficient for ensuring that the
nodes asymptotically reach average-consensus. �

III. DISTRIBUTED WEIGHT ADJUSTMENT

The class of algorithms developed in this section assumes
that each node updates its self-weight and the weights on its
out-going links at every iteration based on the sum of the
weights on its incoming links. Specifically, at each iteration
k, node j executes two tasks: (i) it first chooses a particular
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value, pjj [k], 0 < pjj [k] < 1 (in a manner that will be
described shortly), for its self-weight, and (ii) it sets the
weights on its out-going links to be pij = cij(1 − pjj [k]),
i 6= j. The constants cij , i 6= j, are time-invariant and chosen
so that: (i)

∑
i,i6=j cij = 1, (ii) cij > 0 if node i can receive

information from node j (i.e., if (i, j) ∈ E), and (iii) cij = 0
if node i cannot receive information from node j (i.e., if
(i, j) /∈ E). For notational convenience, we will take cjj = 0
for j = 1, 2, . . . , n, so that

∑
i,i 6=j cij =

∑
i cij = 1.

With the above choices, it can be easily verified that P [k]
will be a nonnegative column-stochastic matrix (i.e., pij [k] ≥
0 and

∑n
i=1 pij [k] = 1, j = 1, 2, . . . , n). In fact, one can also

check that as long as the diagonal entries of P [k] are strictly
smaller than one and at least one diagonal entry is strictly
positive, then P [k] will be primitive. This is due to the fact
that P [k] corresponds to a graph that is strongly connected
(each edge of the graph has a strictly positive weight), and
the diagonal entries of P [k] are nonzero [19]. The update of
the diagonal entries pjj [k] will therefore lead to a sequence
of primitive column-stochastic matrices P [0], P [1], ..., P [k],
..., which will be shown to converge as k →∞ to a primitive
doubly stochastic matrix Pss. Note that, at each iteration k,
each node j is supposed to perform two tasks: an update of its
self-weight and the weights on its out-going links, followed
by an update of its value πj [k]. The update of the weights
(which is governed solely by the update of the diagonal terms
pjj [k] and the choice of coefficients cij) is essentially done
independently of the update of the πj [k]’s and our focus
in this section is mostly on describing and establishing the
properties of the weight update process.

Initially, for k = 0, each node j chooses its self weight
to be pjj [0] = 1

1+D+
j

, where D+
j is the number of nodes

that node j sends information to. This results in each node
updating its value to πj [1] according to

πj [1] =
1

1 +D+
j

πj [0] +
∑
i∈Nj

cji · D+
i

1 +D+
i

πi[0] . (4)

We can rewrite (4) in matrix form as follows

π[1] = P [0]π[0], (5)

where π[0] = [x1, x2, . . . , xn]′ and the matrix P [0] is a
column stochastic matrix that can also be parameterized as

P [0] = P∆[0] + (I −∆[0]), (6)

where I is the n × n identity matrix, ∆[0] is a diagonal

matrix with nonzero entries δj [0] =
D+

j

1+D+
j

= 1−pjj [0], j =

1, 2, . . . , n, and P = [cij ] is the (column stochastic) weight
matrix corresponding to the algorithm where each node
distributes its value among its neighbors (according to the
weights cij) without keeping anything for itself, i.e.

P =


0 c12 c13 . . . c1n
c21 0 c23 . . . c2n

...
...

...
. . .

...
cn1 cn2 cn3 . . . 0

 . (7)

After the first round of exchanges, k = 1, each node j
will perform two actions: (i) it will first update the weights
that it uses to distribute its value among itself and the nodes
that j sends information to and, (ii) it will then update its
value to πj [2] based on the new weights (chosen by the nodes
that sent values to it), which are collectively captured by the
weight matrix P [1]. More specifically, each node will update
the weights on its out-going links so as to try to make its
row-sum in the weight matrix P [1] be closer to one. It is
important to note that a node cannot modify the weights on
its incoming links, and in the process of trying to improve
its own row-sum, it might make other row-sums worse in
terms of their closeness to one.

Let P [1] = P∆[1] + (I − ∆[1]) be the ma-
trix associated to the new weights, where ∆[1] =
diag

(
δ1[1], δ2[1], . . . , δj [1], . . . , δn[1]

)
is a diagonal matrix

chosen as follows: let ρj [0] =
∑
i∈Nj∪{j} pji[0] and1 set

δj [1] as follows:

δj [1] =
{
δj [0]ρj [0], if ρj [0] ≤ 1 ,
1− 1

ρj [0]

(
1− δj [0]

)
, if ρj [0] > 1 . (8)

By construction, P [1] is a primitive column stochastic matrix
(because it has a strictly positive entry pji[1] for each (j, i) ∈
E and also has diagonal entries strictly greater than zero and
strictly smaller than one). Note that the update of the weights
from P [0] to P [1] only involves the weights in P [0] and is
independent of the values π[0] or π[1]. Finally, updated node
values can be written in matrix form as

π[2] = P [1]π[1] . (9)

This process continues and, for any k ≥ 0, the nodes will
update their values according to

π[k + 1] = P [k]π[k] , (10)

where P [k] = P∆[k] + (I − ∆[k]), and ∆[k] =
diag

(
δ1[k], δ2[k], . . . , δj [k], . . . , δn[k]

)
with

δj [k] =
{
δj [k − 1]ρj [k − 1], if ρj [k − 1] ≤ 1 ,
1− 1

ρj [k−1]

(
1− δj [k − 1]

)
, if ρj [k − 1] > 1 ,

(11)

where ρj [k − 1] =
∑
i pji[k − 1]. [Note that the above

update implies that in order for node j to update its weights
(including its self-weight and the weights on its out-going
links) at iteration k, it needs to have access to the weight
pji[k− 1] on incoming links from each neighboring node i.
In addition, in order to perform the value update πj [k + 1],
node j needs access to the values πi[k] on the incoming link
from each neighboring node i.]

The idea behind the weight update described in (10) is
to make the weight matrix doubly stochastic and primitive
as k goes to infinity. Then, taking into account the fact that

1Note that the quantity
P

i∈Nj∪{j} pji[0] can actually be replaced byPn
i=1 pji[0] (since pji[0] = 0 for i /∈ Nj ∪{j}) but it was written in this

fashion to emphasize the fact that the update of node j is based purely on
locally available information. This is true for all iterations and, from now
on, we will use these two expressions interchangeably.
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the sequence P [0], P [1], . . . consists of column stochastic
and primitive matrices that converge to a limiting doubly
stochastic and primitive matrix Pss, the steady-state solution
of (10), with initial conditions πj [0] = xj , ∀j, denoted by
πss, is such that

πssj =

n∑
l=1

xl

n
= µ, ∀j = 1, 2, . . . , n . (12)

The above statement follows easily from Theorem 4.14 in
Chapter 4 of [20]. To argue that the limiting matrix Pss is
a doubly stochastic and primitive matrix, we first need the
following two lemmas.

Lemma 1: Let P [k − 1] = P∆[k − 1] + (I − ∆[k − 1])
and P [k] = P∆[k] + (I −∆[k]) be the update matrices in
(10) at steps k − 1 and k respectively, where ∆[k − 1] =
diag

(
δ1[k − 1], δ2[k − 1], . . . , δj [k − 1], . . . , δn[k − 1]

)
and

∆[k] = diag
(
δ1[k], δ2[k], . . . , δj [k], . . . , δn[k]

)
are diagonal

matrices with diagonal entries satisfying 0 < δj [k − 1] < 1
and 0 < δj [k] < 1 for all j = 1, 2, . . . , n. Assume that the
underlying connectivity graph associated with P [k− 1] (the
same graph is associated with P [k]) is strongly connected.
Furthermore, assume that for a specific node j, the relation
between δj [k−1] and δj [k] is given by (11), whereas for all
i 6= j, we have δi[k − 1] = δi[k]. Then, the following hold:

1) If ρj [k − 1] ≡
∑
i pji[k − 1] ≤ 1, then

ρj [k − 1] ≤ ρj [k] ≤ 1;
2) If ρj [k − 1] ≡

∑
i pji[k − 1] > 1, then

ρj [k − 1] > ρj [k] > 1.
Proof: If ρj [k−1] ≤ 1, then δj [k] = δj [k−1]ρj [k−1],

from where it follows that pjj [k] = 1−(1−pjj [k−1])ρj [k−
1]. Since δi[k − 1] = δi[k],∀i 6= j, we have pji[k − 1] =
pji[k], ∀i 6= j. Then, ρj [k] = pjj [k] +

∑
i∈Nj

pji[k] can be
shown to satisfy ρj [k] = 1 + pjj [k − 1] (ρj [k − 1]− 1) ≤ 1
(since ρj [k−1]−1 ≤ 0). Also, since pji[k−1] = pji[k], ∀i 6=
j, and pjj [k] ≥ pjj [k − 1], we have ρj [k − 1] ≤ ρj [k].

Similarly, if ρj [k − 1] > 1, then δj [k] = 1− (1− δj [k −
1]) 1

ρj [k−1] , from where it follows that pjj [k] = pjj [k −
1] 1
ρj [k−1] . Then, ρj [k] = pjj [k]+

∑
i∈Nj

pji[k] can be shown

to satisfy ρj [k] = 1 +
∑
i∈Nj

pji[k − 1]
(

1− 1
ρj [k−1]

)
> 1

(since 1
ρj [k−1] < 1). Also, since pji[k − 1] = pji[k], ∀i 6= j

and pjj [k] < pjj [k − 1], we have ρj [k − 1] > ρj [k].
Lemma 2: Consider the setting in Lemma 1, and let

ε[k] =
∑n
l=1 εl[k], where εl[k] ≡ |

∑
i pli[k]− 1| = |ρl[k]−

1|. It follows that ε[k] ≤ ε[k − 1].
Proof: Assume that ρj [k − 1] ≤ 1; it follows from

Lemma 1 that ρj [k] ≤ 1 and from (11) that pjj [k] ≥ pjj [k−
1]. Then,

εj [k] = 1− ρj [k] = 1− pjj [k] +
∑
i∈Nj

pji[k − 1]

≤ 1− pjj [k − 1] +
∑
i∈Nj

pji[k − 1] = εj [k − 1] .

If we let pjj [k] = pjj [k − 1] + ∆pjj [k] for some positive
∆pjj [k], it follows that εj [k] − εj [k − 1] = −∆pjj [k] and

also that plj [k] = plj [k − 1]− clj∆pjj [k] for all l such that
plj [k − 1] 6= 0; this can be used to establish that

|εl[k]− εl[k − 1]| ≤ clj∆pjj [k], ∀l such that l ∈ Nj .

Thus, the worst case occurs when node j can only send
information to nodes l 6= j that also satisfy ρl[k − 1] ≤ 1,
which means that εl[k]− εl[k−1] = clj∆pjj [k] and thus, in
the worst case, ε[k]− ε[k − 1] =

∑n
l=1 εl[k]−

∑n
l=1 εl[k −

1] = 0 (recall that
∑
l clj = 1). Otherwise, ε[k]−ε[k−1] < 0.

A similar argument can be made when ρj [k − 1] > 1.
The following theorem essentially establishes that the error

ε[k] converges to zero even when nodes simultaneously
update their self-weights and the weights on their out-going
links. The proof is not included due to space limitations; it
is based on a related proof in [11] which is available online.

Theorem 1: Let P be the matrix in (7) and define P [0] =
P∆[0]+(I−∆[0]) where I is the n×n identity matrix and
∆[0] = diag

(
δ1[0], δ2[0], . . . , δj [0], . . . , δn[0]

)
is a diagonal

matrix with nonzero entries δj [0] =
D+

j

1+D+
j

, j = 1, 2, . . . , n.

Let P [k] = P∆[k] + (I−∆[k]) be the update matrix at iter-
ation k with ∆[k] = diag

(
δ1[k], δ2[k], . . . , δj [k], . . . , δn[k]

)
obtained from ∆[k − 1] according to the update in (11).
Then, limk→∞ P [k] exists and it is a doubly stochastic and
primitive matrix Pss = P∆ss + (I − ∆ss), where ∆ss =
diag(δss1 , δ

ss
2 , . . . , δ

ss
n ) with δssj = lim

k→∞
δj [k] satisfying 0 <

δssj ≤ 1, ∀j = 1, 2, . . . , n, and δssi < 1 for at least one
i ∈ {1, 2, . . . , n}.

IV. WEIGHT ADJUSTMENT STRATEGIES AND EXAMPLES

Note that the discussion in the previous section holds for
any matrix P in (7) as long as the nonnegative coefficients cij
satisfy the conditions stated in the beginning of this section
(
∑
i cij = 1, cij > 0 if (i, j) ∈ E , and cij = 0 otherwise).

Note that it is important that cij > 0 for all links (i, j) ∈ E
in the graph to ensure that the underlying graph remains
strongly connected. We now discuss some particular choices
for these coefficients.
• Equal: In this case, cij = 1/D+

j if and only if (i, j) ∈
E (one can easily verify that

∑
i cij = 1). This is

essentially the choice studied in [11].
• Random: In this case, cij are chosen as realizations of

independent uniform random variables in (0, 1) if and
only if (i, j) ∈ E (and are zero otherwise), and are then
normalized so that

∑
i cij = 1.

• (Inverse) In-Degree Weighted: In this case, cij = D−i
C−j

(respectively, cij = 1/D−i
C−j

) if and only if (i, j) ∈ E ;

otherwise, cij = 0. The constant C−j is chosen so
that

∑
i cij = 1, i.e., C−j =

∑
i:j∈Ni

D−i (respectively,
C−j =

∑
i:j∈Ni

1
D−i

) is the sum of the (inverses of the)
in-degrees of the nodes that have j as a neighbor.

• (Inverse) Out-Degree Weighted: In this case, cij = D+
i

C+
j

(respectively, cij = 1/D+
i

C+
j

) if and only if (i, j) ∈ E ;

otherwise, cij = 0. The constant C+
j is chosen so
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that
∑
i cij = 1, i.e., C+

j =
∑
i:j∈Ni

D+
i (respectively,

C+
j =

∑
i:j∈Ni

1
D+

i

) is the sum of the (inverses of the)
out-degrees of the nodes that have j as a neighbor.

Remark 2: Since in a wireless setting, node j can broad-
cast the same information to all of its neighbors via a
single transmission, the easiest way to implement the equally
weighted update is to have node j at iteration k broadcast the
weight value which is identical for all the nodes receiving
its value (i.e., node j can broadcast the value 1−pjj [k]

D+
j

). This
does not appear to be the case when the weight values are
unequal, however, under certain conditions, one can easily
ensure that nodes can obtain the proper weights following a
single broadcast by node j. For instance, if the normalization
constant C−j or C+

j is obtained by node j during the
initialization phase of the (inverse) in-degree or the (inverse)
out-degree weighted update, then node j at iteration k only
needs to broadcast the value 1−pjj [k]

C−j
(or 1−pjj [k]

C+
j

); each node
i can then recover its weight by multiplying by (the inverse
of) its own in- (out-) degree. �

Consider the directed graph shown at the top of Fig. 1
and assume that the initial values of the five nodes are
x = [4, 5, 6, 3, 2]′, with average µ = 4. We run the iteration
in (4)–(11) and plot the error ε[k] =

∑5
j=1

∣∣∣∑5
i=1 pji[k]− 1

∣∣∣
as a function of the number of iterations k for two different
weighting strategies. In particular, we focus on the equal
weighting strategy (whose weight matrix P e is shown at
the bottom left of Fig. 1) and the strategy that chooses
weights according to the out-degrees of the neighbors (whose
weight matrix P o is shown at the bottom right of Fig. 1).
To understand how these weights are obtained, we illustrate
the situation for node 1: this node has two out-going links
to nodes 2 and 3, so the equal weight strategy assigns a
coefficient of .5 to the links that go to each one of them;
however, if we weight according to the out-degrees, the
weight for node 2 becomes 2/3 and the weight for node
3 becomes 1/3 (because the out-degrees for node 2 and 3
are D+

2 = 2 and D+
3 = 1 respectively).

1 2

3 4

5

P e =

26664
0 0 0 1 0
.5 0 0 0 0
.5 .5 0 0 .5
0 0 0 0 .5
0 .5 1 0 0

37775 P o =

26664
0 0 0 1 0

.67 0 0 0 0

.33 .33 0 0 .5
0 0 0 0 .5
0 .67 1 0 0

37775
Fig. 1. Small directed graph (top) used for illustration of the class
of algorithms and its associated weight matrices (bottom), P e for equal
weighting and P o for weighting according to out-degrees.
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Fig. 2. Error and absolute error, plotted against the number of iterations,
for the strategies that use equal and out-degree weighting.
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Fig. 3. Error plotted against the number of iterations for four different
weighting strategies: equal (solid line), random (dashed-dotted line), inverse
in-degree (dashed line), and inverse out-degree (dotted line).

Fig. 2 plots the error ε[k] =
∑5
j=1

∣∣∣∑5
i=1 pji[k]− 1

∣∣∣ as a
function of the number of iterations k for equal weighting
(solid line) and out-degree weighting (dotted line). As we
can see, the error goes to zero regardless of the weighting,
though the strategy that uses out-degree weighting appears to
be slightly faster. The plot in Fig. 2 also shows the converge
of the absolute error 1

5

∑5
j=1 |πj [k]−µ| to zero as a function

of the number of iterations k for equal weighting (dashed
line) and for out-degree weighting (dashed-dotted line). As
expected both strategies reach average consensus, with the
strategy that updates weights according to out-degrees having
a minor advantage in terms of speed of convergence. Note
that the two strategies converge to different primitive doubly
stochastic matrices.
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Fig. 4. Average error plotted against the number of iterations for four
different weighting strategies: equal (solid line), random (dashed-dotted
line), inverse in-degree (dashed line), and inverse out-degree (dotted line).

Fig. 3 shows what happens in the case of a randomly
created graph of 50 nodes. In particular we plot the er-
ror ε[k] =

∑50
j=1

∣∣∣∑50
i=1 pji[k]− 1

∣∣∣ as a function of the
number of iterations k for equal weighting (solid line),
random weighting (dashed-dotted line), inverse in-degree
weighting (dashed line), and inverse out-degree weighting
(dotted line). The plots suggest that inverse in-degree weight-
ing results in slightly faster convergence whereas random
weighting leads to much worse convergence. This is also
the case in Fig. 4 where we plot the average error ε[k] =
1

100

∑100
l=1

∑100
j=1

∣∣∣∑100
i=1 p

(l)
ji [k]− 1

∣∣∣ for the four strategies,
averaged over 100 randomly created graphs (index by l =
1, 2, ..., 100) of 100 nodes each.2

V. CONCLUSIONS AND FUTURE WORK

In this paper we study the problem of average-consensus
in arbitrary (possibly directed) graphs. We start from a very
general setup where nodes (i) can choose their self-weights
and the weights on their out-going links, and (ii) observe (but
do not choose) the weights on their incoming links. Then, we
develop a class of distributed algorithms that allow the nodes
to iteratively choose their weights so that eventually the set of
weights they converge to is a doubly stochastic primitive ma-
trix, which allows them to reach average-consensus. The only
requirement is that the underlying communication graph is
strongly connected. Apart from establishing the correctness
of the algorithms, we also discussed implementation aspects
of each of the algorithms and provided numerical examples
to illustrate their performance and convergence speed. The
main difference between this work and our previous work
[11] is the generalization of the choice of weight updates,
something that led to different update strategies that may
provide faster convergence when additional information is

2The random graphs were created by choosing a directed edge from node
i to node j, 1 ≤ i, j ≤ n, i 6= j, independently with probability 1/2, and
ensuring that the resulting graph is strongly connected.

available. Future work will study the adaptation of these
techniques to cases where the underlying communication
graph is allowed to change over time. In this regard, an
important feature of the proposed strategies is that they
do not rely on a fixed interconnection topology because
nodes that sense changes on their out-going links (e.g., the
appearance or disappearance of a link) can easily adjust
(e.g., reset) the weights on their out-going links and their
self-weight, without affecting the asymptotic outcome of the
iteration.
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