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Abstract— The problem of robust exact control for a Stewart
platform with smooth bounded unknown inputs is considered.
This platform has three degrees of freedom and it is used as
a remote surveillance device. We consider high-order sliding
mode observers to provide both theoretical exact observation
and unknown input identification. In this paper, a methodol-
ogy is proposed to select the most adequate control strategy
for unknown external perturbation identification. The results
obtained are illustrated by simulations.

I. INTRODUCTION

A. Antecedents and Motivation

The present work is associated with the so-called Stewart
platform, which is a closed cinematic chain robot, and it is
the most important example of a totally parallel manipulator
[15], understanding as such the robot that possess two bodies,
one fixed and the other mobile, which are connected between
them by several arms. Typically, every arm is controlled
by an actuator. Stewart platform has, therefore, a parallel
configuration of six degrees of freedom composed by two
rigid bodies connected by six prismatic actuators [4], [17].
The largest rigid body is named the base, and the mobile
body is called the mobile platform. The application of this
type of robots is useful when we are looking for load
capacity, good dynamic performance and / or precision in
the positioning.

Our goal is to stabilize Stewart platform with three degrees
of freedom around a wished position when we do not have
complete information about the initial conditions and the
permanent disturbance that affect this platform. Of these
uncertainties it is only known that they belong to a convex
and bounded set. In addition, there are two restrictions
concerning the permanent disturbance: one regarding its
value, the other to the value of its integral.

Our specific application consists in an aerostatic balloon,
easy to manipulate, that it is moored to earth by a cable of
approximately 400 meters of length. The base platform is
connected to this balloon and a video camera is fixed to the
mobile platform to keep under surveillance a specific area
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of approximately 20 square kilometers (see Fig. 1). This
device offers a wide range of applications in missions of
surveillance, such as monitoring, rescue operations, intelli-
gence, traffic control, recognition, among others.Since the
base platform is over the mobile one we will name this
platform: inverted Stewart platform and we will denote it
with the letter P for further references. We can observe that,

Fig. 1. Scheme of the remote surveillance device

due to the type of application, our platform P is permanently
under the action of the force of the wind. Therefore, we
will work with the wind’s acceleration as our permanent
disturbance.

Another characteristic of our implementation is that we
have only information available about positions but not about
velocities. In this situation we need to reconstruct such
velocities in order to design a robust control with respect
the external perturbation to be able to stabilize a wished
position. High-order sliding mode observers are commonly
used for observation of dynamical systems and unknown
input identification (see [2], [3], [7] and [16]).

B. Main Contribution

In this paper a robust control is designed to stabilize
a Stewart Platform used as a remote surveillance device
when only positions are available. High-Order Sliding Mode
(HOSM) observer is applied to reconstruct the velocities
and external perturbation identification from the position
measurements. First we will use a second-order sliding mode
observer that ensures the finite time convergence to the value
of observed velocities without filtration but for uncertainties
identification the realization of the observer produces high
switching frequencies making necessary the application of a
filter. Then, a third-order sliding mode observer is applied
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giving us a theoretical exact estimation of the external
perturbation without filtration.

Some specific contributions are enumerated below:
1) We propose a third order sliding mode observer to re-

construct the velocities and exact external perturbation
identification of platform P when only positions are
available.

2) Such states reconstruction and perturbation identifica-
tion permits to design controller compensating uncer-
tainties after convergence time.

3) We compare the perturbation identification using sec-
ond and third order sliding mode observers.

C. Structure of the Paper

In section II, a model of platform P is presented and
the control law is formulated. Section III is devoted to the
state observation. In section IV are analyzed two methods
to identify unknown external perturbation. Subsection IV-A
deals with the standard procedure where a high frequency
component will appears and subsection IV-B an extended
order approach will be applied to eliminate that component.
In section V a nominal control is design and section VI deals
with the numerical illustration of the platform P.

II. MODEL DESCRIPTION AND PROBLEM STATEMENT

A. Plant Model

Let us consider the inverted Stewart platform which con-
sists of a base platform and a mobile one, both with the
shape of an equilateral triangle, of sides a and b, a > b,
respectively. The vertexes of the base are joined to the
corresponding vertexes of the mobile platform by actuators
of lengths, li (i = 1, 2, 3), variable and bounded. These
actuators are fastened to the base platform at the points
Ai (i = 1, 2, 3) by cylindrical joints with axes of rotation
perpendicular to the segment AiA0 (i = 1, 2, 3), forming the
respective angles γi, and they are connected to the mobile
platform in the corresponding points Bi (i = 1, 2, 3) by
spherical joints (see Fig. 2). The type of joints used to
connect the platforms, both base and mobile, through the
actuators allow us to reduce the six original degrees of
freedom to three: two rotations (α and β) and one translation
(h). α and β are the rotations of the center of mass of the
mobile platform (B0) respect the axis y′ and x′, respectively
and h is the vertical position of B0 respect to A0, as is
shown in Figure 2. We also possess a GPS device placed
in the center of mass of the base platform (A0, see Fig.
2) to measure its position with respect to the ground and
angle sensors positioned in the mobile platform to measure
the aforementioned angles. The position of the center of
mass of the mobile platform (B0) can be recovered using
the position of A0 and the geometry of platform P. We shall
assume that the measurement errors of the GPS device are
negligible for our application. The position to be stabilized is
α = β = 0 and h = h0. To obtain the equations that describe
the movement of the platform P we use Lagrange’s equations
considering the independent variables α, β and h as the
generalized coordinates. Then, to investigate the behavior

Fig. 2. Geometric scheme of the platform P

of the system in a neighborhood of the wished position
(α = β = 0 and h = h0) we introduce a small deviation in
the coordinates: �α = α, �β = β and �h = h − h0, and
we obtain the linear model of the platform P that is valid in a
vicinity of the wished position. This linear model in deviation
is normalized using the following adimensional magnitudes,
x1 = �α, x2 = dx1/dτ̃ , x3 = �β, x4 = dx3/dτ̃ ,
x5 = �h, x6 = dx5/dτ̃ , where

τ̃ = t
√
gr/h0, (1)

and τ̃ is the adimensional time, t is time in seconds and
gr is the gravity acceleration. This way we obtain the
following linear time-invariant model in deviations for first
approximation with uncertainties, of the platform P [13],

ẋ(t) = Ax(t) +Bu(t) + g(w, x(t)); x (0) = x0,
y (t) = Cx (t) ,
w ∈ V = {V ⊂ R

r : v̇ = w, |vi(t)| ≤ v0, |wi(t)| ≤ w0}
(2)

where x (t) = (x1, · · · , x6)
� is the state vector, u (t) ∈ R

m (m =
3) is the control law, y (t) ∈ R

p (1 ≤ p < n) (p = 3) is the output
of the system and w is the permanent perturbation, representing the
wind’s acceleration (r = 3). There exist two kinds of influences of
the external disturbance on the platform P: the general (normal)
resonance and the parametric resonance. The vector x0 is supposed
to be unknown but belonging to a given ball, that is,

∥∥x0
∥∥ ≤ μ,

where || · || is the Euclidian norm.
The matrices A and B are described below.

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
a1 0 0 0 0 0
0 0 0 1 0 0
0 0 a2 0 0 0
0 0 0 0 0 1
0 0 0 0 a3 0

⎞
⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0
−b1 −b1 2b1
0 0 0
b2 −b2 0
0 0 0
b3 b3 b3

⎞
⎟⎟⎟⎟⎟⎠

a1 =
[ b2 cos2 γ0 − b(a− b)

6r2y

]
, b1 =

bh0

6
√
3r2y

a2 = −[ b2 cos2 γ0 + b(a− b)

6(h2
0 + r2x)

]
, b2 =

bh0

6(h2
0 + r2x)

a3 = − cos2 γ0, b3 = −1/3;

where γ0 is the angle between the actuators and the base platform
when the mobile platform is in the wished position, rx and ry are
radius of inertia. The matrix C indicates which system parameters
we measure and it is selected as,

C =

⎛
⎝1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎠ . (3)
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The plant in (2) operates under matched uncertainties, that is,

g(w(t), x(t)) = Bγ(w(t), x(t)) = (0, g1, 0, g2, 0, g3)
�; (4)

g1 =

(
h0b

2
√
3r2y

)
wxx1,

g2 = −
(

h2
0

h2
0+r2x

− 2h4
0

(h2
0+r2x)2

)
wyx5 −

(
h2
0

h2
0+r2x

)
wy,

g3 = −wyx3;

where the wind acceleration has the form w(t) =
(wx(t), wy(t), wz(t))

�. But, due to our application consists
in a Stewart Platform connected to a balloon that is moored to
the ground, we assumed that the influence of wz(t) can be of no
consequence, in other words, we are going to consider wz(t) = 0 .

The nominal part of the system dynamics is represented by the
function

F (x(t), u(t)) = Ax (t) +Bu (t) ,

while the uncertainties and perturbations are concentrated in
g (w, x, t). The solutions to system (2) are understood in Filippov’s
sense [11]. The nominal function F (x, u) and the uncertainty
g (w, x, t) are Lebesgue-measurable and uniformly bounded in any
compact region of the state-space x. This means that the space of
“real” mechanical system variables is bounded. The tasks are to
design an observation algorithm to obtain the values of x2, x4,
x6 and an identification algorithm to get the system uncertainties
having only the knowledge of the states x1, x3, x5.

B. Control Challenge

Here, a compensation control law is designed based on the
estimated states and the identification of the system uncertainties.
Consider the nominal system

ẋ0(t) = Ax0(t) +Bu0(t). (5)

The control design problem is to design a control law that, providing
that x(0) = x0(0), guaranties the identity x(t) = x0(t) for all
t ≥ 0. By comparing (2) and (5) it is clear that the control design
achieved only if the equivalent control is equal to the negative of
the uncertainty. Thus, the control objective can be formulated in
the following terms: design the control law u(t) to be

u(t) = u0(t) + u1(t) (6)

where the control u1 ∈ R
m is the control part guarantying the

compensation of the unknown matched uncertainty g(w(t), x(t))
(see [9]) and u0 ∈ R

m is the nominal control part designed for the
system (5). In this paper u0 is a control function minimizing the
worst possible scenario in the sense of some LQ-index, as is shown
in section V. For u1 we used a high-order sliding mode observer
to identify the perturbation g(w(t), x(t)) (section IV) in order to
obtain u1 = −g(w(t), x(t)).

III. STATE OBSERVATION

For state observation let us use the second-order sliding mode
based observer of the form

˙̂x1 = x̂2 + α21|x1 − x̂1|1/2sign(x1 − x̂1)
˙̂x2 = F1(x1, x̂2, u1(x2)) + α11sign(x1 − x̂1)
˙̂x3 = x̂4 + α22|x3 − x̂3|1/2sign(x3 − x̂3)
˙̂x4 = F2(x3, x̂4, u2(x4)) + α12sign(x3 − x̂3)
˙̂x5 = x̂6 + α23|x5 − x̂5|1/2sign(x5 − x̂5)
˙̂x6 = F3(x5, x̂6, u3(x2, x4, x6)) + α13sign(x5 − x̂5)

(7)

where x̂i are the estimation of xi (i = 1, · · · , 6). The constant
gains α1j and α2j (j = 1, 2, 3) are the correction factors designed
for convergence of estimation error for each couple of coordinates
(x1, x2), (x3, x4) and (x5, x6) [14].

Equations of estimation error take the form

˙̃x1 = x̃2 − α21|x1 − x̂1|1/2sign(x1 − x̂1)
˙̃x2 = F̃1(x1, x2, x̂2, u1(x2)) + g1 − α11sign(x1 − x̂1)
˙̃x3 = x̃4 − α22|x3 − x̂3|1/2sign(x3 − x̂3)
˙̃x4 = F̃2(x3, x4, x̂4, u2(x4)) + g2 − α12sign(x3 − x̂3)
˙̃x5 = x̃6 − α23|x5 − x̂5|1/2sign(x5 − x̂5)
˙̃x6 = F̃3(x5, x6, x̂6, u3(x2, x4, x6)) + g3 − α13sign(x5 − x̂5)

(8)
where F̃j(xj , xj+1, x̂j+1) = Fj(xj , xj+1, uj) − Fj(xj , x̂j+1, uj)
, ||gj(w, x, t)|| ≤ g+j and x̃i = xi − x̂i (j = 1, 2, 3; i = 1, · · · , 6).
Due to the boundedness assumption it is possible to find an upper
bound for each couple of coordinates such that,

|F̃j(xj , xj+1, x̂j+1, uj) + gj | < f+
j . (9)

Theorem 1: [5] Suppose that condition (9) holds for system (2),
and parameters of the observer (7) are selected according to

α2j > f+
j

α1j >
√

2
α2j

(α2j+f+
j )(1+pj)

(1−pj)

(10)

where pj are constants to be chosen 0 < pj < 1. Then the observer
(7) ensures the convergence of the estimated states (x̂j , ˙̂xj) to the
real value of the states (xj , ẋj) after a first time transient and there
exists a time constant t0 such that for all t > t0, (x̂j , x̂j+1) =
(xj , xj+1).

The proof of Theorem 1 is given in [5].

IV. EQUIVALENT OUTPUT INJECTION ANALYSIS:
PERTURBATION IDENTIFICATION

In this section we present two approaches to identify the un-
known matched perturbation g(w(t), x(t)) by means of a second-
order and a third-order sliding mode observers. The realization of
the second-order sliding mode observer produce high switching
frequencies thus calling for the application of a low-pass filter
that in turn introduces time delay. This time delay, coupled with
a discontinuous term, produces chattering. Meanwhile, the third-
order sliding mode observer produce a continuous term, and no
filtration is required to obtain the equivalent output injection. This
way, given the finite time convergence of the differentiator, we are
able to reconstruct in finite time the equivalent output injection.
These methods are explained more thoroughly in Sections IV-A
and IV-B.

A. Standard Procedure

The finite time convergence to the second-order sliding mode set
ensures that there exists a time constant t0 > 0 such that for all
t > t0 the following identities holds (see [6] and [12])

0 ≡ ˙̃x2 ≡ F̃1(x1, x2, x̂2, u1) + g1 − α11sign(x1 − x̂1)

0 ≡ ˙̃x4 ≡ F̃2(x3, x4, x̂4, u2) + g2 − α12sign(x3 − x̂3)

0 ≡ ˙̃x6 ≡ F̃3(x5, x6, x̂6, u3) + g3 − α13sign(x5 − x̂5).

Notice that F̃j(xj , xj+1, x̂j+1, uj) = 0 because x̂j+1 = xj+1

(j = 1, 2, 3). Then the equivalent output injection zeq =
(0, zeq1 , 0, zeq2 , 0, zeq3)

� is given by the following terms

zeq1 ≡ α11sign(x1 − x̂1) ≡ g1
zeq2 ≡ α12sign(x3 − x̂3) ≡ g2
zeq3 ≡ α13sign(x5 − x̂5) ≡ g3.

(11)

It was mentioned before that the term g = (0, g1, 0, g2, 0, g3)
� is

the external perturbation that affects the platform P.
Theoretically, the equivalent output injection is the result

of an infinite switching frequencies of the discontinuous term
α1jsign(xj − x̂j). Nevertheless, the realization of the observer
produces high (finite) switching frequency making necessary the
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application of a filter. To eliminate the high frequency component
we will use the low-pass filter of the form

τ ˙̃zeq(t) = zeq(t)− z̃eq(t) (12)

where τ ∈ R and Δ � τ � 1 (Δ is the sampling step).
It is possible to rewrite zeq as result of a filtering process in the

following form
zeq(t) = z̃eq(t) + ε(t) (13)

where ε(t) ∈ R
6 is the difference caused by the filtration and z̃eq(t)

is the filtered version of zeq(t).
Nevertheless, as it is shown in [18] and [8]

lim
τ→0

Δ/τ→0

z̃eq(τ,Δ) = zeq(t),

then, it is possible to assume that the equivalent output injection is
equal to the output of the filter.

B. Extended Order Approach

Let the second, fourth and sixth equation of (2) be differentiated.
As we know Fj(xj , xj+1, uj) (j = 1, 2, 3) is linear then it is
smooth and we will assume that g is also smooth. The extensions of
the system forces the new requirement that Ḟj(xj , xj+1, uj) + ġj
(j = 1, 2, 3) is bounded. If this new requirement is satisfied, it is
possible to apply the third-order sliding mode observer [10]:

˙̂x1 = x̂2 + α31|x1 − x̂1|2/3sign(x1 − x̂1)
˙̂x2 = F1(x1, x̂2, u1) + α21| ˙̂x1 − x̂2|1/2sign( ˙̂x1 − x̂2) + ẑ1
˙̂z1 = α11sign( ˙̂x1 − x̂2)
˙̂x3 = x̂4 + α32|x3 − x̂3|2/3sign(x3 − x̂3)
˙̂x4 = F2(x3, x̂4, u2) + α22| ˙̂x3 − x̂4|1/2sign( ˙̂x3 − x̂4) + ẑ2
˙̂z2 = α12sign( ˙̂x3 − x̂4)
˙̂x5 = x̂6 + α33|x5 − x̂5|2/3sign(x5 − x̂5)
˙̂x6 = F3(x5, x̂6, u3) + α23| ˙̂x5 − x̂6|1/2sign( ˙̂x5 − x̂6) + ẑ3
˙̂z3 = α13sign( ˙̂x5 − x̂6)

(14)
where x̂i are the estimation of xi (i = 1, · · · , 6). The constant
gains α1j , α2j and α3j (j = 1, 2, 3) are the correction factors
designed for convergence of the estimation error for each couple of
coordinates (x1, x2), (x3, x4) and (x5, x6) [14].

Equations of error estimation takes the form

˙̃x1 = x̃2 − α31|x1 − x̂1|2/3sign(x1 − x̂1),
˙̃x2 = F̃1(x1, x2, x̂2, u1) + g1−
− α21| ˙̂x1 − x̂2|1/2sign( ˙̂x1 − x̂2)− ẑ1,

˙̃x3 = x̃4 − α32|x3 − x̂3|2/3sign(x3 − x̂3)
˙̃x4 = F̃2(x3, x4, x̂4, u2) + g2
− α22| ˙̂x3 − x̂4|1/2sign( ˙̂x3 − x̂4)− ẑ2,

˙̃x5 = x̃6 − α33|x5 − x̂5|2/3sign(x5 − x̂5)
˙̃x6 = F̃3(x5, x6, x̂6, u3) + g3−
− α23| ˙̂x5 − x̂6|1/2sign( ˙̂x5 − x̂6)− ẑ3.

(15)

After convergence of the differentiator, the equalities ˙̂x2 = ẋ2,
˙̂x4 = ẋ4 and ˙̂x6 = ẋ6 hold, the following expressions are equal to
zero:

F̃1(x1, x2, x̂2, u1) + g1 − α21| ˙̂x1 − x̂2|1/2sign( ˙̂x1 − x̂2)− ẑ1
F̃2(x3, x4, x̂4, u2) + g2 − α22| ˙̂x3 − x̂4|1/2sign( ˙̂x3 − x̂4)− ẑ2
F̃3(x5, x6, x̂6, u3) + g3 − α23| ˙̂x5 − x̂6|1/2sign( ˙̂x5 − x̂6)− ẑ3.

(16)
The third term of (16) is equal to zero as a result of the differentia-

tor convergence, then it is possible to obtain the equivalent output
injection (in our case perturbation identification) as:

ẑ1 = g1
ẑ2 = g2
ẑ3 = g3.

(17)

In this case, ẑ1, ẑ2 and ẑ3 are continuous terms, and no filtration
is required to obtain the equivalent output injection. This is an
important fact, because given the finite time convergence of the
differentiator, we are able now to reconstruct the perturbation in
finite time. Moreover, the variables ẑ1, ẑ2 and ẑ3 are not affected by
any filtration process, hence they are a theoretical exact estimation
of g1, g2 and g3, respectively.

V. CASE OF STUDY: MIN-MAX STABILIZATION OF
PLATFORM P

Let us consider for the nominal system (5) the control u0 as a
control with linear output feedback:

u0 = Kx (18)

where K ∈ Q = {Q ⊂ R
m×n|Re(λi) ≤ −k0, k0 > 0} (m = 3)

and λi (i = 1, · · · , n) are the eigenvalues of the matrix A1(K) :=
A+BK. Matrix K is described below

K =

⎛
⎝0 k11 0 k12 0 k13
0 k21 0 k22 0 k23
0 k31 0 k32 0 k33

⎞
⎠ (19)

In view of (18) and (19), the dynamic equations for the state x have
the form:

ẋ(t) = A1(K)x(t), x(0) = x0 (20)

The elements of K are denoted as kij (i = 1, · · · ,m; j =
1, · · · , p) and are known as coefficients of stabilization. Thus, the
min-max problem consists in finding the values of kij which satisfy
the following evaluation criterium:

J(K) = max
|x(0)|≤μ

∫ ∞

0

(
xᵀGx

)
dt → min

K∈Q
, (21)

where G = G� ≥ 0, in our case we use G as the identity matrix
of dimension n.

Physically this means that given the worst initial conditions it
minimizes the deviations in time of the system parameters and this
way achieves an asymptotically stable behavior. For our application,
as a remote surveillance device, it is of great importance, not only
to decrease the angles deviations but also its velocities because we
need the movement of the camera to be slow in order to capture
better images.

Thus, the control law solving (21) for (20) has the form:

u0 (x (t)) ≡ u∗
0 (x (t)) = K∗x(t)

Let us reduce the optimal stabilization problem (21) to a non-
linear programming problem (see [1]). For that let us consider the
differential and matrix equation:

Ż = Aᵀ
1Z + ZA1, Z(0) = G, (22)

The general solution of (22) has the form,

Z(t) = eA
ᵀ
1 tGeA1t. (23)

For any K ∈ Q the integral
∫∞
0

Z(t)dt converges, and therefore it
is possible to integrate (22).

Thus we have:

Aᵀ
1

∫ ∞

0

Z(t)dt+

∫ ∞

0

Z(t)dtA1 =

∫ ∞

0

Ż(t)dt =

= Z(∞)− Z(0) = −G.

Notice that Z(∞) is zero because we are considering that the matrix
A1 is such that the real part of its eigenvalues are negative.

Then it is possible to affirm that the matrix,

P =

∫ ∞

0

Z(t)dt (24)
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is the solution of the matrix equation

Aᵀ
1P + PA1 = −G. (25)

As we mentioned before, G = In (In denotes the identity matrix
with dimension n) (25) is called Lyapunov Equation and its solution
is a symmetrical positive defined matrix.

Then, the functional J(K) can be rewritten as:

max
|x(0)|≤μ

∫ ∞

0

(
Σn

j=1x
2
j

)
dt = max

|x(0)|≤μ
xᵀ(0)Px(0). (26)

On the other hand, for any symmetrical definite positive matrix the
following inequality fulfilled:

xᵀ(0)Px(0) ≤ μ2νmax, (27)

where νmax is the maximum value of the νi (i = 1, · · · , n), roots
of the characteristic equation,

det(νIn − P ) = 0. (28)

Among all the initial conditions, |x(0)| ≤ μ, there exists one for
which the equality is reached in (27). Consequently the functional
can be expressed the following way:

max
|x(0)|≤μ

∫ ∞

0

(
Σn

j=1x
2
j (t)

)
dt = μ2νmax.

Thus way we can reduce the min-max problem (21) to the following
extremal problem of finite dimension:

μ2νmax → min
K∈Q

. (29)

Besides, from Theorem 1 , the estimated state x̂ is used to realize
the control u0, i.e., the control u0 should be designed as:

u0 (t) = K∗x̂ (t) (30)

with x̂ (t) being designed as in (14).

VI. APPLICATION OF HOSM-OBSERVER TO PLATFORM
P

Let us consider the following structural dimensions for our
platform P: a = 0.5m; b = 0.3m; gr = 9.81m/s2; h0 = 0.2m;
γ0 = 60 and m = 3kg (see Fig. 2). Then, the system (2) becomes:

ẋ1 = x2

ẋ2 = −1.875x1 − 3.464(u01 + u11) + 5.196wxx1

ẋ3 = x4

ẋ4 = −0.3433x3 − 0.2105(u02 + u12) + 0.576wyx5 − 0.842wy

ẋ5 = x6

ẋ6 = −0.25x5 − 0.3333(u03 + u13)− wyx3

y = (x1, x3, x5)
�

(31)
where wx(t) = wy(t) = 0.1 + 0.5 sin t, u0 = (u01, u02, u03)

�

is the nominal control and u1 = (u11, u12, u13)
� compensate

the external perturbation; g = (0, 5.196wxx1, 0, 0.576wyx5 −
0.842wy, 0,−wyx3)

′.
The vector state x consists of six state variables: x1 = α− α0,

x3 = β − β0, x5 = (h − h0)/h0, x2, x4 and x6 represents the
velocity of x1, x3 and x5, respectively. The wished position that
we want to stabilize is (0, 0, 0, 0, 1, 0)�.

We design the nominal control u0 in (18) for a particular K ∈ Q̃,
where Q̃ = {K ∈ Q|k11 = k21, k12 + k22 = 2k32, k13 = k23 =
k33}. Then, u0 is given by the following terms,

u01 = 0.6843x2

u02 = 4.6767x4

u03 = 1.368x2 + 7.0149x4 + 3.36x6.

The initial conditions are considered as x(0) =
[0.15,−0.4, 0.2, 0.5, 0.35, 0.55]�; and as consequence we
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Fig. 3. Comparison of velocities estimation error (e = x̃): 2-order and
3-order sliding mode observers
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Fig. 4. Comparison of perturbation identification: (a) standard procedure
(ztilde = z̃eq as in (12)); (b) extended order approach (zeq = zeq as in
(17))

have y(0) = [0.15, 0.2, 0.35]�. The gains for the second-order
sliding mode observer are: α2j = a2L

1/2 and α1j = a1L. For
the third-order observer we also have α3j = a3L

1/3, where
we selected L = 1, a3 = 1.9, a2 = 1.5 and a1 = 1.1. Fig. 3
shows the comparison between the errors for the estimation of the
velocities using second and third order sliding mode observers. The
convergence time is smaller when the second-order sliding mode
observer is used but if we consider in Fig. 3 the convergence of
third-order observer for time τ̃ = 2 (see (1)), which is equivalent
to t = 0.3 s, then we can affirm that the convergence is fast
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enough for our application of platform P. In Fig. 4 we compare the
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Fig. 5. Comparison of velocities and their estimations (xg = x̂) for the
extended order approach when compensation (C) control u = u0 + u1 is
used or only the nominal control (NC) is applied

exact reconstruction of the perturbation obtained by the extended
order approach (b) and the external perturbation identification
using the standard method (a) with a low-pass filter with sampling
step � = 10−4 and τ = �1/2. In Fig. 4 (b) it is clear that
even when the signal presents abrupt changes, the exact method
provides a good reconstruction of the perturbation whereas the
standard procedure (Fig. 4 (a)), even with the filtration process,
the perturbation identification presents the chattering problem.
Another element to take into account is the order of the error: for
the extended order approach it is of 10−8 whereas in the standard
procedure it is of 10−4.

The comparison between the reconstructed velocities when a
control with perturbation compensation is used, i.e., u = u0 + u1

(u1i = −zeqi , i = 1, 2, 3) and when only the nominal control is
applied is shown in Fig. 5 (note that the value 35 of the sample
time represents 5 seconds approximately).

VII. CONCLUSIONS

Two high-order sliding mode observers providing theoretically
finite time state reconstruction and perturbation identification for
the platform P were presented. These observers provide two pos-
sible methods for external perturbation identification: the standard
procedure and the extended order approach. The first one needs a
filtration process and the second one provides, after convergence
time, theoretical exact perturbation identification. Meanwhile, the
second-order observer has smaller convergence time (0.07 seconds)
for state reconstruction but the third-order observer has small
enough convergence time (0.3 seconds) for our application to
platform P. For these reasons, the information obtained for the third-
order sliding mode observer is the most suitable for reconstruction
of velocities and perturbation compensation in the control law of
platform P.
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