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Abstract— In this paper we provide sufficient conditions
for regional asymptotic and nonlinear L2m gain estimation
of linear systems subject to saturations and/or deadzones,
based on piecewise polynomial Lyapunov functions. By
using sum-of-squares relaxations, these conditions are for-
mulated in terms of linear matrix inequalities for the
global case, and bilinear ones for the regional case. The
results are provided for both the cases with and without
structured parametric uncertainties. Example studies are
used to comparatively illustrate the proposed techniques.

I. Introduction

Stability and performance of linear systems subject to
saturations and/or deadzones can be addressed using convex
optimization tools that have been recently made available
by way of the increasingly powerful computational abilities
of modern computer systems. In particular, quadratic Lya-
punov conditions for assessing exponential stability can be
derived using the well known circle criterion and the Lin-
ear Matrix Inequalities (LMI) machinery [1]. It is only in
recent years that nonquadratic Lyapunov functions have been
suggested for the stability and performance analysis in the
presence of saturations. In particular, [2] revisited the existing
quadratic conditions providing a complete characterization
of the nonlinear algebraic loop possibly arising from nonzero
feedthrough terms and also proposed two nonquadratic Lya-
punov functions. Later on, an alternative constuction was
given in [3], where each nonlinearity was regarded as implicitly
defining 3 partitions of the state space. The resulting regions
implicitly defined via the nonlinear algebraic loop mentioned
above, were used to define a piecewise quadratic construc-
tion, possibly leading to nonconvex Lyapunov functions. This
construction was shown in [3] to lead to improved results as
compared to the previous nonquadratic tools of [2].

Polynomial Lyapunov functions have been the subject of
intensive investigations during the last decade, motivated by
a number of analysis and design problems relevant to control
systems (see e.g., [4, 5]). When using this class of Lyapunov
functions, the conditions arising from Lyapunov theory can
usually be formulated as positivity tests on suitable multivari-
able polynomials. A convex relaxation of the problem above
consists in testing whether a polynomial is a Sum Of Squares
(SOS), which can be cast as an LMI feasibility problem [6, 7].
Although polynomial Lyapunov functions have been proposed
for many different classes of uncertain and/or nonlinear sys-
tems (see [8] and references therein), their potential has not
been exploited yet to deal with stability of saturated systems.

In this paper we consider the problem of the estimation of
the domain of attraction of saturating systems. By taking into
account exogenous inputs we develop conditions allowing to
compute the reachable set under a class of disturbances with
bounded L2m norm. Then considering a performance output
we are able to compute an estimate of the regional L2m gain,
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so that an estimate of the nonlinear L2m gain curve [9] can
be suitably sampled and constructed. The analysis problems
allowing to define regional properties of the system are based
on modified sector conditions using polynomial multipliers
[10] and are converted into optimization problems subject to
LMI constraints for the global case and BMI constraints for
the regional case. Moreover, we exploit the power arising from
the use of polynomial positivity relaxations to characterize
regional robust stability properties in the presence of para-
metric uncertainties. Using the functions first proposed in [3],
our result extend the preliminary results in [11] where only
global stability results were addressed.

The paper is structured as follows. In Section II we intro-
duce some preliminary standard notions about SOS polyno-
mials. In Section III we state our results for the case without
uncertainty. In Section IV we address structured uncertain-
ties. Finally, in Section V we present numerical examples.

II. Preliminaries

Let us first introduce the notation adopted in the paper.
Given a vector x ∈ R

n, x{m} ∈ R
σn,m denotes a vector

containing all monomials xi1
1 · · ·xin

n such that i1 + . . .+ in =
m, where σn,m =

`

n+m−1
n−1

´

is the number of monomials
of degree m in n variables. Given two vectors x, y, x ⊗ y
denotes the Kronecker product of x and y. P is the set of
real polynomials, P

n×m is the set of n × m matrices of real
polynomials, P

n×n
diag is the set of n × n polynomial diagonal

matrices. For Π(ξ) ∈ P
n×n, Π(ξ) ≥ 0 means that Π(ξ) is

positive semidefinite for every value taken by the variables ξ in
the polynomial entries of Π(ξ). Σn×m denotes the set of n×m
matrices of polynomials whose entries are SOS, while Σn×n

diag is
the set of n× n SOS diagonal matrices. For a generic set D,
co(D) denotes its closed convex hull. For a polytope Q, Ver[Q]
denotes the vertices of Q. Given a vector x ∈ R

n diag(x)
is a diagonal n × n matrix whose diagonal entries are the
elements of x. Given matrices M1 ∈ R

n×n and M2 ∈ R
m×m,

blkdiag(M1,M2) is a block-diagonal M ∈ R
nm×nm matrix.

The L2m-norm of a signal x(t) is defined as

‖x(t)‖2m =

„Z ∞

0

“

xT (t)x(t)
”m

dt

« 1

2m

the L2m-gain from z(t) to w(t) is denoted γ2m and is given by
γ2m = ‖z(t)‖2m/‖w(t)‖2m. The subscript of γ may be omitted
whenever m can be inferred from the context.

III. Stability via piecewise polynomial Lyapunov

functions

Generally a system with saturations or deadzones can be
described in the following compact form:

ẋ = Ax+Bqq +Bww (1a)

y = Cyx+Dyqq +Dyww (1b)

z = Czx+Dzqq +Dzww (1c)

q = dz(y) (1d)

where x ∈ R
n, z ∈ R

p, y ∈ R
d, w ∈ R

r, and all the
matrices are real matrices of appropriate dimensions. The
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deadzone function dz(·) : R
d → R

d is defined as dz(y) =
y − sat(y), for all y ∈ R

d, where sat(·) is a symmetric vector
saturation function with saturation levels given by the vector
u ∈ R

d, ui > 0, i = 1, . . . , d. In particular satui(ui) =
sign(ui) min(|ui|, |ui|), sat(u) = [satu1

(u1) . . . satud
(ud)]

T

For system (1) we assume the following well posedness condi-

- -

�

-
H

dz(·)

yq

w z

Fig. 1. Representation of a system with deadzone.

tion.
Assumption 3.1: The nonlinear algebraic loop in (1) is well

posed, namely for any ζ ∈ R
d, there exists a unique value y

satisfying the nonlinear equation y −Dyqdz(y) = ζ.
Based on the results in [2], Assumption 3.1 is equivalent to
verifying that det(I −Dyq∆φ) > 0 for all ∆φ ∈ Dφ, where

Dφ := {∆φ = diag(k1, . . . , kd), ki ∈ {0, 1}, i = 1, . . . , d} (2)

which amounts to checking the determinant of 2d matrices.
In the rest of this section we will first, in Section III-A,

extend to the polynomial case some sector-like conditions
given in [3]. Then, in Section III-B, based on these conditions,
we will provide sufficient asymptotic stability conditions for
(1) based on piecewise polynomial Lyapunov functions and
we will extend the tools to establish a finite global L2m gain
from w to z for (1). Finally, in Section III-C we present the
tools to establish local L2m gain from w to z.

A. Sector conditions for the deadzones and algebraic-loop

Let us denote by u(x) the solution y of the nonlinear
algebraic loop in (1) when w = 0. Since the algebraic loop
is well posed by Assumption 3.1, the function u(x) is well
defined and corresponds to a piecewise affine function defined
on 3d regions of R

d, satisfying the following equation for all
x ∈ R

n:

u(x) −Dyqdz(u(x)) = Cyx. (3)

In the facts listed below, we will generalize sector-like con-
ditions given in [3] and highlight their extension to the use
of polynomial multipliers. For the sake of generality, we will
present the results referring to a generic vector ξ representing
the variables of the polynomial multipliers. Moreover, to
simplify the exposition, we will use the notation θ = dz(u(x))
and q = dz(y).

Fact 3.1: Given any polynomial diagonal matrix ξ 7→
Π(ξ) ∈ P

d×d
diag such that Π(ξ) ≥ 0 for all ξ, then

dz(ψ)T Π(ξ)(ψ − dz(ψ)) ≥ 0 ∀ξ, ∀ψ ∈ R
d. (4)

When focusing on global properties, Fact 3.1 provides the
following polynomial constraints, which hold for all ξ and for
all x, q, w, θ satisfying (1):

Φ1(Π1(ξ)) = qT Π1(ξ){Cyx+ (Dyq − Id)q +Dyww} ≥ 0,
Φ2(Π2(ξ)) = θT Π2(ξ){Cyx+ (Dyq − Id)θ} ≥ 0,

(5)
where Π1(ξ),Π2(ξ) ∈ P

d×d
diag satisfy Π1(ξ) ≥ 0, Π2(ξ) ≥ 0. Fact

3.1 states that dz(·) belongs to the sector [0, I ] whereas the
following fact ([12], [13] ) establishes a sector condition that
only holds regionally, that is, in the set where a given function
h(x) satisfies h(x) = sat(h(x)).

Fact 3.2: Given a function h(x) and any polynomial diago-
nal matrix function ξ 7→ Π(ξ) ∈ P

d×d
diag such that Π(ξ) ≥ 0 for

all ξ, then

dz(ψ)T Π(ξ)(ψ − dz(ψ) − h(x)) ≥ 0,

∀ξ, ∀ψ ∈ R
d, ∀x ∈ R

n such that h(x) = sat(h(x)).
When describing the deadzone, extra information can be
drawn from the time derivatives of y and dz(y), whenever they
exist. This information can be obtained by observing that, by
denoting u̇ = du/dt and φ(x,w) = d(dz(u))/dt = dθ/dt,

φi(x,w) =



0, if |ui| < ūi

u̇i, if |ui| > ūi
(6)

Note that φi(x,w) may not exist where ui = ±ūi. Condition
(6) can consequently be described in terms of polynomial
constraints as explained in the next fact.

Fact 3.3: Given any polynomial diagonal matrix ξ 7→
Π(ξ) ∈ P

d×d
diag, the following equalities hold almost everywhere


φ(x,w)T Π(ξ){u̇− φ(x,w)} ≡ 0
θT Π(ξ){u̇− φ(x,w)} ≡ 0

. (7)

By the definition of u in (3) and by (1), we have u̇ = CyAx+
CyBqdz(y) + CyBww + Dyqφ(x,w). Then conditions (7) in
Fact 3.3 impose that, for all ξ and for all x, q, φ = dq/dt,
solutions to (1), one has

Φ3(Π3(ξ)) = φT Π3(ξ){CyAx+CyBqq + CyBww
+(Dyq − Id)φ} ≡ 0

Φ4(Π4(ξ)) = θT Π4(ξ){CyAx+CyBqq + CyBww
+(Dyq − Id)φ} ≡ 0

(8)

where Π3(ξ),Π4(ξ) ∈ P
d×d
diag.

According to the non decreasing property of saturations
and deadzones, the following fact can also be proven.

Fact 3.4: Given a vector ξ and any polynomial diagonal
matrix ξ 7→ Π(ξ) ∈ P

d×d
diag such that Π(ξ) ≥ 0 for all ξ, for all

ψ1, ψ2 ∈ R
d:

{dz(ψ1) − dz(ψ2)}
T Π(ξ){sat(ψ1) − sat(ψ2)} ≥ 0. (9)

By means of Fact 3.4, the following polynomial constraint
holds for all ξ, q, θ and w:

Φ5(Π5(ξ)) := {θ − q}T Π5(ξ){(Dyq − Id)θ + (Id −Dyq)q

−Dyww} ≥ 0,
(10)

where Π5(ξ) ∈ P
d×d
diag satisfies Π5(ξ) ≥ 0 for all ξ.

B. Global stability and L2m gain analysis

In the previous section, polynomial constraints have been
introduced to describe the nonlinearities and their dynamics.
Thanks to their polynomial nature, these constraints can
be exploited to obtain sufficient condition for the stability
of system (1) by way of a piecewise polynomial Lyapunov
function.

Theorem 3.1: Consider system (1) satisfying Assump-
tion 3.1 and the set of polynomial inequalities

Πi(ξ) ≥ 0, i = 1, 2, 5 (11a)

V (x, θ) − ǫ|x|k1 ≥ 0 (11b)

−V̇ (x, θ, q, φ, w) −
P5

i=1 Φi(Πi(ξ)) − Ψ − ǫ|x|k2 ≥ 0
(11c)

where Φi(·), i = 1, . . . , 5, are given in (5), (8), (10), and
V̇ (x, θ, q, φ, w) is a shortcut notation for

fi

∇V (x, θ),

»

Ax+Bqq +Bww
φ

–fl

.
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If there exist a polynomial function V (x, θ) ∈ P, polynomial
matrices Πi(ξ) ∈ P

d×d
diag, i = 1, . . . , 5, two reals k1, k2 ≥ 1, a

scalar ǫ > 0 and a positive integer m ∈ N such that (11) is
satisfied, respectively, with

1) w = 0, θ = q (yielding Φ1(·) = Φ2(·), Φ5(Π5(ξ)) ≡ 0)
and Ψ ≡ 0;

2) Ψ ≡ −(wTw)m;
3) Ψ ≡ γ−2m(zT z)m − (wTw)m with γ ∈ R, γ > 0,

then the following, respectively, holds:

1) (asymptotic stability) the origin of system (1) is globally
asymptotically stable;

2) (reachable set) x(0) = 0 and ‖w‖2m ≤ ρ imply x(t) ∈
{x : V (x,dz(u(x))) ≤ ρ2m

¯

where u(x) is the unique
solution to (3);

3) (global L2m gain) x(0) = 0 implies ‖z‖2m ≤ γ‖w‖2m i.e.
the global finite L2m-gain of (1) from w to z is bounded
by γ.

The proofs are omitted due to space constraints.
The family of candidate Lyapunov functions that we intro-

duce to perform the computation of the L2m gain has the
form

V (x, θ) =

 

»

x
θ

–{m}
!T

P

 

»

x
θ

–{m}
!

, (12)

that is, a form of degree 2m in the variables x and θ. This
class of piecewise polynomial functions is a generalization of
the piecewise quadratic Lyapunov functions proposed in [3].

With this polynomial version, V̇ (x, θ) becomes a form of
degree 2m in the variables x, θ, q, w, φ, whose monomials are

the elements of vector ( x
θ ){2m−1} ⊗

„ x
q
w
φ

«

. The polynomial

constraint (11c) can then be described as a form of degree
2m if the multipliers Πi(ξ) are chosen to match the degree of
V̇ (x, θ). In particular, if the elements of the multipliers Πi(ξ)
i = 1, . . . , 5 are homogeneous polynomials of degree 2(m− 1)
in the variables x, θ, q, w, φ, then the polynomials Φi(·),
i = 1, . . . , 5 become forms of degree 2m. A possible choice for
the multipliers Πi(ξ) i = 1, . . . , 5 is then given by:

Πi(ξ) = diag(πi,1(ξ), . . . , πi,d(ξ)),

ξ =
ˆ

xT θT qT wT φT
˜T (13)

where
πi,j(ξ) = qi,jξ

{2m−2}, j = 1, . . . , d (14)

with qi,j real vectors of compatible dimensions describing the
coefficients of the polynomial πi,j(ξ).

Finally, with the selection (12)-(14) and with k1 = k2 = 2m
the constraints (11b) and (11c) become forms of degree 2m.

The following proposition arises from a sum-of-squares
relaxation of the constraints in Theorem 3.1:

Proposition 3.1: Consider V (x, θ) given by (12) and Πi(ξ),
i = 1, . . . 5, as in (13)-(14), and the relaxation of constraints
(11) given by:

Πi(ξ) ∈ Σd×d
diag, i = 1, 2, 5, (15a)

V (x, θ) − ǫ|x|2m ∈ Σ , (15b)

−V̇ (x, θ) −
P5

i=1 Φi(Πi(ξ)) − Ψ − ǫ|x|2m ∈ Σ , (15c)

which are SOS constraints in the unknown variables P , vec-
tors qi,j , i = 1, . . . , 5, j = 1, . . . , d, and ǫ > 0. If (15) holds
with

1) w = 0, q = θ and Ψ ≡ 0, then the origin of system (1)
is globally asymptotically stable.

2) Ψ ≡ −(wTw)m, then if x(0) = 0, ‖w‖2m ≤ ρ we have
x ∈ {x; V (x,dz(u(x))) ≤ ρ2m

¯

.

3) Ψ = γ−2m(zT z)m − (wTw)m, then if x(0) = 0 then
‖z‖2m ≤ γ‖w‖2m i.e. the global L2m-gain of (1) is
bounded by γ.

Note that, (15a) is a homogeneous SOS constraint of degree
2m − 2, while (15b)-(15c) are homogeneous SOS constraints
of degree 2m, both in the variable ξ (see (14)).

C. Regional Stability and L2m gain analysis

In this section, paralleling the results in [3], the global
results of Section III-B are generalized to regional results,
with the goal of estimating the region of attraction (we refer
to this as “regional stability”) and the nonlinear L2m gain
in terms of the L2m norm of the input. When focusing on
regional properties, Fact 3.2 provides the following polynomial
constraints

ΦR1(Π1(ξ)) = qT Π1(ξ){Cyx+ (Dyq − Id)q +Dyww
−h1(x)} ≥ 0

ΦR2(Π2(ξ)) = θT Π2(ξ){Cyx+ (Dyq − Id)θ − h2(x)} ≥ 0,
(16)

where Π1(ξ),Π2(ξ) ∈ P
d×d
diag satisfy Π1(ξ) ≥ 0, Π2(ξ) ≥ 0.

The above inequalities then hold ∀ξ, ∀q, θ ∈ R
d, ∀w ∈ R

r

and ∀x ∈ R
n in the set where sat(hj(x)) = hj(x), j = 1, 2

respectively, namely the sets

L(hj(x)) =
˘

x ∈ R
n : |Ū−1hj(x)|∞ ≤ 1

¯

, j = 1, 2 (17)

where Ū = diag(ū1, . . . , ūd).
Moreover, denoting by ηi(x) the i-th element of a polyno-

mial vector function η(x) establishes sufficient conditions for
a sublevel set

E(W (x), ρ2m) =
˘

x : W (x) ≤ ρ2m
¯

of a function W (x) to be contained in L(η(x)):
Lemma 1: Given s ∈ R, s > 0, m ∈ N, a polynomial

function η(x) : R
n 7→ R

d, and a positive definite function
W (x), if there exist a polynomial p(x) ≥ 0 such that

ρ2m − ρ2mp(x) − 2νηi(x) +

„

ūi

ρm

«2

ν2 + p(x)W (x) ≥ 0

i = 1, . . . , d (18)

then E(W (x), ρ2m) ⊆ L(η(x)).
Lemma 1 allows us to consider constraints (16) in the estimate
of the regional L2m-gain of system (1) as established in the
following theorem:

Theorem 3.2: Consider system (1) satisfying Assump-
tion 3.1 and the set of polynomial inequalities

Πi(ξ) ≥ 0, i = 1, 2, 5 (19a)

V (x, θ) − ǫ|x|k1 ≥ 0 (19b)

−V̇ (x, θ, q, φ, w) −
P5

i=1 ΦRi(Πi(ξ)) − Ψ − ǫ|x|k2 ≥ 0
(19c)

ρ2m − ρ2mpj(x) − 2νhji(x) +
ū2

i

ρ2m
ν2 + pj(x)V (x, θ) ≥ 0

i = 1, . . . , d j = 1, 2,
(19d)

where hji(x), i = 1, . . . , d, denotes the i-th entry of the
function hj(x), j = 1, 2 introduced in (16), ΦR1(·) and ΦR2(·)
are given in (16) and ΦRi(·) = Φi(·) for i = 3, 4, 5, are given in
(8), (10). If there exist a polynomial function V (x, θ) ∈ P with
m ∈ N, polynomial matrices Πi(ξ) ∈ P

d×d
diag, i = 1, . . . , 5, two

vector of polynomials hj(x) j = 1, 2, two polynomial functions
pj(x) ≥ 0, j = 1, 2 , two reals k1, k2 ≥ 1 and a scalar ǫ > 0
such that (19) is satisfied with

1) w = 0, θ = q (yielding ΦR1(·) = ΦR2(·), h1(·) = h2(·),
Φ5(Π5(ξ)) ≡ 0) and Ψ ≡ 0;
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2) Ψ ≡ −(wTw)m;
3) Ψ ≡ γ−2m(zT z)m − (wTw)m with γ ∈ R, γ > 0,

then the following, respectively, holds:

1) (regional asymptotic stability) the origin of system
(1) is locally asymptotically stable. Moreover, denot-
ing by u(x) the unique solution to (3) if x(0) ∈
E(V (x,dz(u(x))), ρ2m) and w = 0, then x(t) ∈
E(V (x,dz(u(x))), ρ2m) and limt→∞ x(t) = 0;

2) (reachable set) x(0) = 0 and ‖w‖2m ≤ ρ imply x(t) ∈
{x : V (x,dz(u(x))) ≤ ρ2m

¯

for all t ≥ 0;
3) (regional L2m gain) x(0) = 0 and ‖w‖2m ≤ ρ imply

‖z‖2m ≤ γ‖w‖2m i.e. the regional finite L2m-gain of
system (1) from w to z is bounded by γ.

In order to consider sum-of-squares relaxation for the positiv-
ity of polynomials in (19) we fix the degrees of the multipliers
as in (13)-(14) and make the particular choice for hj(x) and
pj(x), j = 1, 2 given by hj(x) = Hjx and pj(x) = p0j ,
p0j ∈ R

+. We obtain the following proposition:
Proposition 3.2: Consider V (x, θ) given by (12) and Πi(ξ),

i = 1, . . . 5, as in (13)-(14), and constraints

Πi(ξ) ∈ Σd×d
diag, i = 1, 2, 5

V (x, θ) − ǫ|x|2m ∈ Σ

−V̇ (x, θ, q, φ,w) −
P5

i=1 ΦRi(Πi(ξ)) − Ψ − ǫ|x|2m ∈ Σ

ρ2m − ρ2mp0j − 2νHjix+
ū2

i

ρ2m
ν2 + p0jV (x, θ) ∈ Σ

i = 1, . . . , d j = 1, 2.
(20)

where Hji, i = 1, . . . , p denotes the i-th row of matrix Hj ,
j = 1, 2. If there exist matrix P , vectors qi,j , i = 1, . . . , 5,
j = 1, . . . , d, and a scalar ǫ > 0 such that (20) holds

1) with w = 0, q = θ and Ψ ≡ 0, then the ori-
gin of system (1) is locally asymptotically stable. If
x(0) ∈ E(W (x), ρ2m) then x(t) ∈ E(W (x), ρ2m) and
limt→∞ x(t) = 0.

2) with Ψ ≡ −(wTw)m, then if x(0) = 0, ‖w‖2m ≤ ρ we
have x ∈ {x; V (x,dz(u(x))) ≤ ρ2m

¯

.
3) with Ψ = γ−2m(zT z)m − (wTw)m, then if x(0) = 0 and

‖w‖2m ≤ ρ then ‖z‖2m ≤ γ‖w‖2m i.e. the regional L2m-
gain of (1) is bounded by γ.

The first three constraints of (20) are forms of degree 2m in
variables x, θ, q, φ and w. The last constraint is a polynomial
of degree 2m (containing also quadratic and constant terms)
in variables x, θ and ν.

IV. Extension to systems with parametric

uncertainty

In this section the results of Section III are extended to
a class of uncertain systems. A system with deadzones and
parametric uncertainties can be described by the following
compact form:

ẋ = Ax+Bqq +Bww +Bvv (21a)

y = Cyx+Dyqq +Dyww +Dyvv (21b)

z = Czx+Dzqq +Dzww +Dzvv (21c)

p = Cpx+Dpqq +Dpww +Dpvv (21d)

q = dz(y) (21e)

v = ∆(δ)p (21f)

where the uncertainty matrix ∆(δ) corresponds to

∆(δ) = diag(δ1Is1
, . . . , δnδ

Isnδ
), (22)

and where δi ∈ R
si denotes the i-th component of the

uncertainty vector δ which is assumed to be unknown but
constant. Moreover, nδ is the number of uncertain parameters,
x ∈ R

n, y ∈ R
d, p ∈ R

l, with l =
Pnδ

i=1 si and all the matrices
are real matrices of appropriate dimensions. Let us define the

- -

�

-

�

-

H

dz(·)

yq

w z

pv

∆

Fig. 2. Representation of a system with deadzones and uncertain-
ties.

uncertainty operator domain as ∆ = {∆(δ) : δ ∈ Q} where Q
defines a polyhedral set in R

nδ :

Q =
˘

δ : δek ≤ ckδ ≤ δek, for k = 1, . . . , ne

¯

.

To generalize Assumption 3.1 to the uncertain case ad-
dressed here, it is necessary to assume that the nonlinear
algebraic loop introduced by the uncertainty is well defined
(namely, it admits a unique explicit solution) for all values of
δ ∈ Q. This is formalized in the next assumption.

Assumption 4.1: For each value of δ ∈ Q, the following
holds:

• the matrix I −Dpv∆(δ) is nonsigular;
• the nonlinear algebraic loop defined by the implicit equa-

tion

y −
`

Dyq +Dyv∆(δ)(I −Dpv∆(δ))−1Dpq

´

dz(y) = ζ,

is well posed. Namely, for any ζ ∈ R
d, there exists a

unique value y satisfying the corresponding nonlinear
equation.

A. Conditions for deadzones and uncertainties

In Section III-A, conditions have been derived to describe
the nonlinearities in the feedback loop and their dynamics.
Here the aim is to devise polynomial constraints which enable
us to describe the uncertainty loop. Because of the presence
of uncertainty, the conditions describing the deadzones and
corresponding to equations (16), (8), and (10) generalize
respectively to the following constraints which hold for all ξ
and all x, q, v, φ = dq/dt, solutions to (21),

Ω1(Π1(ξ)) = qT Π1(ξ){Cyx+ (Dyq − Id)q +Dyww
+Dyvv − h1(x)} ≥ 0;

Ω2(Π2(ξ)) = θT Π2(ξ){Cyx+ (Dyq − Id)θ
+Dyvv − h2(x)} ≥ 0;

Ω3(Π3(ξ)) = φT Π3(ξ){Cy(Ax+Bqq +Bww +Bvv)
+(Dyq − Id)φ} ≡ 0;

Ω4(Π4(ξ)) = θT Π4(ξ){Cy(Ax+Bqq +Bww +Bvv)
+(Dyq − Id)φ} ≡ 0;

Ω5(Π5(ξ)) = {θ − q}T Π5(ξ){(Dyq − Id)θ
+(Id −Dyq)q −Dyww} ≥ 0

(23)
where Πi(ξ) ∈ P

d×d
diag i = 1, . . . , 5 and Πi(ξ) ≥ 0, i = 1, 2, 5.

Additional conditions pertaining the uncertain parameter δ
can also be exploited. Consider the algebraic loop imposed
by (21d) and (21f). Premultiplying (21d) by ∆(δ) and using
(21f), we get

0 = ∆(δ)(Cpx+Dpqq +Dpww) + (∆(δ)Dpv − Il)v, (24)

which is a collection of polynomial equality constraints yield-
ing the following constraint

Ω6(Π6(ξ)) = Π6(ξ){∆(δ)(Cpx+Dpqq +Dpww)
+(∆(δ)Dpv − Il)v} ≡ 0

(25)

311



which, given any Π6(ξ) ∈ P
1×l, is satisfied for all ξ, for all

δ ∈ Q and for all x, q, v, w solution of (21). For the allowable
domain Q for δ, we have that

Ω7(Π7(ξ)) = − (Ceδ − δe)
T Π7(ξ)

`

Ceδ − δe

´

≥ 0, (26)

with, Ce =
ˆ

cT1 . . . c
T
ne

˜T
, δe =

ˆ

δe1 . . . δene

˜T
, δe =

ˆ

δe1 . . . δene

˜T
and Π7(ξ) ∈ P

ne×ne
diag satisfying Π7(ξ) ≥ 0 for

all ξ.

B. Robust Stability and L2m Gain Analysis

Robust stability with respect to uncertainties can be as-
sessed by using a candidate Lyapunov function independent
of the uncertain parameter δ. This kind of analysis however
results to be conservative whenever the uncertainty is either
constant or slowly time-varying. In the case under consider-
ation, the uncertainty is constant, therefore it is useful to
choose a candidate Lyapunov function V (x, θ, δ) depending
on the uncertain parameter δ and on θ = dz(u(x, δ)), where
u(x, δ) generalizes the solution of (3) to the uncertain case,
and corresponds to the unique solution to the implicit equa-
tion

u(x, δ) −M1(δ)dz(u(x, δ)) = M2(δ)x, (27)

with M1(δ) =
`

Dyq +Dyv∆(δ)(I −Dpv∆(δ))−1Dpq

´

and
M2(δ) = (Dyv∆(δ)(I−Dpv∆(δ))−1Cp +Cy), which is always
well defined under Assumption 4.1. With this Lyapunov
function, we can formulate the next theorem stating sufficient
conditions for robust stability of (21).

Theorem 4.1: Consider system (21) satisfying Assump-
tion 4.1. If there exist a polynomial function V (x, θ, δ) ∈ P,
polynomial matrices Πi(ξ) ∈ P

d×d
diag, i = 1, . . . , 5, a vector

Π6(ξ) ∈ P
1×l, a matrix Π7(ξ) ∈ P

nδ×nδ
diag , polynomials hj(x),

pj(x), j = 1, 2, two reals k1, k2 ≥ 1 and a scalar ǫ > 0 such
that

Πi(ξ) ≥ 0, i = 1, 2, 5, 7 (28a)

V (x, θ, δ) − ǫ|x|k1 ≥ 0 (28b)

−V̇ (x, θ, q, φ, w, δ, v) −
P7

i=1 Ωi(Πi(ξ)) − Ψ − ǫ|x|k2 ≥ 0
(28c)

ρ2m − ρ2mpj(x) − 2νhji(x) +
ū2

i

ρ2m
ν2 + pj(x)V (x, θ, δ) ≥ 0

i = 1, . . . , d j = 1, 2,
(28d)

is satisfied with

1) w = 0, θ = q (yielding Ω1(·) = Ω2(·), h1(·) = h2(·) and
Ω5(Π5(ξ)) ≡ 0) and Ψ ≡ 0;

2) Ψ ≡ −(wTw)m;
3) Ψ ≡ γ−2m(zT z)m − (wTw)m with γ ∈ R, γ > 0.

then the following, respectively, holds:

1) (robust regional asymptotic stability) the origin
of system (21) is locally asymptotically stable. If
x(0) ∈ E(V (x,dz(u(x, δ)), δ), ρ2m) then x(t) ∈
E(V (x,dz(u(x, δ)), δ), ρ2m) and limt→∞ x(t) = 0;

2) (robust reachable set) x(0) = 0 and ‖w‖2m ≤ ρ imply
x(t) ∈ {x : V (x,dz(u(x, δ), δ) ≤ ρ2m

¯

where u(x, δ) is
the unique solution to (27);

3) (robust regional L2m gain) x(0) = 0 and ‖w‖2m ≤ ρ
imply ‖z‖2m ≤ γ‖w‖2m i.e. the regional finite L2m gain
of system (21) from w to z is bounded by γ.

In order to check for global properties of system (21) we
may consider h1(·) = h2(·) = 0 and enforce constraints (28a)-
(28c).

A possible choice for the parameter-dependent Lyapunov
function V (x, θ, δ) is the extension of (12) to the uncertain
case as

V (x, θ, δ) =
 

»

1
δ

–{s}

⊗

»

x
θ

–{m}
!T

P

 

»

1
δ

–{s}

⊗

»

x
θ

–{m}
!

, (29)

representing a function which is homogeneous of degree
2m in the variables x and q and polynomial of degree 2s
with respect to the uncertain parameter δ. The choice in
(29) suggests a suitable structure for the multipliers Πi(ξ),
i = 1, . . . , 7 by noticing that the monomials generating Ωi,
i = 1, . . . , 7, should come from the same base as the one
describing the gradient of V (x, θ, δ) times the vector field
given by (1), θ̇ = φ and δ̇ = 0 which we briefly denote
by V̇ (x, θ, q, φ, w, δ, v). For this reason, ξ can be chosen as
ξT =

ˆ

xT θT qT φT wT δT vT
˜

and Πi(ξ), for
i = 1, . . . , 5, can be chosen to be

Πi(ξ) = diag(πi,1(ξ), . . . , πi,d(ξ)), (30)

with

πi,j(ξ) = ς(ξ)TQi,jς(ξ), ς(ξ) =

»

1
δ

–{s}

⊗ ϑ{m−1} (31)

with ϑ =
ˆ

x′ θ′ q′ φ′ w′ v′
˜′

and where Qi,j is a
real symmetric matrix of compatible dimensions describing
the coefficients of the monomials of πi,j(ξ). The vector of
polynomials Π6(ξ) can be chosen as

Π6(ξ) = [π6,1(ξ), . . . , π6,l(ξ)] , (32)

with

π6,j(ξ) = Kj

 

»

1
δ

–{2s−1}

⊗ ϑ{m−1}

!

, (33)

where Kj , j = 1, . . . , l is a real vector of compatible dimen-
sions describing the coefficients of the monomials of π6,j(ξ).
Finally, Π7(ξ) can be chosen as

Π7(ξ) = diag(π7,1(ξ), . . . , π7,nδ
(ξ)), (34)

with

π7,j(ξ) = ς(ξ)TQ7,jς(ξ), ς(ξ) =

»

1
δ

–{s−1}

⊗ ϑ{m} (35)

where Q7,j is a real symmetric matrix of compatible dimen-
sions describing the coefficients of the monomials of π7,j(ξ).

Now, by proceeding like in Section III-B, the positivity
constraints (28) in Theorem 4.1 are relaxed to sum-of-squares
constraints.

Proposition 4.1: Consider V (x, θ, δ) given by (29) Πi(ξ),
i = 1, . . . , 7 as in (30)-(35)

Πi(ξ) ∈ Σd×d
diag, i = 1, 2, 5; Π7(ξ) ∈ Σnδ×nδ

diag (36a)

V (x, θ, δ) − ǫ|x|k1 ≥ 0 (36b)

−V̇ (x, θ, q, φ, w, δ, v) −
P7

i=1 Ωi(Πi(ξ)) − Ψ − ǫ|x|k2 ∈ Σ
(36c)

ρ2m − ρ2mp0j − 2νHjix+
ū2

i

ρ2m
ν2 + p0jV (x, θ) ∈ Σ.

(36d)
i = 1, . . . , d j = 1, 2, where Hji, i = 1, . . . , p denotes the i-th
row of matrix Hj , j = 1, 2. If there exist matrix P , matrices
Qi,j , i = 1, . . . , 5, j = 1, . . . , d; Kj , j = 1, . . . , l; Q7,j , j =
1, . . . , nδ, and a scalar ǫ > 0 such that (36) holds

1) with w = 0, θ = q (yielding Ω1(·) = Ω2(·), h1(·) =
h2(·) and Ω5(Π5(ξ)) ≡ 0) and Ψ ≡ 0, then the
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origin of system (21) is locally asymptotically sta-
ble. If x(0) ∈ E(V (x,dz(u(x, δ)), δ), ρ2m) then x(t) ∈
E(V (x,dz(u(x, δ)), δ), ρ2m) and limt→∞ x(t) = 0;

2) with Ψ ≡ −(wTw)m then x(0) = 0 and ‖w‖2m ≤
ρ imply x(t) ∈ {x : V (x,dz(u(x, δ), δ) ≤ ρ2m

¯

where
u(x, δ) is the unique solution to (27);

3) with Ψ ≡ γ−2m(zT z)m − (wTw)m with γ ∈ R, γ > 0,
then x(0) = 0 and ‖w‖2m ≤ ρ imply ‖z‖2m ≤ γ‖w‖2m

i.e. the regional finite L2m gain of system (21) from w
to z is bounded by γ.

V. Numerical examples

Example 5.1: Consider system (1) with the following ma-
trices:

2

4

A Bq Bw

Cy Dyq Dyw

Cz Dzq Dzw

3

5 =

2

6

6

6

6

6

4

0 0 −1 1 0 0
1 0 −2 0 1 1
0 1 −3.96 1 −1 1
1 0 1 −3 −1 1
0 1 0 −2 −4 0
0 1 0 1 0 −0.1

3

7

7

7

7

7

5

The system is well-posed and open-loop stable. For this sys-
tem it is not possible to find a piecewise quadratic Lyapunov
function, that is, a function of the form (12) with m = 1,
satisfying inequalities (15) with Ψ = γ−2m(zT z)m − (wTw)m

yielding an estimate of the L2 gain. However, with m = 2 we
find the bound for the L4 gain given by γ4 = 105. ⋆
From Theorem 3.2 we have that for each bound ρ on the input
‖w‖2m it corresponds a bound for the nonlinear L2m gain. In
order to obtain the curve of the nonlinear L2m gain estimates,
we adopt the following procedure:

Procedure 1 Choose a sequence ρ1 < ρ2 < . . . < ρN with
N a positive integer.

1) Initial step. Minimize γ subject to (15) with Ψ =
γ−2m(zT z)m − (wTw)m. The resulting γ is an estimate
of the global L2m gain of system (1). Set i = N , ρ = ρN

and go to step 2.
2) Optimization with fixed multipliers and Lyapunov func-

tion. Using the multipliers Πk k = 1, 2 and the Lya-
punov function V (x, θ) obtained in the previous step,
minimize γ subject to inequalities (20). For fixed Πi

i = 1, 2 and V (x, θ), the constraints become LMIs.
3) Optimization with fixed Hj and p0j, j = 1, 2. Using

Hj and p0j , j = 1, 2 obtained in the previous step 2,
minimize γ subject to inequalities (20). For fixedHj and
p0j , j = 1, 2 , the constraints are LMIs. If the difference
between the minimum γ obtained in this step and that
from the previous iteration is greater than the desired
accuracy, return to step 2. Otherwise go to step 4.

4) If i = 1 finish, otherwise store the pair
˘

ρi, γ(i)

¯

, set
ρ = ρi−1 and i = i − 1 select Πk k = 1, 2 and the
Lyapunov function V (x, θ) obtained in 3) and go to 2).

The above procedure can be used whenever the system is
open-loop stable. That is, we know that for any given ρ the
output is bounded.

Example 5.2: This example is adapted from Example 2 in
[3]. Consider system (1) with the following matrices:

2

4

A Bq Bw

Cy Dyq Dyw

Cz Dzq Dzw

3

5 =

2

6

6

6

6

6

6

6

4

0 0 −1 1 0 0 1
1 0 −2 0 1 1 0
0 1 −3 1 −1 1 1
1 0 1 −3 −1 1 −1
0 1 0 −2 −4 0 1
0 1 0 1 0 −1 0
0 0 1 0 1 0 −1

3

7

7

7

7

7

7

7

5

we apply the Procedure 1 to compute the bounds for the L4

gain for inputs having different L4 norms. The bounds for
the gain are plotted in Figure 3. The gain tends to a constant
value for large and small values of the input norm. This values

correspond respectively to the open-loop gain and the closed-
loop gain whenever the disturbance is small enough such that
the solution for u(x) remains inside the saturation bounds. ⋆

10
−2

10
−1

10
0

10
1

10
2

10
1

γ

‖w‖4

Fig. 3. Estimates of the L4 gain.
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