
Lyapunov-based second-order sliding mode control for a class of

uncertain reaction-diffusion processes

Yury Orlov

CICESE Research Center, Ensenada (Mexico)

Email: yorlov@cicese.mx

Alessandro Pisano, Stefano Scodina, Elio Usai

Dept. of Electrical and Electronic Engineering (DIEE)

University of Cagliari (Italy)

Email:{pisano,stefano.scodina,eusai}@diee.unica.it

Abstract— This paper addresses the design of a distributed,
second-order sliding-mode based, tracking controller for a
class of uncertain diffusion-reaction processes. Spatially varying
uncertain parameters and mixed boundary conditions, along
with the presence of an uncertain distributed disturbance,
characterize the considered class of processes. The paper
presents a constructive Lyapunov-based stability analysis which
leads to simple tuning conditions for the controller parameters,
The good performance of the proposed control systems are
verified by means of computer simulations.
Keywords: Distributed parameter systems, Reaction-Diffusion
equation, Second-order sliding mode control, Lyapunov analysis.

I. INTRODUCTION

Sliding-mode control has long been recognized as a pow-

erful control method to counteract non-vanishing external

disturbances and unmodelled dynamics when controlling

dynamical systems of finite and infinite dimension (see [20]).

Presently, the discontinuous control synthesis in the

infinite-dimensional setting is well documented (see [10],

[13], [15], [16], [14]) and it is generally shown to retain

the main robustness features as those possessed by its finite-

dimensional counterpart. Other robust control paradigms

have been fruitfully applied in the infinite dimensional setting

such as adaptive and model-reference control (see [9], [4]),

geometric and Lyapunov-based design (see [2]), H∞ and

LMI-based design (see [6]).

In the present paper we consider a generalized uncertain

form of the heat equation, under the effect of a persistent

external smooth disturbance. Even in the finite-dimensional

setting, and with a perfectly known linear and time-invariant

controlled plant, the asymptotic rejection of persistent distur-

bances is difficult to achieve when the unique information

is the existence of a priori known upper bounds to the

magnitude of the disturbance and of its time derivative.

Despite structured perturbations (e.g., constant signals or

sinusoids with known frequency) can be easily rejected by

linear control techniques, the problem remains open when

arbitrarily shaped disturbances need to be taken into account.

The only known solution appears to be the discontinuous

sliding-mode control feedback (see [20]), which is effectively

implemented in the infinite dimensional setup via the so-

called (distributed) “unit-vector” control (see [13], [15]).

In some recent authors’ publications (see [18], [19], [17]))

two finite dimensional robust control algorithms, namely,

the “Super-Twisting” and “Twisting” second-order sliding-

mode (2-SM) controllers (see [5], [11] for details) have been

generalized to the infinite-dimensional setting and applied

for controlling heat and wave processes, respectively. The

mentioned 2-SM controllers are of special interest because

in the finite dimensional setting they significantly improve

the performance of sliding-mode control systems, in terms

of accuracy and chattering avoidance, as compared to the

standard “first-order” sliding mode control techniques (see

[1]).

In this paper we enlarge the class of controlled distributed-

parameter dynamics as compared to the publications [18],

[19], [17] by considering more general diffusion-reaction dy-

namics. More precisely, we consider the presence of an addi-

tional dispersion term in the plant equation and, furthermore,

we let all the system parameters (diffusivity and dispersion

coefficients) to be uncertain and possibly spatially-varying.

We additionally put the constraint that the distributed control

input must be a continuous (although possibly non-smooth)

function of the space and time variables.

The rest of the paper is structured as follows. Some

notations are introduced in the remainder of the Introduction.

Section 2 presents the tracking control problem formulation

for the considered reaction-diffusion process, and section 3

describes the associated solution, based on a proper combina-

tion between (distributed forms of) PI and “Super-Twisting”

2-SM control. Section 4 illustrates some relevant numerical

simulation results. Finally, Section 5 gives some concluding

remarks and draws possible direction of improvement of the

proposed result.

Notation. The notation used throughout is fairly standard

(see [3] for details). L2(a, b), with a ≤ b, stands for the

Hilbert space of square integrable functions z(ζ), ζ ∈ [a, b],
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equipped with the L2 norm

‖z(·)‖2 =
2

√

∫ b

a

z2(ζ)dζ (1)

W l,2(a, b) denotes the Sobolev space of absolutely contin-

uous scalar functions z(ζ), ζ ∈ [a, b] with square integrable

derivatives z(i)(ζ) up to the order l ≥ 1

II. PROBLEM FORMULATION

Consider the space- and time-varying scalar field Q(ξ, t)
evolving in a Hilbert space L2(0, 1), where ξ ∈ [0, 1] is the

mono-dimensional spatial variable and t ≥ 0 is time. Let

it be governed by the following perturbed reaction-diffusion

equation with spatially-varying parameters

Qt(ξ, t) = [θ1(ξ)Qξ(ξ, t)]ξ +θ2(ξ)Q(ξ, t)+u(ξ, t)+ψ(ξ, t),
(2)

where the subindexes t and ξ denote the temporal and

spatial partial derivative, respectively, θ1(·) ∈ C1(0, 1) is a

positive-definite spatially-varying parameter called thermal

conductivity (or, more generally, diffusivity), θ2(·) ∈ C(0, 1)
is another spatially-varying parameter called dispersion (or

reaction constant), u(ξ, t) is the modifiable source term (the

distributed control input), and ψ(ξ, t) represents a distributed

uncertain disturbance source term. This uncertain term is

supposed to satisfy the following conditions

ψ(ξ, t) ∈ L2(0, 1), ψt(ξ, t) ∈W 1,2(0, 1). (3)

The spatially-varying diffusivity and dispersion coefficients

θ1(ξ) and θ2(ξ) are supposed to be uncertain, too. We con-

sider non-homogeneous mixed boundary conditions (BCs)

Q(0, t) − α0Qξ(0, t) = Q0(t) ∈W 1,2(0,∞), (4)

Q(1, t) + α1Qξ(1, t) = Q1(t) ∈W 1,2(0,∞), (5)

with some positive uncertain constants α0, α1. The initial

conditions (ICs)

Q(ξ, 0) = ω0(ξ) ∈W 2,2(0, 1) (6)

are assumed to meet the same BCs (4)-(5). Since non-

homogeneous BCs are in force, a solution of the above

boundary-value problem is defined in the mild sense (see

[3]) as that of the corresponding integral equation, written

in terms of the strongly continuous semigroup, generated by

the infinitesimal plant operator.

The control task is to make the scalar field Q(ξ, t) to

track a given reference Qr(ξ, t) ∈ W 2,2(0, 1) which should

be selected in accordance with the BCs (4)-(5) and which

should also satisfy the following condition

Qr
t ∈W 3,2(0, 1). (7)

III. ROBUST CONTROL OF AN UNCERTAIN

REACTION-DIFFUSION PROCESS

Consider the deviation variable

x(ξ, t) = Q(ξ, t) −Qr(ξ, t) (8)

whose L2 norm will be driven to zero by the designed

feedback control. The dynamics of the error variable (8) are

easily derived as

xt(ξ, t) =[θ1(ξ)xξ(ξ, t)]ξ + θ2(ξ)x(ξ, t)

+ u(ξ, t) −Qr
t (ξ, t) + η(ξ, t),

(9)

with the “augmented” disturbance

η(ξ, t) = [θ1(ξ)Q
r
ξ(ξ, t)]ξ + θ2(ξ)Q

r(ξ, t) + ψ(ξ, t), (10)

and the next ICs and homogeneous mixed BCs

x(ξ, 0) = ω0(ξ) −Qr(ξ, 0) ∈W 2,2(0, 1) (11)

x(0, t) − α0xξ(0, t) = x(1, t) + α1xξ(1, t) = 0. (12)

Assume what follows:

Assumption 1: There exist a priori known constants Θ1m,

Θ1M and Θ2M such that

0 < Θ1m ≤ θ1(ξ) ≤ Θ1M ,

|θ2(ξ)| ≤ Θ2M ∀ ξ ∈ [0, 1].
(13)

Assumption 2: There exist a priori known constants H0,

..., H3, Ψ0 and Ψ1 such that the following inequalities hold

for all t ≥ 0

‖θ2(·)Qr
t (·, t)‖2 ≤ H0, ‖[θ2(ξ)Qr

t (·, t)]ξ‖2 ≤ H1, (14)

‖[θ1(ξ)Qr
ξ(·, t)]ξ t‖2 ≤ H2, ‖[θ1(ξ)Qr

ξ(·, t)]ξξ t‖2 ≤ H3,
(15)

‖ψt(·, t)‖2 ≤ Ψ0, ‖ψtξ(·, t)‖2 ≤ Ψ1 (16)

By the Assumption 2, it follows that the L2 norm of the

augmented disturbance time derivative ηt(ξ, t), and that of

its spatial derivative, fulfill the next conditions

‖ηt(·, t)‖2 ≤M, ‖ηtξ(·, t)‖2 ≤Mξ, ∀t ≥ 0, (17)

with

M = H2 +H0 + Ψ0, Mξ = H3 +H1 + Ψ1. (18)

The class of admissible “augmented” disturbances is further

specified by the following additional restriction, being intro-

duced in [19]:

Assumption 3: There exist a priori known constant Mx

such that the following inequality holds uniformly beyond

the origin ‖x(·, t)‖2 = 0 in the state space L2(0, 1):

|ηt(ξ, t)| ≤Mx
|x(ξ, t)|
‖x(·, t)‖2

, ∀t ≥ 0,∀ξ ∈ [0, 1] (19)

It is worth noticing that according to the Assumption 3

an admissible disturbance has a time derivative which is not

necessarily vanishing as ‖x(·, t)‖2 → 0 because the norm of

the right-hand side of the disturbance restriction (19) remains

unit according to relation

∥

∥

∥

|x(·,t)|
‖x(·,t)‖2

∥

∥

∥

2
= 1. Particularly, with

Mx ≥M a finite-dimensional counterpart of (19) would not

impose any further restrictions on admissible disturbances in

addition to the first relation of (17).

It should also be noted that the assumptions on the ICs and

BCs, made above, allow us to deal with strong, sufficiently

smooth solutions of the uncertain error dynamics (9)-(12) in

the open-loop when no control input is applied.
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In order to stabilize the error dynamics it is proposed a

dynamical distributed controller defined as follows

u(ξ, t) =Qr
t (ξ, t) − λ1

√

|x(ξ, t)| sign(x(ξ, t))

− λ2x(ξ, t) + v(ξ, t)
(20)

vt(ξ, t) = −W1
x(ξ, t)

‖x(·, t)‖2
−W2x(ξ, t), v(ξ, 0) = 0 (21)

which can be seen as a distributed version of the finite-

dimensional “Super-Twisting” second-order sliding-mode

controller (see [5], [11]) complemented by a feed-forward

term Qr
t (ξ, t) and by the two additional proportional and

integral linear terms −λ2x(ξ, t) and −W2x(ξ, t). For ease

of reference, the combined Distributed Super-Twisting/PI

controller (20)-(21) will be abbreviated as DSTPI.

The non-smooth nature of the DSTPI controller (20)-(21),

that undergoes discontinuities on the manifold x = 0 due to

the discontinous term
x(ξ,t)

‖x(·,t)‖2

, requires appropriate analysis

about the meaning of the corresponding solutions for the

resulting discontinuous feedback system. Throughout, the

precise meaning of the solutions of (9), (11), (12) with

the piece-wise continuously differentiable control input (20)-

(21) is defined in a generalized sense according to [14] as

a limiting result obtained through a certain regularization

procedure, similar to that proposed for finite-dimensional

systems (see [7], [20]). The existence of generalized solu-

tions, thus defined, has been established within the abstract

framework of Hilbert space-valued dynamic systems (cf.,

e.g., [14, Theorem 2.4]) whereas the uniqueness and well-

posedness appear to follow from the fact that in the system in

question no sliding mode can occur but in the origin x = 0.

The performance of the closed-loop system is analyzed in

the next theorem.

Theorem 1: Consider the perturbed diffusion/dispersion

equation (2) along with the boundary conditions (4) and with

the system parameters, reference trajectory and uncertain

disturbance satisfying the Assumptions 1-3. Then, the DSTPI

control strategy (20)-(21) with the parameters λ1, λ2, W1 and

W2 selected according to

λ2 ≥ Θ2M ,

W1 ≥ max

{

M +
Θ1MMξ

2(λ2 − Θ2M )
,

1

2

Θ1M

Θ1m
Mξ, 2Mx

}

,

λ1 ≥ max

{

2M,
2Mx

W1

}

, W2 ≥ 0,

(22)

guarantees that the L2-norm ‖x(·, t)‖2 of the tracking error

tends to zero as t tends to infinity.

Proof of Theorem 1. Let us define the auxiliary variable

δ(ξ, t) = v(ξ, t) + η(ξ, t) (23)

System (9) with the control law (20)-(21) yields the

following closed-loop dynamics in the new x−δ coordinates

xt(ξ, t) = [θ1(ξ)xξ(ξ, t)]ξ − λ1

√

|x(ξ, t)| sign(x(ξ, t))

− (λ2 − θ2(ξ))x(ξ, t) + δ(ξ, t)
(24)

δt(ξ, t) = −W1
x(ξ, t)

‖x(·, t)‖2
−W2x(ξ, t) + ηt(ξ, t) (25)

In order to simplify the notation, the dependence of the

system coordinates from the space and time variables (ξ, t) is

omitted from this point on. Consider the following Lyapunov

functional

V1(t) = 2W1‖x‖2 +W2‖x‖2
2 +

1

2
‖δ‖2

2 +
1

2
‖s‖2

2 (26)

inspired from the finite-dimensional treatment in [12], where

s = xt =

[θ1(ξ)xξ]ξ − λ1

√

|x| sign(x) − [λ2 − θ2(ξ)]x+ δ.
(27)

The time derivative of V1(t) is given by

V̇1(t) =
2W1

‖x‖2

∫ 1

0

xsdξ + 2W2

∫ 1

0

xsdξ

+

∫ 1

0

δδtdξ +

∫ 1

0

sstdξ

(28)

Let us evaluate the time derivative of the auxiliary signal s
in (27) along the strong solutions of (24)-(25)

st = xtt = [θ1(ξ)sξ]ξ −
1

2
λ1

s
√

|x|
− [λ2 − θ2(ξ)]s

−W1
x

‖x‖2
−W2x+ ηt

(29)

Substituting (25) and (29) into (28) and rearranging it

yields

V̇1(t) =
2W1

‖x‖2

∫ 1

0

xsdξ + 2W2

∫ 1

0

xsdξ − W1

‖x‖2

∫ 1

0

δxdξ

−W2

∫ 1

0

δxdξ +

∫ 1

0

δηtdξ +

∫ 1

0

s[θ1(ξ)sξ]ξdξ

− 1

2
λ1

∫ 1

0

s2dξ
√

|x|
−

∫ 1

0

[λ2 − θ2(ξ)]s
2dξ

− W1

‖x‖2

∫ 1

0

xsdξ −W2

∫ 1

0

xsdξ +

∫ 1

0

sηtdξ

(30)

which can be manipulated as follows by virtue of Assump-

tion 1

V̇1(t) ≤ − W1

‖x‖2

∫ 1

0

x(δ − s)dξ −W2

∫ 1

0

x(δ − s)dξ

+

∫ 1

0

s[θ1(ξ)sξ]ξdξ −−1

2
λ1

∫ 1

0

s2dξ
√

|x|

− [λ2 − Θ2M ]

∫ 1

0

s2dξ +

∫ 1

0

(δ + s)ηtdξ

By (27), one has

δ−s = λ1

√

|x| sign(x)+[λ2−θ2(ξ)]x− [θ1(ξ)xξ]ξ (31)

δ+ s = 2s+λ1

√

|x| sign(x)+ [λ2 − θ2(ξ)]x− [θ1(ξ)xξ]ξ.
(32)

Due to this, and considering once more the Assumption 1,

(31) can further be manipulated as
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V̇1(t) ≤ −W1λ1

‖x‖2

∫ 1

0

x
√

|x| sign(x)dξ

− W1[λ2 − Θ2M ]

‖x‖2

∫ 1

0

x2dξ +
W1

‖x‖2

∫ 1

0

x[θ1(ξ)xξ]ξdξ

−W2λ1

∫ 1

0

x
√

|x| sign(x)dξ −W2[λ2 − Θ2M ]

∫ 1

0

x2dξ

+W2

∫ 1

0

x[θ1(ξ)xξ]ξdξ +

∫ 1

0

s[θ1(ξ)sξ]ξdξ

− 1

2
λ1

∫ 1

0

s2dξ
√

|x|
− [λ2 − Θ2M ]

∫ 1

0

s2dξ + 2

∫ 1

0

sηtdξ

+ λ1

∫ 1

0

√

|x| sign(x)ηtdξ

+ [λ2 − Θ2M ]

∫ 1

0

xηtdξ −
∫ 1

0

[θ1(ξ)xξ]ξηtdξ.

(33)

By taking into account the BCs (12) and their time

derivatives, standard integration by parts yields

∫ 1

0

x[θ1(ξ)xξ]ξdξ =

−
∫ 1

0

θ1(ξ)x
2
ξdξ + θ1(1)x(1, t)xξ(1, t) − θ1(0)x(0, t)xξ(0, t)

≤ −Θ1m‖xξ‖2
2 − θ1(1)

x2(1, t)

α1
− θ1(0)

x2(0, t)

α0
(34)

∫ 1

0

s[θ1(ξ)sξ]ξdξ

≤ −Θ1m‖sξ‖2
2 − θ1(1)

s2(1, t)

α1
− θ1(0)

s2(0, t)

α0

(35)

∫ 1

0

[θ1(ξ)xξ]ξηtdξ =

−
∫ 1

0

θ1(ξ)xξηtξdξ + θ1(1)ηt(1, t)xξ(1, t)

− θ1(0)ηt(0, t)xξ(0, t) = −
∫ 1

0

θ1(ξ)xξηtξdξ

− θ1(1)ηt(1, t)
x(1, t)

α1
− θ1(0)ηt(0, t)

x(0, t)

α0

(36)

Additional straightforward manipulations of (33) taking into

account (34) and (35) yield

V̇1(t) ≤ −W1[λ2 − Θ2M ]‖x‖2 −W2[λ2 − Θ2M ]‖x‖2
2

−W1Θ1m
‖xξ‖2

2

‖x‖2
− W1

‖x‖2
θ1(1)

x2(1, t)

α1

− W1

‖x‖2
θ1(0)

x2(0, t)

α0
−W2Θ1m‖xξ‖2

2

−W2θ1(1)
x2(1, t)

α1
−W2θ1(0)

x2(0, t)

α0

− [λ2 − Θ2M ]‖s‖2
2 − Θ1m‖sξ‖2

2 − θ1(1)
s2(1, t)

α1

− θ1(0)
s2(0, t)

α0
−W2λ1

∫ 1

0

|x|3/2dξ

− 1

2
λ1

∫ 1

0

s2dξ
√

|x|
− W1λ1

‖x‖2

∫ 1

0

√

|x||x|dξ

+ 2

∫ 1

0

sηtdξ + λ1

∫ 1

0

√

|x| sign(x)ηtdξ

+ [λ2 − Θ2M ]

∫ 1

0

xηtdξ +

∫ 1

0

θ1(ξ)xξηtξdξ

+ θ1(1)ηt(1, t)
x(1, t)

α1
+ θ1(0)ηt(0, t)

x(0, t)

α0
.

(37)

It is worth noting that by virtue of the tuning inequality

λ2 > Θ2M in (22) all terms appearing in the right hand

side of (37) are negative definite except those depending on

the augmented disturbance term ηt and its spatial derivative.

Some estimations involving those sign-indefinite terms are

now derived by simple application of the Cauchy-Schwartz

and Young’s inequalities and by considering the Assumptions

1 and 2, the BCs (12) and the derived conditions (17)-(18):

2

∣

∣

∣

∣

∫ 1

0

sηtdξ

∣

∣

∣

∣

≤ 2

∫ 1

0

|s||ηt|dξ = 2

∫ 1

0

|s|
√

|ηt|
√

|ηt|
√

|x|
√

|x|
dξ

≤
∫ 1

0

|ηt|s2 + |ηt||x|
√

|x|
dξ

≤M

∫ 1

0

s2
√

|x|
dξ +

∫ 1

0

ηt

√

|x|dξ.

(38)

∣

∣

∣

∣

∫ 1

0

xηtdξ

∣

∣

∣

∣

≤
[
∫ 1

0

x2dξ

]1/2 [
∫ 1

0

η2
t dξ

]1/2

≤M‖x‖2.

(39)
∣

∣

∣

∣

∫ 1

0

θ1(ξ)xξηtξdξ

∣

∣

∣

∣

≤ Θ1M

∫ 1

0

|xξ||ηtξ|dξ

= Θ1M

∫ 1

0

|xξ|
√

|ηtξ|
√

|ηtξ|‖x‖2

‖x‖2
dξ

≤ 1

2
Θ1M

∫ 1

0

x2
ξ |ηtξ| + |ηtξ|‖x‖2

2

‖x‖2
dξ

≤ 1

2
Θ1MMξ

‖xξ‖2
2

‖x‖2
+

1

2
Θ1MMξ‖x‖2.

(40)
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Taking into account (38)-(40), the right-hand side of (37)

can be estimated as

V̇1(t) ≤ −(λ2 − Θ2M )

[

W1 −M − Θ1MMξ

2(λ2 − Θ2M )

]

‖x‖2

−W2(λ2 − Θ2M )‖x‖2
2 −

[

W1Θ1m − 1

2
Θ1MMξ

] ‖xξ‖2
2

‖x‖2

−W2Θ1m‖xξ‖2
2 − (λ2 − Θ2M )‖s‖2

2 − Θ1m‖sξ‖2
2

−W2λ1

∫ 1

0

|x|3/2dξ − 1

2
(λ1 − 2M)

∫ 1

0

s2dξ
√

|x|

−
∫ 1

0

√

|x|
[

W1λ1

2‖x‖2
|x| − ηt

]

dξ

− λ1

∫ 1

0

√

|x|
[

W1

2‖x‖2
|x| − ηt

]

dξ

− θ1(1)
|x(1, t)|
α1

[

W1

‖x‖2
|x(1, t)| − ηt(1, t)

]

− θ1(0)
|x(0, t)|
α0

[

W1

‖x‖2
|x(0, t)| − ηt(0, t)

]

−W2θ1(1)
x2(1, t)

α1
−W2θ1(0)

x2(0, t)

α0

− θ1(1)
s2(1, t)

α1
− θ1(0)

s2(0, t)

α0
(41)

By virtue of Assumption 3, the next inequalities guarantee

that all terms in the right hand side of (41) are negative

definite

λ2 > Θ2M , W1 > M +
Θ1MMξ

2(λ2 − Θ2M )
,

W2 > 0, W1 >
1

2

Θ1M

Θ1m
Mξ,

λ1 > 2M, W1λ1 > 2Mx, W1 > 2Mx, W1 > Mx

(42)

The above inequalities collected together form the tuning

conditions (22). It remains to demonstrate that

‖x(·, t)‖2 → 0 as t→ ∞. (43)

For this purpose, let us integrate the relation

˙̃V (t) ≤ −(λ2 − Θ2M )

[

W1 −M − Θ1MMξ

2(λ2 − Θ2M )

]

‖x‖2,

(44)

straightforwardly resulting from the negative definiteness of

all terms in the right hand side of (41), to conclude that
∫ ∞

0

‖x(·, t)‖2dt <∞ (45)

The inequality V̇1(t) ≤ 0, which is readily concluded from

(41) and (42) in light of the Assumption 3, guarantees that

V1(t) ≤ V1(0) for any t ≥ 0. From this, and considering

(26), one can conclude that the L2 norm of s = xt fulfills

the estimation

‖xt‖2
2 ≤ 2V1(0), ∀t ≥ 0 (46)

Thus, the integrand ω(t) = ‖x(·, t)‖2 of (45) possesses a

uniformly bounded time derivative

ω̇(t) =

∫ 1

0
xxtdξ

‖x‖2
≤ ‖xt‖2 ≤

√
2R (47)

on the semi-infinite time interval t ∈ [0,∞), where R is any

positive constant such that R ≥ V1(0). Convergence (43)

is then verified by applying the Barbalat lemma (see [8]).

Since the Lyapunov functional (26) is radially unbounded the

global asymptotic stability of the closed-loop system (9)-(12)

is thus established in the L2 space. Theorem 1 is proved. �

IV. NUMERICAL SIMULATIONS

Consider the perturbed heat equation (2) with the follow-

ing spatially-varying diffusion and reaction parameters:

θ1(ξ) = 0.1(1 + 0.2sin(πξ)), (48)

θ2(ξ) = 1 + 0.1sin(4πξ). (49)

According to (4)-(5), the boundary conditions are of Robin’s

type:

Q(0, t) −Qξ(0, t) = Q(1, t) +Qξ(1, t) = 20, (50)

with the parameters α0 = α1 = 1 being uncertain to the

designer, and the initial condition is:

Q(ξ, 0) = 20 + sin(6πξ). (51)

A spatially variant set-point Qr(ξ, t) = 20 +
sin(t)sin(2πξ) is considered, which meets the actual

BCs. A space- and time-varying disturbance term is

considered in the form:

ψ(ξ, t) = 5sin(2πξ)cos(t) (52)

such that the augmented disturbance (10) now specializes

to the form:

η(ξ, t) = 20 + 2sin(4πξ) + 5sin(2πξ)cos(t) (53)

The L2 norm bounds M and Mξ of the disturbance

derivatives ηt and ηtξ, which are involved in the controller

tuning inequalities (22) can be easily estimated as M = 132
and Mξ = 2500, and the constant Mx is selected as Mx =
132. Then, the DSTPI controller gains are set in accordance

with (22) to the values

W1 = 1520, λ1 = 264, W2 = 2, λ2 = 2 (54)

For solving the PDEs governing the closed-loop system,

standard finite-difference approximation method is used by

discretizing the spatial solution domain ξ ∈ [0, 1] into a finite

number of N uniformly spaced solution nodes ξi = ih, h =
1/(N + 1), i = 1, 2, ..., N . The value N = 40 has been

used in the present simulations. The resulting 40-th order

discretized system is implemented in Matlab-Simulink and

solved by fixed-step Euler integration method with constant

step Ts = 10−4.

Figure 1 depicts the solution Q(ξ, t), which converges to

the given set-point, and Figure 2 shows the time profile of
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the tracking error L2 norm ‖x(·, t)‖2. Figure 3 depicts the

control input u(ξ, t) which, as expected, appears to be a

smooth function of both time and space. The attained results

confirm the validity of the presented analysis.

Fig. 1. The solution Q(ξ, t).

Fig. 2. The tracking error L2 norm ‖x(·, t)‖2.

Fig. 3. The distributed control u(ξ, t).

V. CONCLUDING REMARKS

The “Super-Twisting” 2-SMC algorithm has been used

in conjunction with linear PI control in a distributed pa-

rameters setting involving a a class of uncertain infinite-

dimensional processes. The tracking control problem for a

class of diffusion-reaction dynamics with spatially-varying

parameters and mixed boundary conditions, subject to a

persistent smooth disturbance of arbitrary shape, is tackled.

By means of Lyapunov functional analysis, the stability in

the L2 space of the resulting error dynamics is demonstrated.

Finite-time convergence of the proposed algorithm, which

would be the case whenever confined to a finite dimensional

treatment, cannot be proved using the proposed Lyapunov

functional, and it remains among other problems to be

tackled in the future within the present framework.
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