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Abstract— This paper discusses a decomposition-
coordination control approach for large-scale systems, based
on distributed MPC controllers and a specific coordination,
with an application to the control of a so-called Hydro-Power
Valley. The coordination strategy here explored can be
characterized as an explicit interaction-prediction method, in
the sense that the coordinator distributes predicted interactions
to each subsystem on the basis of the information collected
from those subsystems on the one hand, and takes advantage
of explicit solutions for linear MPC control to globally update
those predictions on the other hand. It is emphasized in the

paper how this makes the approach suitable for real-time
implementation, constraint handling, and communication
limitations. In particular promising simulation results are
provided for an industrial based Hydro-Power Valley case-
study, chosen for the purpose of illustration, but using real
data from French main electricity provider EDF.

I. INTRODUCTION

Real-time control of large-scale systems is still an open

problem since such a control a priori has to manage a large

amount of information and to solve large-scale computational

problems in very short periods of time [17], [15], [4]. Relying

on faster computers with larger memory may even not be

enough. In addition, such systems are subject to several

unpredictable events which demand a more robust control

solution in order to respect the system constraints and/or

specifications. Several methodologies have been elaborated

to cope with the complexity of such systems, most of them

belonging to one of the following groups: decentralization

[1], decomposition [3] or just model simplification.

The most cited decomposition-coordination techniques

have been introduced more than 30 years ago for solving

large-scale optimization problems. Methods such as Model

coordination, Goal coordination or Interaction prediction

have been originated by [14] and also considered by var-

ious other researchers who made significant contributions

to those ideas [5], [22]. The present work is part of a

renewed interest on such methods [8], [16], [25], [26]. Those

techniques have not been extensively or successfully used in

control applications for several reasons: one reason is the

need for separability properties of the optimization problem;
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another reason is the fact that most of the decomposition-

coordination algorithms must solve an optimization problem

that fails to converge for nonconvex optimization problems;

a third reason is the fact that these approaches require a large

amount of data exchanges (which can take a long time and

be subject to data losses) as well as adequate communication

media. These aspects will be taken into account in the

present work, in particular focusing on a specific interaction-

prediction coordination method.

This work is motivated by the problem of finding an

optimal control for a so-called Hydro-Power Valley (HPV)

system [11], [12], namely a set of hydroelectric production

plants, depending on interconnected water resources (typi-

cally along a river). Such systems have dynamics similar to

those of irrigation networks, for which some decentralized

control designs are discussed for instance in [13], [9] and

[6].

On the other hand, distributed Model Predictive Control

(MPC) schemes have already been proposed for intercon-

nected systems, as in [20], [24], [19], [7] to cite a few

examples.

Here, we explore the application of Explicit MPC in a

decomposition-coordination scheme in order to solve for

real-time constrained optimization problems in a more ef-

ficient computation time by reducing the computational

complexity. This can indeed be possible by using explicit

solutions of the MPC problem. Explicit solution of MPC

problems have been discussed in [10], [21], [23] and [2].

In addition, we emphasize how to take advantage of such

explicit solutions to propose some improved interaction-

prediction coordination, by including global prediction up-

dates at the coordinator level. This allows to reduce commu-

nication exchanges w.r.t. the two main types of coordination

strategies more classically proposed (either price-driven or

quantity-driven coordinations [5]) and relying on iterative

schemes for convergence guarantees. The use of explicit

solutions is extended to the case when constraints are also

to be taken into account, and the method is applied to an

example of HPV control, for which such decomposition-

coordination approaches appear to be quite well suited.

The operation of a Hydro-power valley can indeed be

described as follows: A daily power-generation program is

proposed to each power-plant (or subsystem) and has to

be respected as much as possible. However, in practice

there are many unpredictable events such as, for instance,

plant failures and meteorological changes which make the

regulation problem more difficult. This is mainly because,

in a power plant, the reservoir levels can be regulated by

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 830



means of local controllers which drive the inlet valves of

the turbines (turbine flow control) that determine at the

same time the generated power (i.e. the generated power is

proportional to the turbine flow). Thus, trying to regulate

the reservoir levels in the presence of large unpredictable

disturbances can lead to variations and modifications of the

power generation program. Those systems are already well

developed but a qualitative improvement is still possible by

using an optimal real-time management of the resources that

will maximize the efficiency of the hydro-power plants while

respecting the environmental constraints (e.g. irrigation needs

and navigation capabilities).

This paper is organized as follows: firstly, the problem

formulation is discussed in section II, including recalls

on decomposition-coordination methods. Then the proposed

interaction prediction coordination method is introduced in

section III, with emphasis on the coordinator task and local

tasks. Real-data based case-study and simulation results are

finally proposed in section IV, before concluding in section

V.
II. DECOMPOSITION-COORDINATION

As recalled in the introduction, one attractive approach

to solve for large-scale control problems is that based on a

system “decomposition” into subsystems of lower dimension.

This sounds of particular interest in the case of a Hydro-

Power Valley, since the full system naturally results from

the interconnection of several subsystems, each of them

having its own controller. This also raises the problem of

coordination between those subsystems, in particular in the

context of power production. Both aspects are presented

hereafter.

A. System decomposition

The configuration of the considered Hydro-Power Valley

is depicted in figure 1. The whole system can be modelled,

in a discrete-time state space representation, as follows:

xk+1 = Axk +Buk + Edk (1)

yk = Cxk (2)

where the current system state vector xk ∈ R
n corresponds

to the reservoir levels, the vector xk+1 ∈ R
n denotes the

one-step ahead value of the system state. The control input

vector uk ∈ R
m gathers the turbine flows, and dk ∈ R

n

is the disturbance input vector. In a general decomposition

approach, the model for each subsystem i (i = 1, · · · , n; with

n: the number of subsystems) is obtained by considering a

relevant partition of the centralized model (1), and combining

the effect of local variables with that of interconnection

variables, that is:

x(i)k+1 = Aiix(i)k +Biiu(i)k + v(i)k + Eid(i)k (3)

where the interactions terms are given by

v(i)k =
∑

j 6=i

(Aijx(j)k +Biju(j)k) (4)

Fig. 1. The Hydro-power valley configuration.

In order to simplify the notations, we can rewrite v(i)k as

follows:

v(i)k = vAxk + vBuk (5)

with

vA = Matrix A with the main diagonal are all zero.

vB = Matrix B with the main diagonal are all zero.

In the case of a HPV as in figure 1, the decomposition

can naturally rely upon the pre-existence of separate plants,

which can be chosen as subsystem.

B. Problem formulation and chosen approach

Aiming at following a daily power-generation program

for the whole HPV, the coordination issue should also be

considered.

A purely centralized control solution, when computable,

could be seen as the “strongest” coordination since the

control takes into account the full information at any com-

putation time and from this provides the appropriate law

to each actuator. An alternative decentralized approach can

simply rely on direct interconnection information exchanges

between subsystems without any coordination entity [18],

still requiring a lot of communication. In effective coordi-

nation schemes, either driven by prices or by quantities (see

e.g. [5]), the dynamical implementation classically proposed

also means intensive information exchanges between the

coordinator and the subsystems.

The purpose of the paper is thus to take advantage of

such decomposition-coordination methods for the considered

problem of HPV control, but at the same time to take

into account the problem of communication constraints for

such a system (limited amount of exchanged information,

communication speed, or synchronization for instance). To

that end, are combined the idea of interaction exchanges

with that of coordination in the spirit of the interaction-

prediction coordination described in [14], but with an ad-

ditional stage of centralized updates by the coordinator at

some communication times, taking also advantage of MPC

and available explicit solutions for systems of the form
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(1) - (2). This indeed relies on a decomposition approach,

including a coordination which allows to keep the global

performance under control, while also tuning the amount of

communication exchanges.

In the next section the proposed interaction - prediction

coordination method is introduced as well as the explicit

model predictive control (MPC) which is used both at the

coordinator and subsystems levels.

III. EXPLICIT INTERACTION-PREDICTION

COORDINATION AND LOCAL CONTROLS

The interaction-prediction coordination here is from a

practical point of view in the same spirit as the one described

in [14], in the sense that the information computed and sent

by the coordinator is the interactions between subsystems

(this giving the name to the method). It also relies on the

general framework of MPC, and is adapted from the original

algorithm as follows: the coordinator receives at each com-

munication time the state values from each subsystem. This

information is then used to implement a global optimization

which allows to compute an explicit optimal prediction of

the interactions (i.e. including just information concerning

the interaction variables). The coordinator sends these pieces

of information to each subsystem. Each subsystem in turn

solves a local optimization problem taking into account

the interaction vector as a predicted disturbance of the

subsystem.

Taking advantage of the fact that, in the proposed frame-

work, explicit solutions are available [21], the interaction-

prediction coordination can be applied in a very fast way,

but our idea is to take also-into account the limitations in

the communications, that is, to coordinate subsystems in

communication times which can be chosen larger that local

control times. Full formal details are given hereafter.

A. Coordinator

• MPC formulation

The coordinator is assumed to solve for a classical MPC

problem from data collected from the subsystems at each

communication time Tcom, while each subsystem solves

itself a similar problem with sampling time Ts. Classically,

given steady state values xs, us for both the state and the

control, corresponding to the desired control purpose1 under

a steady state disturbance ds, the finite horizon optimization

problem to be solved by the coordinator consists in minimiz-

ing the control tracking error ũk = uk−us (power generation

error) and the current state tracking error x̃k = xk − xs

(reservoir levels regulation) over a finite horizon, together

with the final state tracking error x̃Ng
= xNg

−xs (reservoir

levels regulation at final time Ng), for a system evolving

according to (1) under the effect of disturbance dk. Formally,

this means finding the control sequence {u0, · · · , uNg−1}
which minimizes:

1We assume that signals us, xs come from a supervisor system that
establishes the desired energy-power generation and the desired water levels
as a result, for example, of a pure off-line economical optimization.

J =
1

2

(

x̃T

Ng
P x̃Ng

+

Ng−1
∑

k=0

x̃T

kQx̃k +

Ng−1
∑

k=0

ũT

kRũk

)

(6)

where Q ≥ 0, R > 0 are state and control weighting matrices

and x̃T

Ng
P x̃Ng

, P > 0 is the terminal cost function. Here

Ng is the coordinator prediction horizon corresponding to

a prediction time T coord
pred . Assuming that T loc

pred denotes the

prediction time for the subsystems (or at least the maximum

of subsystems prediction times), and that Tcom stands for

the communication time, then for the purpose of providing

enough information by the coordinator to the subsystems for

their local optimization, we need:

T coord
pred ≥ T loc

pred + Tcom

If N denotes the prediction horizon for the local con-

trollers, and if the same sampling time Ts is the same for all

controllers (which is not even strictly necessary), this means

that one can choose:

Ng =
Tcom

Ts

+N (7)

when Tcom is an integer multiple of Ts.

Now it can be pointed out that the fixed horizon optimiza-

tion problem described in equation (6) for system (1) can be

transformed into a Quadratic Program (QP). This is possible

by defining the following sequences:

u = [u0, · · · , u(Ng−1)]
T , us = [us0, · · · , us(Ng−1)]

T ,

d = [d0, · · · , d(Ng−1)]
T , ds = [ds0, · · · , ds(Ng−1)]

T(8)

and matrices:

Γ =











B 0 · · · 0
AB B · · · 0

...
...

. . .
...

ANg−1B ANg−2B · · · B











, Ω =











A

A2

...

ANg











Θ =











E 0 · · · 0
AE E · · · 0

...
...

. . .
...

ANg−1E ANg−2E · · · E











(9)

Q = diag{Q, · · · , Q, P}, R = diag{R, · · · , R}

The cost function can be expressed in terms of the control

sequence u:

J = V̄ +
1

2
uTHu + uT[K1x0 + c] (10)

where
V̄ = terms independent of u,

c = −K1xs + K2(d − ds)− Hus, (11)

H = ΓTQΓ + R, K1 = ΓTQΩ, K2 = ΓTQΘ

The global state vector x0 is composed by the current

state information coming from the subsystems. The above

Quadratic Problem without constraints can have the follow-

ing explicit solution:

uopt
uc = −H−1[K1x0 + c] (12)
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• Constraints

In addition to the tracking purpose, input and state linear

constraints are also taken into account in the control. To that

end, those constraints must be expressed as a linear function

of the action variable u of the form:

Lu ≤ W (13)

with
L =

[

Φ
−Φ

]

, W =

[

∆̄
∆

]

+

[

−Λ
Λ

]

x0 (14)

where

Φ =

[

INm

Γ

]

∆̄ =

[

umax

xmax −Θdmax

]

Λ =

[

Ω
0

]

∆ =

[

umin

xmin +Θdmin

]

(15)

Hence, the problem is to find the control sequence which

minimizes (10), that is in fact a Quadratic Program (QP)

problem subject to (1) and constraints (13). QP problems

can be solved by using any standard QP solver, however we

explore here the applicability of explicit solutions to obtain

more computational efficient coordination.

• Geometric characterization of QP

The method of QP characterization proposed by [21] and

[10] uses a coordinate- transformation (via the square root

of the Hessian, that is, ũ = H
1

2 u) and then based on the

constraint polyhedron (13) dividing the full state space.

An active set “l” includes the indices of the active con-

straints, and by means of this one, it can be possible to

identify the active face of the constraint polyhedron Φl and

the associated constrained region.

This method then proposes that the optimal solution is

given by the point on the corresponding active face at

the closest Euclidean distance to the unconstrained optimal

solution uopt
uc , leading to an explicit control uopt as follows:

uopt = H− 1

2 Φ̃T

l [Φ̃lΦ̃
T

l ]
−1(∆l − Λlx0)−

H− 1

2 [I − Φ̃T

l [Φ̃lΦ̃
T

l ]
−1Φ̃l]H

− 1

2 (K1x0 + c) (16)

with matrices defined in (12), (15); Φ̃ = ΦH− 1

2 . Φ̃l and Λl

corresponds to the “l” rows of the matrices Φ̃ and Λ; ∆l is

given by:
∆l = ∆̄l if Φ̃lũ = ∆̄l − Λlx0

∆l = −∆l if Φ̃lũ = −∆l − Λlx0

In order to reduce the computational complexity, with the

purpose of a real time implementation, the above described

method is adapted in the present paper so as to focus on

the identification of the region where the current state x0

is located, without the need to characterize the geometry of

the full state space. Then, if an active face Φl is known, the

explicit optimal constrained control is given by (16). In the

case when many adjacent faces are active, we choose the

optimal control uopt as the solution inside the polyhedron

defined by (13) which verifies the minimal Euclidean dis-

tance to the unconstrained optimal solution uopt
uc .

It is clear that the coordinator has to solve a centralized

optimization problem, but once again, its solution can be

expressed explicitly. In this work we have:

vi = v
opt
i = diag{vA, · · · , vA}x + diag{vB, · · · , vB}uopt

vsi = diag{vA, · · · , vA}xs + diag{vB, · · · , vB}us (17)

where uopt is computed from (16), the sequence us is defined

in (8) and vA, vB in (5).

To summarize, in the proposed framework of coordination

based on MPC, the fixed horizon minimization problem

(10) subject to (1) and constraints (13) is solved at each

communication time Tcom for the current state coming from

the subsystems and disturbance values, and the resulting

control sequence uopt is used as the current control for

the computation of the interaction-prediction vector vi (17),

while the procedure is repeated at the next communication

time step.

B. Local control (Subsystems)

The local optimization problems can be written as QP

problems too, as follows:

Ji = V̄ +
1

2
uT

i Hiui + uT

i [K1ix(i)0 + ci] (18)

subject to (3) and Liui ≤ Wi,

where:

ci = −K1ixsi +K2i(di−dsi)+K3i(vi−vsi)−Hiusi (19)

and V̄ = terms independent of ui,

Hi = ΓT
i QiΓi + Ri, K1i = ΓT

i QiΩi, (20)

K2i = ΓT
i QiΘi, K3i = ΓT

i QiΨi

with matrices Γi, Ωi, Θi as in (10) for subsystem i, and

Ψi =











I 0 · · · 0
Aii I · · · 0

...
...

. . .
...

AN−1
ii AN−2

ii · · · I











, (21)

Qi = diag{Qi, · · · , Qi, Pi}, Ri = diag{Ri, · · · , Ri}

Remark that, in (18) the interactions information vi is not

available at the local level. This information comes from the

coordination algorithm. The explicit local control is given

by:

u
opt
i = H

− 1

2

i Φ̃T

(i)l[Φ̃(i)lΦ̃
T

(i)l]
−1(∆(i)l − Λ(i)lx(i)0 )−

H
− 1

2

i [I − Φ̃T

(i)l[Φ̃(i)lΦ̃
T

(i)l]
−1Φ̃(i)l]H

− 1

2

i (K1ix(i)0 + ci) (22)

with matrices defined in (20)-(21).

Remark that, the local control law requires the information

about the disturbances, in particular the interactions vi in (19)

in order to obtain a good compensation. Absence of this

information means non-compensation of such disturbances

(or interactions), producing then, a degradation of the system

performance.

The first element of the resulting control sequence u
opt
i

is then applied to the local system at the k instant. The

subsystem improves the local optimization during Ng−N+1
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steps, that is, the time necessary to the next communication

period Tcom to receive the interaction prediction vector

vi =
[

v(i)0 v(i)1 . . . v(i)Ng−1

]T

(23)

from the coordinator to implement the next local optimiza-

tions.

Remark that this solution seems to be suitable for real-

time applications, because only the interaction-prediction

is imposed while the local controls are solutions of the

local optimization problems. It means, that the subsystems

have some independency, unlike what happens in a totally

centralized control case.

In the next section, we will explore this interaction-

prediction decomposition-coordination technique in a simu-

lation with real-data, in an idealized context (i.e. well-known

model, disturbances and without communication faults).

IV. REAL-DATA BASED SIMULATION

In this section, a case study model of a Hydro-Power

Valley is considered for simulation, with parameters and

input data taken from a real HPV system producing around

550 [MW], managed by the french group EDF. The HPV is

modeled as reservoirs open to the atmosphere, perturbed by

input disturbance flows. The water levels are controlled by

output flows determined by the required power generation.

We assume the daily availability of the reservoir level mea-

surements, and that the disturbances are well known. The

dynamics of each reservoir can be modeled, in continuous

time, as follows:
S
dh

dt
= qin − qout (24)

where S denotes the area of the reservoir, h the reservoir

level and qin, qout the input and output water flows. For

simplicity, the matrices of the discrete-time state space

representation (1) of the case study are the following: A

and C are identity matrices of dimension 3, while matrices

B and E depend on the reservoir surfaces S and the chosen

sampling-time Ts,

B =







−Ts

S1

−Ts

S1

0 0

0 Ts

S2

−Ts

S2

0
Ts

S3

0 Ts

S3

−Ts

S3






, E =





Ts

S1

0

0 Ts

S2

0 0



 (25)

The system has been decomposed into three subsystems

according to section II-A.

Simulations are performed by using the following settings:

The local prediction horizon is N = 6; Weighting matrices

P , Q and R are identity matrices; The sampling time is

Ts = 5 minutes; The communication time between the

coordinator and the subsystems is Tcom = 30 minutes; The

coordinator horizon prediction then is Ng = 12 (according

with (7)).

The level [m] and flow [m
3

s
] constraints are defined as

follows:

umax = [60 0 60 60]T , xmax = [729.5 287.5 268.5]T ,

umin = [0 − 6.6 0 0]T , xmin = [716.2 282 259.5]T

The reference data of a day is known the night before. The

variables are daily initialized with the first values of this

reference data. The input disturbances are presented in figure

2. They correspond to an actual recording over 120 hours,

that is, 5 days. All simulations will be provided for the

same period. Figure 3 presents the controlled flows (blue)
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Time [h]
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]

 

 

d
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d
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Fig. 2. Estimated input disturbances di.

with respect to the imposed constraints (green) and tracking

the demanded setpoints (magenta). The local controls have

been calculated with equation (22). Figure 4 shows such the
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Fig. 3. Turbine flows (Control inputs u
opt
i

and references usi ).

reservoir level (blue) with respect to the imposed constraints

(green) and their reference values to be tracked (magenta).

The daily updating of the variables is clear at the beginning

of each day. Remark that in an idealist case without commu-

nication constraints (communication time Tcom = Ts) and

enough computational power, the centralized control pro-

vides the best performance (see table I). But considering that

communication limitations impose a communication time

larger than Ts, simulations were also successfully performed

for various values of Tcom.

A performance comparison with the centralized solution

in terms of achieved cost function is presented in Table I. It

shows how the performance is affected when the communi-

cation time increases. From this, it would be interesting to

add into the total cost function a communication cost term
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Fig. 4. Level of the reservoirs (system states xi and references xsi ).

Tcom [min] 5 30 90 180 ∞

Performance 1.0000 1.0018 1.1550 2.4204 26.793
(

JTcom
/J5min

)

TABLE I

PERFORMANCE OF THE EXPLICIT INTERACTION-PREDICTION METHOD

FOR VARIOUS VALUES OF Tcom

limiting the minimal possible value of Tcom, and then to

compute and/or choose the optimal value of the coordination

time Tcom in a more suitable way. In fact, the proposed

scheme allows also to include possible adaptation of the

Tcom according to the desired performance, solver load,

communications faults and/or an uncertainty level. These

aspects will be explored in a future work.

V. CONCLUSIONS AND FUTURE WORKS

Classical coordination approaches are attractive for large-

scale problems, but require a lot of communication ex-

changes between the coordinator and subsystems in order to

converge to a suitable optimal value. This is very expensive

in terms of communication requirements and computation-

time.

In this paper we have discussed an explicit interaction

prediction decomposition-coordination approach, with the

purpose of real-time application to the control of Hydro-

Power Valleys. In particular, it has been emphasized how

to take advantage of explicit solutions to the considered

optimization problem to reduce computational complexity,

as well as take into account the communication constraints

between the coordinator and subsystems.

These aspects are very useful for real-time applications

and illustrative simulation results have provided for a real-

data based example. Providing a finer stability and perfor-

mance analysis in the presence of unknown disturbances,

model uncertainties or network failures for instance will be

part of future developments.
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