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Abstract— Demand response is playing an increasingly 

important role in smart grid research and technologies being 

examined in recently undertaken demonstration projects. The 

behavior of load as it is affected by various load control 

strategies is important to understanding the degree to which 

different classes of end-use load can contribute to demand 

response programs at various times.  This paper focuses on 

developing aggregated control models for a homogeneous 

population of thermostatically controlled loads. The different 

types of loads considered in this paper include, but are not 

limited to, water heaters and HVAC units. The effects of 

demand response and user over-ride on the load population 

dynamics are investigated. The controllability of the developed 

lumped models is validated which forms the basis for designing 

different control strategies.  

I. INTRODUCTION 

enewable energy resources are generally regarded as the 

most important near to mid-term solution to the carbon-

emission problem of electricity production worldwide.  The 

most common of these are hydroelectric, wind, and solar. 

The main disadvantage of the latter two renewable resources 

is the intermittency associated with them. More specifically, 

they depend on highly variable prime movers, particularly 

over very short time spans. One proposed approach to 

address the problem of renewable intermittency is to increase 

the energy storage capacity of the system as a whole.  

More recently, the development of the Smart Grid 

concept has given rise to the notion that instead of trying to 

regulate the system by controlling generation, the focus 

should be to control demand to the extent possible.  

Controlling loads is usually called demand response, and 

there are several types of demand response. Direct load 

control programs can also be effective in providing peak 

load management and are used by many utilities [1]. 

However, utilities are well aware that these strategies have 

adverse effects on customers and only use them in extremis. 

  Another approach that has been tested ([1], [3]) and shows 

promise is the use of real-time prices combined with 

enabling technology to "signal" loads when supply is scarce 

(prices are high) or supply is plentiful (prices are low).   

When prices are high, loads adjust in a non-intrusive way to 
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reduce power drawn, and conversely increase power drawn 

when prices are low.  If prices are updated frequently and 

load controls are highly interactive, then loads can become 

as effective at following intermittent generation as standard 

generation is at following changing load, without affecting 

consumers. 

 Dynamic modeling of thermostatically controlled loads 

was first studied in [4] and [5]. In [4], aggregate load models 

are designed to study the effects of cold load pickup after a 

service interruption. Functional models of devices, which 

account for factors such as weather and human behavior, are 

developed in [5]. A model of a large number of similar 

devices is then obtained through statistical aggregation of the 

individual component models. In [6] and [7], aggregated 

dynamic homogenous and non-homogeneous models are 

developed for thermostatic loads. 

 In this paper, aggregated control models of 

thermostatically controlled devices are developed from state 

transition diagrams. The state transition approach to 

aggregate load modeling is different from the conventional 

aforementioned approaches. First, a model of the physical 

dynamics of thermostatically controlled loads is developed. 

From this model, a state transition diagram is created to 

represent the natural state dynamics of a large population of 

devices. After having obtained the state transition diagram, a 

state space model of the dynamics, both with and without 

demand response programs is derived. The state space 

control model provides a framework to develop new control 

and state estimation strategies for these devices, which are 

subjected to various demand response programs. The 

robustness of the models and controller design is tested using 

different levels of user over-ride.   

 The paper is organized as follows. Section II will discuss 

the physical model of thermostatic loads. In Sections III and 

IV, aggregate models for heating/cooling loads and electric 

water heaters will be derived from the physical models of the 

devices. In Section V, the controllability of these models is 

discussed, and simulation results will be presented. 

II. PHYSICAL DYNAMICS OF THERMOSTATICALLY 

CONTROLLED LOADS 

Residential electric end-use loads can be divided into two 

principal classes, one for all non-thermostatic loads, such as 

lights and plugs, and one for all thermostatic loads, such as 

water heating and air-conditioning.  All loads retain an 

underlying demand function that drives the overall 
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requirement for energy. The distinction made between 

thermostatic and non-thermostatic load has to do with how 

that function is satisfied and how power is used to satisfy it 

[9]. As a general rule, non-thermostatic loads tend to have 

load shapes where the instantaneous power drawn itself is a 

non-recurring function of the load state of the individual 

device.  In contrast, thermostatic loads at the level of a single 

device give rise to pulse sequences where the pulse width 

and frequency arise from the control hysteresis and the heat 

balance in the load, while the power drawn changes between 

two or more fixed values.  In this paper, the focus is 

primarily on the latter type of load. The thermal model, 

adapted from [10], representing such loads is shown in Fig 1. 
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Fig. 1  Thermal model of home heating/cooling system (Hm is ignored in 

simplified models) 
 

For the purposes of this paper it is assumed that the 

thermal coupling Hm between air and mass is perfect, 

although it is a relatively simple matter to model the air-mass 

coupling as described in [10]. The solution for this particular 

model can be given in terms of the heating and cooling rates 

when the heating/cooling system is on and off as follows: 
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(1) 

where UA is the conductance of the building envelope, Tout is 

the outdoor air temperature, Tset is the indoor air thermostat 

setpoint, Qg is the heat gain from solar and internal loads, Ca 

is the thermal mass of the air, Cm is the thermal mass of the 

building materials and furnishings, and ron and roff are the 

rates of heating/cooling and coasting air temperatures.  

 The rates computed thus are given in 
o
F/h and, given the 

thermostat deadband L needed for adequate control 

hysteresis, the time for the on and off cycles is  
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The duty cycle  can then be computed as 
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In (3), without the loss of generality, it can be assumed that 

ron+ roff = 1, in which case  = roff and 1 -  = ron, a condition 

necessary to ensure numerical stability in certain finite 

differences implementation of state models. In the following 

sections, state space models will be constructed based on this 

normalized physical model.  

III. AGGREGATED MODELS FOR HEATING/COOLING UNITS 

A. State space model without demand response 

The state dynamics of heating/cooling units can be derived 

from a state transition diagram. The cycling behavior of a 

population of thermostatic loads can be described using a 

state queuing model [8]. The units can be in either the on or 

off state. Each of these states can be further divided into two 

sub-states, which are the loads being satisfied or unsatisfied. 

The device can therefore occupy any one of these four states. 

The objective of the heating unit, for example, is to keep the 

room temperature at a certain value. The satisfied state is 

when the room temperature is above the setpoint temperature 

and when the temperature falls below the setpoint, the unit is 

said to be in the unsatisfied state. 

 The heating units, in the on state, heat at a certain rate, ron, 

and move from the unsatisfied to the satisfied state. When 

the upper control point of the thermostat is reached, the units 

move from the on satisfied to the off satisfied state. The units 

then coast at a rate roff to the off unsatisfied state after which 

they turn on and continue the cycle. The state diagram 

illustrating the heating cycle of a HVAC system is shown in 

Fig. 2.  
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Fig. 2  State transition diagram for heating/cooling units (heating cycle) 

 

The dynamics of device occupancy in each state based on 

the state transition diagram in Fig. 2 are given as 
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(4) 

Using (4), the state space representation is given by 
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B. State space model with demand response and user 

over-ride 

The above model needs to be modified to include demand 

response and user over-ride. The fraction of on devices that 

are curtailed by the utility is given by γ and the fraction of 

these curtailed devices that are turned back on by the 

consumer is given by α. The device occupancy dynamics in 

each state are then modified as 
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(7) 

where )(1 ts and )(2 ts  are the utility curtailment and user 

over-ride signals respectively. The state space model for the 

above system can be represented as  

)()()()( 2211 tuBtuBtAxtx   (8) 

where A is the same state transition matrix defined in (6), 

)(11 tsu   is the utility input (control input), )(22 tsu   is 

the user input which is unknown to the system, and B1, B2 are 

utility and user input matrices defined as 
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(9) 

 The user-control input, u2, is assumed to be unknown 

since the utility cannot, in advance, know how the consumer 

will respond to curtailment. However, the consumer input 

could still be controlled, to some extent, by using real-time 

pricing of energy, based on the current demand. In this case, 

both the utility and user inputs can be used as control inputs.  

IV. AGGREGATED MODELS FOR WATER HEATERS 

A. State space model without demand response 

The cycling behavior of the water heaters is the same as 

the heating/cooling units described in Section III. The main 

difference is the effects of consumer demand and the 

stalling phenomena of the water heater.  

When a consumer draws hot water, no matter how long, 

the water heater will turn on if it was off. This is because the 

hot water taken from the top of the tank is replaced by cold 

water at the bottom of the tank, where the thermostat is 

located. The fraction of off devices subjected to consumer 

demand is represented by η.  

The layers of hot and cold water are separated by a 

thermocline in the tank. Depending on the relative rates of 

heat in and out of the tank, the thermocline will either rise or 

fall. When these rates are approximately equal, the 

thermocline is stationary and the device is stalled, in which 

case it will remain in its current on state. The fraction of 

devices that stall is represented by ρ. The state transition 

diagram is given in Fig. 3. 
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Fig. 3  State transition diagram for water heaters 

 

In the off state, the number of devices that turn on due to 

consumer demand is ηNoff so the fraction of devices that can 

continue to cycle is (1-η)Noff. The fraction of on devices that 

are not stalled and can continue to cycle is (1-ρ)Non. The 

dynamics of device occupancy in each state are given as 
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(10) 

The state transition matrix is given as 
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(11) 

B. State space model with demand response and user 

over-ride 

The demand response and user over-ride effects are 

modeled in the same fashion as described in Section III B. 

The state transition matrix A is the same as defined in (11). 

The utility and user control input matrices B1 and B2 are the 

same as that of the heating/cooling units given in (9). Once 

again, the control input to the system could either be just the 

utility signal or both the utility and user by using real-time 

pricing of energy.  

V. RESULTS & DISCUSSION 

In this section, the state space models of the HVAC and 

water heater units developed in Section IV will be simulated, 

and the effects of utility control and user over-ride discussed.  

A. Results for HVAC units 

First, the state dynamics of the HVAC system without any 

demand response is considered. The initial state of the 

system is chosen to be x (0) = [0.25 0.25 0.25 0.25]
T
. It can 

be seen from Fig. 4 that the system states eventually 

converge to their steady state (natural equilibrium) value xeq= 

[0.13 0.13 0.37 0.37]
T
. This indicates that starting from any 
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random initial state, the population of loads will converge to 

their equilibrium state, since the natural system described by 

(6) is stable. Next, it is assumed that 50% of the loads are 

curtailed ( = 0.5) and 10% of the users over-ride the 

demand response signal (α = 0.1). The demand response and 

user over-ride signals are taken as step inputs, which as 

shown in Fig. 5, de-stabilize the system, thereby indicating a 

need for utility control. Even for smaller fractions of demand 

response and consumer over-ride, the open-loop system is 

still unstable. It can easily be verified that the state space 

model given in (8) and (9) is controllable i.e. rank ([B AB 

A
2
B…A

n-1
B]) = n. Since the system is controllable, the utility 

input is taken as a control input and a proportional state 

feedback controller u1 = -K (x-xeq), with the control gain K 

designed so as to drive the system to its natural equilibrium 

state. The user over-ride signal is viewed as an unknown 

input or a persistent disturbance to the system.  The system 

state responses under different levels of utility over-ride 

(10% and 20%) are shown in Fig. 6 (a) and (b) respectively. 

The results indicate that the controlled closed-loop system is 

robust (states converge to steady state values) under different 

consumer over-ride levels. Furthermore, it can be seen that 

the states converge to a steady state value which is not their 

natural equilibrium point. This is, as expected, due to the 

presence of the unknown persistent user over-ride signal.  

As discussed earlier, when real-time pricing information is 

available, both the utility and consumer inputs can be taken 

as control inputs. In this case, as seen from Fig. 7, the 

populations of loads converge to their natural equilibrium 

state. During cold load pickup (initial state x (0) = [1 0 0 0]
T
) 

and also when the system starts from its equilibrium state 

(x(0) = [0.13 0.13 0.37 0.37]
T
), the controlled system states 

converge to their steady state values as seen from Fig. 8 (a) 

and (b).  
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Fig. 4  State dynamics of HVAC system without demand response 
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Fig. 5  State dynamics of HVAC system with step demand response and no 

control 
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(b) 

Fig. 6 State dynamics of HVAC system with utility control (a) 10% user 

over-ride (b) 20% user over-ride 
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Fig. 7  State dynamics of HVAC system with utility and user control 
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(b) 

Fig. 8 State dynamics of HVAC system under different initial conditions (a) 

cold load pickup (b) equilibrium state 

B. Results for water heater units 

It is initially assumed that the water heater units do not 

have any demand response. The initial state of the system is 

chosen to be x (0) = [0.25 0 0.25 0.5]
T
. The fraction of off 

devices subjected to consumer demand and the fraction of 

stalled devices are both chosen to be 10% ( =  = 0.1). 

With these parameters, it can be seen from Fig. 9 that the 

system states converge to their steady state (equilibrium) 

value xeq= [0.09 0.11 0.32 0.37]
T
. As in the case of the 

HVAC system, it is assumed that 50% of the loads are 

curtailed ( = 0.5) and 10% of the users over-ride the 

demand response signal (α = 0.1). The demand response and 

user over-ride signals are taken as step inputs which, as 

shown in Fig. 10, de-stabilize the system. It can be verified 

that the system is controllable and hence a utility controller 

can be designed.  

The system response under different levels of utility over-

ride (10% and 20%) is shown in Fig. 11 (a) and (b) 

respectively. The results indicate that the controlled closed-

loop system states converge to their steady state values under 

different consumer over-ride levels. The evolution of the 

load populations when the fraction of devices being subject 

to consumer demand and the fraction of stalled devices are 

increased to 20% is shown in Fig. 12 (a) and (b) 

respectively. The results further validate the robustness of 

the system and control design. Once again, when both the 

utility and consumer inputs are taken as control inputs, as 

seen from Fig. 13, the populations of loads converge to their 

natural equilibrium state.    
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Fig. 9  State dynamics of water heater units without demand response 
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Fig. 10  State dynamics of water heater units with demand response and no 

control 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

S
y
s
te

m
 S

ta
te

s

 

 

N
off

us

N
off

s

N
on

us

N
on

s

 
(a) 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

S
y
s
te

m
 S

ta
te

s

 

 

N
off

us

N
off

s

N
on

us

N
on

s

 
(b) 

Fig. 11 State dynamics of water heater units with utility control (a) 10% 

user over-ride (b) 20% user over-ride 
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(b) 

Fig. 12 State dynamics of water heater units with utility control (a) 20% 

consumer demand (b) 20% stalled devices 
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Fig. 13 State dynamics of water heater units with both utility and user 

control 

 

Utility control of demand response is typically 

accomplished today by making a once-daily determination of 

whether to deploy the demand resources available.  This 

single impulse direct load control is known to be stable and 

is believed to be controllable (although it has not been 

demonstrated formally to our knowledge).  

The control based model developed in this paper 

addresses whether a continuous load control signal, 

regardless of the method of communicating the control 

objective, can be expected to meet utility expectations for 

controllability and observability.  The results suggest that the 

design of load control systems is neither obvious nor 

intuitive. Furthermore, continuous load control systems 

should not be treated the same way as single impulse direct 

load control, and the design of consumer override controls 

needs to consider the impact it may have on the stability and 

controllability of the load control strategies. 

VI. CONCLUSIONS 

In this paper, aggregate load models have been developed 

for thermostatically controlled loads by considering the state 

dynamics of a large homogenous population of such devices. 

It has also been shown that these models are fully 

controllable, and with the proper controller design, the 

system can be forced to any final steady state from any initial 

state. This opens up the possibility of controlling load to 

match the intermittent generation of renewable sources, 

reducing the need for costly energy storage. 

Further work would be to extend this to end uses which 

are not thermostatically controlled. One such example is 

microwaves, which are controlled by timers and consumer 

behavior. Another type of device to consider would be 

clothes dryers which, in addition to timers and consumer 

behavior, are also controlled by a thermostat. Based on this 

work, it would also be possible to develop model reference 

adaptive controllers to track the response of various system 

inputs and design a state estimator that would give 

knowledge of the state populations from the total load time 

series. 
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