Robustness in the Face of Polytopic Initial Conditions Uncertainty and Polytopic System Matrices Uncertainty in Finite-horizon Linear H_{∞}-Analysis

Shmuel Boyarski
Advanced Systems Division, IMI, P.O.B. 1044/77 Ramat-Hasharon 47100, Israel

Abstract

This paper addresses a linear finite-horizon robust optimal H_{∞} analysis problem, where the system matrices and the system initial conditions (ICs, x_{0}) are concurrently uncertain, both in a polytopic manner. Current finite-horizon H_{∞} analysis practice assumes $x_{0} \in \mathcal{R}^{n}$; that is, allows infinite ICs uncertainty. This assumption is unrealistically conservative, and incompatible with the prevalent robust H_{∞} analysis practice of attributing finite uncertainty to the systems's parameters/matrices. Here, the ICs uncertainty model is analogous to the (convex) uncertainty model of the system matrices. The development applies H_{∞} 'first principles', and exploits convexity over the matrices uncertainty polytope, over the ICs uncertainty polytope, and over time ('time-convexity'). A conjecture regarding polytopic final-state convexity in this setup is given, and applied, to overcome non-convexity of the statetransition matrix with respect to the system matrices. A detailed numerical example shows a dramatic advantage of the methods which do not constrain the final Lyapunov function.

I. Introduction

H_{∞} control with initial state uncertainty has been investigated by several researchers (e.g. [16][27]), however a bound on the initial state uncertainty was not introduced. The more recent work [21] deals with H_{∞} attenuation of both disturbances and initial-state uncertainty for LTI systems in the infinite-horizon case. Tadmor [26] was probably the first to give a solution via state-space methods to the H_{∞} control problem for linear time-varying systems for the finite-horizon case; the results are in terms of two coupled indefinite Riccati equations. A game-theoretic solution for the same problem was given in [18]. State-space solutions for time-invariant systems in finite horizon, while (for the first time) taking initial conditions into account, were given in terms of one differential Riccati equation (state-feedback) or two coupled ones (output-feedback) in [16]. These works, and many later ones which pose their results in differential linear matrix inequalities (LMI) form, e.g. [9], do not provide a method for actually solving the relevant LMIs for the (symmetric) matrix time-function $P(t)$.

A quite known approach for finding a general time-varying $P(t)$ is the difference-LMIs (DLMIs) method [12]. However, this method is extremely time-consuming because the computation time-step must be minute and an inversion of $P(t)$ is performed in each time-step. In contrast, the time-convexity method proposed in [7] is computationally efficient, simple, and flexibly allows (in its piecewise form) elaborate variations in $P(t)$ with very little numerical overhead. The core idea is to search for a time-linear $P(t)$ and to exploit convexity in (normalized) time over the scenario duration in
order to reduce the (originally differential) problem to 'static' LMIs at the scenario end-points.

Piecewise-quadratic/linear Lyapunov functions have been extensively used for analyzing linear time-varying and uncertain systems, mainly piecewise-linear/affine systems (cell/region-dependent) and switched/hybrid systems (casedependent). For example, [28] aimed at reducing the conservatism of the quadratic stability test for uncertain timevarying systems by using two-term piecewise quadratic Lyapunov functions; the results involve the convex combination of two matrices. In [14] piecewise-linear systems are analyzed by piecewise-quadratic, region-dependent Lyapunov functions. [2] addresses uncertain linear systems affected (within a given polytope) by time-varying uncertain parameters. Note that [8] is the first work applying a linear timevariation of $P(t)$ and fully exploiting time-convexity.

ICs-uncertainty seems to be no less important, in practical situations, than parameter-uncertainty. In this paper, finite uncertainty affects the system's ICs. Addressing finite ICs-uncertainty, analogously to the standard treatment of parameter-uncertainty, removes severe conservatism inherent in assuming $x_{0} \in \mathcal{R}^{n}$. It is shown that the resulting LMIs depend upon the ICs in a convex manner; this profound fact admits conditions regarding a (joint) performance bound over both the parameters and the ICs uncertainty regions. Convexity over the parameters uncertainty region does not formally hold when $P\left(t_{f}\right)$ is unconstrained, and a suitable 'covering' conjecture is proposed and applied.

In [8], a tracking performance analysis paper, the ICs uncertainty was specified as an interval for each component of x_{0}, thus the ICs uncertainty region was a hyper-rectangle in \mathcal{R}^{n}; the system itself was not uncertain; and the development hinged on a theorem from [12]. Here, in contrast, we deal with a general analysis problem; both the system matrices and the system's ICs are uncertain, both in a general convex polytopic manner; and no use is made of the latter theorem: the development applies 'first principles'.

Notation: The signal norm addressed is the standard $\mathcal{L}_{2^{-}}$ norm, $\|w\|_{2,\left[t_{0} t_{f}\right]}^{2}=\int_{t_{0}}^{t_{f}} w^{T}(\tau) w(\tau) d \tau$, where w^{T} is the transpose of w. The space of continuous-time functions in \mathcal{R}^{p} that are square integrable over $\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$ is $\mathcal{L}_{2}^{p}\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$. $\mathcal{C} o\left\{G^{(j)}\right\}$ denotes the convex hull of $G^{(j)}, j=1, \ldots, N$.

II. Problems Formulation

Consider the uncertain (stable or unstable) time-invariant linear system (some time-variance will later be introduced)

$$
\begin{align*}
& \dot{x}=A x+B w, \quad x\left(t_{0}\right)=x_{0} \tag{1a,b}\\
& z=C x+D w
\end{align*}
$$

where $x \in \mathcal{R}^{n}$ is the system state, $w \in \mathcal{R}^{p}$ is a deterministic energy-bounded disturbance in $\mathcal{L}_{2}^{p}\left[t_{0} \quad t_{f}\right]$, and $z \in \mathcal{R}^{m}$ is the signal to be regulated. The matrices $\{A, B, C, D\}$, collectively denoted

$$
\Omega \triangleq\left[\begin{array}{ll}
A & B \tag{2}\\
C & D
\end{array}\right]
$$

belong to the convex hull $\mathcal{C} o\left\{\Omega^{(j)}, j=1, \ldots, N\right\}$ of the given N vertices (vertex-systems)

$$
\Omega^{(j)} \triangleq\left[\begin{array}{ll}
A^{(j)} & B^{(j)} \tag{3}\\
C^{(j)} & D^{(j)}
\end{array}\right], \quad j=1, \ldots, N
$$

That is,

$$
\begin{equation*}
\Omega=\sum_{j=1}^{N} f_{j} \Omega^{(j)}, \quad 0 \leq f_{j} \leq 1, \quad \sum_{j=1}^{N} f_{j}=1 \tag{4}
\end{equation*}
$$

The variables f_{j} are called the convex coordinates (CC) of Ω in $\mathcal{C} o\left\{\Omega^{(j)}\right\}$.

The initial conditions (ICs) vector x_{0} is also uncertain in our setup. This is not a new idea, of course. However, the common finite-horizon H_{∞} analysis practice assumes $x_{0} \in \mathcal{R}^{n}$; that is, allows infinite x_{0} uncertainty. This assumption is most unrealistic since there must be 'limits' to x_{0}, and control designers usually can make plausible practical statements about them; thus, infinite x_{0} uncertainty is a prohibitively conservative assumption. Moreover, this assumption is incompatible with the prevalent robust H_{∞} analysis practice of attributing finite/limited uncertainty to the systems's parameters. For these reasons, in our setup we do not allow x_{0} to reside anywhere in \mathcal{R}^{n}; its uncertainty is finite. In fact, the x_{0} uncertainty model undertaken here is analogous to the uncertainty of $\{A, B, C, D\}$: there are M given vertices $x_{0}^{(i)} \in \mathcal{R}^{n}$ that define a convex ICs polytope $\mathcal{C} o\left\{x_{0}^{(i)}, i=1, \ldots, M\right\}$, (only) in which x_{0} may reside:

$$
\begin{equation*}
x_{0}=\sum_{i=1}^{M} g_{i} x_{0}^{(i)}, \quad 0 \leq g_{i} \leq 1, \quad \sum_{i=1}^{M} g_{i}=1, \tag{5}
\end{equation*}
$$

where g_{i} are the CC of x_{0} in $\mathcal{C o}\left\{x_{0}^{(i)}\right\}$.
Denote by $J\left(\Omega, x_{0}\right)$ the standard finite-horizon H_{∞} cost (see [13]) corresponding to some Ω, that is a single system in $\mathcal{C} o\left\{\Omega^{(j)}\right\}$, and to a single $x_{0} \in \mathcal{C} o\left\{x_{0}^{(i)}\right\}$:
$J\left(\Omega, x_{0}\right)=\left\|z\left(\Omega, x_{0}\right)\right\|_{2,\left[t_{0} \quad t_{f}\right]}^{2}-\gamma^{2}\|w\|_{2,\left[t_{0} \quad t_{f}\right]}^{2}+x_{f}^{T} \Delta x_{f}$.
$\|w\|_{2,\left[t_{0} t_{f}\right]}$ is the finite-horizon \mathcal{L}_{2}-norm of $w . z\left(\Omega, x_{0}\right)$ is the z which emanates, in response to w, from a system having some Ω and some x_{0}; and $\left\|z\left(\Omega, x_{0}\right)\right\|_{2,\left[t_{0} t_{f}\right]}$ is its $\mathcal{L}_{2^{-}}$ norm. Both \mathcal{L}_{2}-norms are computed with $t \in\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$, where t_{0} and t_{f} are given. The scalar $\gamma>0$, also given, is under infinite-horizon H_{∞} scenario (where x_{0} is zero and $J<0$ is assured) the bound on the disturbance attenuation level (or induced \mathcal{L}_{2}-norm) $\sup _{w \in \mathcal{L}_{2}[0 \infty), w \neq 0}\|z\|_{2} /\|w\|_{2}$. Δ is a given nonnegative definite ' x_{f}-weight' matrix, where $x_{f}=x\left(t_{f}\right)$. An analysis problem can now be posed:
Problem: Find the minimal $J\left(\Omega, x_{0}\right)$ that can be jointly assured over given $\mathcal{C} o\left\{\Omega^{(j)}\right\}$ and $\mathcal{C o}\left\{x_{0}^{(i)}\right\}$, for all $w \in$ $\mathcal{L}_{2\left[t_{0} t_{f}\right]}, w \neq 0$, with given $\gamma>0$ and $\Delta \geq 0$.

III. Solution

A. The prevailing LMIs

In the sequel, the very simple, conservative 'quadratically stabilizing' method will be used because it facilitates a clear exposition of our main idea. The latter, however, is by no means limited to a single Lyapunov-function.

It can easily be shown that, by using the single Lyapunov function $x^{T} P(t) x, 0<P(t)=P^{T}(t)$, and 'completing the squares', the following holds for the cost defined in (6), computed for the single system (1) [9]:

$$
\begin{align*}
& J\left(\Omega, x_{0}\right)=\int_{t_{0}}^{t_{f}} x^{T}(\tau) \Psi(P(\tau)) x(\tau) d \tau+x_{0}^{T} P\left(t_{0}\right) x_{0} \\
& -\gamma^{2} \int_{t_{0}}^{t_{f}}\left(w-w^{*}\right)^{T}\left(w-w^{*}\right) d \tau+x^{T}\left(t_{f}\right)\left(\Delta-P\left(t_{f}\right)\right) x\left(t_{f}\right), \\
& R=\gamma^{2} I-D^{T} D, \quad w^{*}=\gamma^{-2} B^{T} P x \\
& \Psi(P(t))=P\left(A+B R^{-1} D^{T} C\right)+\left(A+B R^{-1} D^{T} C\right)^{T} P \\
& +P B R^{-1} B^{T} P+C^{T}\left(I+D R^{-1} D^{T}\right) C+\dot{P} . \tag{7a-d}
\end{align*}
$$

An upper bound on $J\left(\Omega, x_{0}\right)$ is identified as follows. The term $-\gamma^{2} \int_{t_{0}}^{t_{f}}\left(w-w^{*}\right)^{T}\left(w-w^{*}\right) d \tau$ can obviously only reduce J (i.e. $J(w)<J\left(w^{*}\right)$), hence can be eliminated from the bound's expression; this is tantamount to choosing $w=$ w^{*}. If a $P(t)>0$ can be found such that $\Psi(P(t))<0$ is assured, as in the celebrated bounded-real lemma (BRL) [13], then the (negative) term $\int_{t_{0}}^{t_{f}} x^{T}(\tau) \Psi(P(\tau)) x(\tau) d \tau$ can also be eliminated. (Theoretical details regarding the negativedefiniteness of $\Psi(P(t))$ can be found in [19].) Finally, constrain $P(t)$ by choosing

$$
\begin{equation*}
P\left(t_{f}\right)=\Delta \tag{8a-c}
\end{equation*}
$$

This constraint will later be alleviated, enabling better performance at the price of complication of the analysis and some loss of convexity. The following is obtained:

$$
\begin{equation*}
J\left(\Omega, x_{0}\right)<x_{0}^{T} P\left(t_{0}\right) x_{0} \tag{9}
\end{equation*}
$$

That is, $x_{0}^{T} P\left(t_{0}\right) x_{0}$ (unsurprisingly) constitutes the sought upper bound on $J\left(\Omega, x_{0}\right)$ under the worst-case disturbance $w^{*}, P(t)>0, P\left(t_{f}\right)=\Delta$ (this requires Δ to be positivedefinite, rather than nonnegative definite), and $\Psi(P(t))<0$, where $t \in\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$.

The matrix inequality $\Psi(P(t))<0$ is equivalent, by the Schur complements formula, to the LMI

$$
\tilde{\Psi}(P(t)) \triangleq\left[\begin{array}{ccc}
\dot{P}+A^{T} P+P A & P B & C^{T} \tag{10}\\
B^{T} P & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right]<0
$$

That is, the requirement $\Psi(P(t))<0$ can be fulfilled by assuring $\tilde{\Psi}(P(t))<0$ for some $P(t)>0$ during $\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$.

Note that if the system is unstable the steady-state version of (10), where $\dot{P} \equiv 0$ and $\tilde{\Psi}=\tilde{\Psi}(P)$, cannot be applied since $\tilde{\Psi}(P)<0$ cannot be assured [13]. If the system is asymptotically stable a constant P may be tried, but it is usually too conservative in a finite-horizon setting. The latter setting can be better handled by a time-varying $P(t)$ since the term \dot{P} and the changing $P(t)$ may make $\tilde{\Psi}(P(t))$ negativedefinite; the system may then be unstable, and even timevarying.

Define $Q(t) \triangleq P^{-1}(t)>0$ and $S \triangleq \operatorname{diag}\{Q(t), I, I\}$. Note that (10) can be transformed into an equivalent LMI in $Q(t)$ by multiplying $\tilde{\Psi}(P(t))$ by $S=S^{T}>0$ on both sides,
since the negative-definiteness of $\tilde{\Psi}(P(t))$, now denoted $\bar{\Psi}(Q(t))$, is not altered by this operation. The result is

$$
\bar{\Psi}(Q(t)) \triangleq\left[\begin{array}{ccc}
-\dot{Q}+Q A^{T}+A Q & B & Q C^{T} \tag{11}\\
B^{T} & -\gamma I & D^{T} \\
C Q & D & -\gamma I
\end{array}\right]<0
$$

where $\dot{Q}=\left(P^{-1}\right)=-P^{-1} \dot{P} P^{-1}=-Q \dot{P} Q$ has been used. With $Q(t)$, (9) can be rephrased as

$$
\begin{equation*}
J\left(\Omega, x_{0}\right)<x_{0}^{T} Q^{-1}\left(t_{0}\right) x_{0} \tag{12}
\end{equation*}
$$

The (positive) bound $x_{0}^{T} Q^{-1}\left(t_{0}\right) x_{0}$ can be minimized, using again the Schur complements formula, by minimizing the scalar $\rho>0$ while maintaining

$$
\left[\begin{array}{cc}
\rho & x_{0}^{T} \tag{13}\\
x_{0} & Q\left(t_{0}\right)
\end{array}\right]>0 .
$$

Thus, for a single known (possibly time-varying) Ω and a single x_{0}, the LMIs (11) and (13) need simply be solved together for $\rho>0$ and $Q(t)>0$ while minimizing ρ. Note that the resulting ρ is, in fact, the value of the (lowest) bound $x_{0}^{T} Q^{-1}\left(t_{0}\right) x_{0}$ on $J\left(\Omega, x_{0}\right)$. Note also that if γ is free, rather than given, a lower bound on J is found, usually along with a very high γ (which makes the result almost an H_{2} result); however, it turns out that the decrease in ρ is often small. Minimizing $\rho+\alpha \gamma$, where $\alpha>0$ is an arbitrary weight, is a reasonable option. The minimal γ is usually associated with Q of extreme eigenvalues, thus it is common practice to 'pull back' from the minimal γ.

The problem posed at the end of Section II requires finding the minimal $J\left(\Omega, x_{0}\right)$ over the whole of $\mathcal{C} o\left\{\Omega^{(j)}\right\}$ and of $\mathcal{C} o\left\{x_{0}^{(i)}\right\}$, jointly. This can now, obviously, be readily achieved by applying standard convexity practices since (11) is convex in Ω and (13) is convex in x_{0}. Thus, the solution to the problem consists in simultaneously solving the two set of LMIs (nicknamed 'BRL LMIs' and 'ICs LMIs')

$$
\left[\begin{array}{ccc}
-\dot{Q(t)}+Q(t) A^{(j)^{T}}+A^{(j)} Q(t) & B^{(j)} & Q(t) C^{(j)^{T}} \\
B^{(j)^{T}} & -\gamma I & D^{(j)^{T}} \\
C^{(j)} Q(t) & D^{(j)} & -\gamma I
\end{array}\right]<0
$$

$j=1, \ldots, N$,

$$
\left[\begin{array}{cc}
\rho & x_{0}^{(i)^{T}} \tag{14}\\
x_{0}^{(i)} & Q\left(t_{0}\right)
\end{array}\right]>0, \quad i=1, \ldots, M
$$

for the matrix function $Q(t)$, which needs to satisfy

$$
Q(t)>0 \quad \forall t \in\left[\begin{array}{ll}
t_{0} & t_{f} \tag{16a,b}
\end{array}\right], \quad Q\left(t_{f}\right)=\Delta^{-1}>0
$$

and for the scalar $\rho>0$, while minimizing ρ. (A procedure for finding $Q(t)$ will be outlined in the next subsection.)

Note that $Q(t)$ has, as customary in robust control, to accommodate the Ω uncertainty; but, and this is new, it has (simultaneously) to accommodate only a finite, given x_{0} uncertainty region. This makes the solution inherently 'tighter' than methods which address $x_{0} \in \mathcal{R}^{n}$. Note also that $\{A, B, C, D\}^{(j)}$ may, in principle, be time-varying; timelinear $\{B, D\}^{(j)}$ will be addressed later. If one wishes to solve 'freely' for $Q(t)$, without the constraint $Q\left(t_{f}\right)=\Delta^{-1}$, the term $x^{T}\left(t_{f}\right)\left(\Delta-P\left(t_{f}\right)\right) x\left(t_{f}\right)$ remains in (7a) and requires further treatment, that will be shown later.

B. Solutions Utilizing Time-convexity

A well-known approach for finding a general time-varying $P(t)$ (or $Q(t)$) is the difference-LMIs (DLMIs) method [12], which is inherently suitable for time-varying systems. However, this method is extremely time-consuming because the computation time-step must be minute and an inversion of $P(t)$ is performed in each time-step. In contrast, the timeconvexity method proposed at length in [7] is computationally efficient, simple, and flexibly allows (in its piecewise form) elaborate variations in $P(t)$ with very little numerical overhead.

In its generic form, the time-convexity approach allows $Q(t)$ to vary linearly with time over $\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$, and (11) is assured for all $t \in\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$ by convexity. To this end, define

$$
\begin{gather*}
Q(t)=g_{1}(t) Q\left(t_{0}\right)+g_{2}(t) Q\left(t_{f}\right) \\
0 \leq g_{1}(t) \leq 1, \quad 0 \leq g_{2}(t) \leq 1 \tag{17a-e}\\
g_{1}(t)+g_{2}(t)=1, \quad g_{2}(t) \triangleq \frac{\Delta-t_{0}}{t_{f}-t_{0}}
\end{gather*}
$$

where in our setup $Q\left(t_{0}\right)$ is an unknown constant matrix, $Q\left(t_{f}\right)$ is the given $\Delta^{-1}($ see $(16 \mathrm{~b}))$, and $g_{1}(t), g_{2}(t)$ are the convex coordinates of $Q(t)$ in $\mathcal{C} o\left\{Q\left(t_{0}\right), Q\left(t_{f}\right)\right\}$. In fact, g_{2} is merely the normalized time, ranging from 0 at t_{0} to 1 at t_{f}. Note that $Q\left(t_{0}\right)>0$ and $Q\left(t_{f}\right)>0$ assure, by the convex description (17a-d), that $Q(t)>0$ for $t_{0} \leq t \leq t_{f}$, as required by (16a). Obviously, $\dot{Q}=\frac{Q\left(t_{f}\right)-Q\left(t_{0}\right)}{t_{f}-t_{0}}=$ Constant.

This convex characterization of $Q(t)$ over $\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$ is inherited to $\bar{\Psi}(Q(t))$ because the latter is affine in $Q(t)$ and otherwise contains constants. Thus,

$$
\begin{equation*}
\bar{\Psi}(Q(t))=g_{1}(t) \bar{\Psi}\left(Q\left(t_{0}\right)\right)+g_{2}(t) \bar{\Psi}\left(Q\left(t_{f}\right)\right) \tag{18}
\end{equation*}
$$

i.e. $\bar{\Psi}(Q(t)) \in \mathcal{C} o\left\{\bar{\Psi}\left(Q\left(t_{0}\right)\right), \bar{\Psi}\left(Q\left(t_{f}\right)\right)\right\}$. Thus, it suffices to find a $Q\left(t_{0}\right)>0$ for which $\bar{\Psi}\left(Q\left(t_{0}\right)\right)<0$ and to verify that $\bar{\Psi}\left(Q\left(t_{f}\right)\right)<0$ for the given $Q\left(t_{f}\right)=\Delta^{-1}>0$, since then $\bar{\Psi}(Q(t))<0 \forall t \in\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$ by (18).

Thus, under basic time-convexity and with $Q_{0}=Q\left(t_{0}\right)$, $Q_{f}=Q\left(t_{f}\right)$, the general equations (14)-(16) governing the solution to the problem specify to

$$
\begin{align*}
& {\left[\begin{array}{ccc}
-\frac{Q_{f}-Q_{0}}{t_{f}-t_{0}}+Q_{0} A^{(j)^{T}}+A^{(j)} Q_{0} & B^{(j)} & Q_{0} C^{(j)^{T}} \\
B^{(j)^{T}} & -\gamma I & D^{(j)^{T}} \\
C^{(j)} Q_{0} & D^{(j)} & -\gamma I
\end{array}\right]<0,} \\
& {\left[\begin{array}{ccc}
-\frac{Q_{f}-Q_{0}}{t_{f}-t_{0}}+Q_{f} A^{(j)^{T}}+A^{(j)} Q_{f} & B^{(j)} & Q_{f} C^{(j)^{T}} \\
B^{(j)^{T}} & -\gamma I & D^{(j)^{T}} \\
C^{(j)} Q_{f} & D^{(j)} & -\gamma I
\end{array}\right]<0,} \\
& j=1, \ldots, N, \tag{19a,b}\\
& {\left[\begin{array}{cc}
\rho & x_{0}^{(i)^{T}} \\
x_{0}^{(i)} & Q_{0}
\end{array}\right]>0,} \tag{20}\\
& Q_{0}>0, \quad Q_{f}=\Delta^{-1}>0 . \tag{21a-c}
\end{align*}
$$

The solution is obtained by solving the above for the unknowns Q_{0} and ρ, while minimizing ρ (Q_{f} is given by (21c)). The resulting $Q(t), t \in\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$, is given by (17). Note that the choice of Δ is restricted beyond just being positive-definite, since $Q_{f}=\Delta^{-1}$ appears in both (19b) and (19a).

As noted earlier, if γ is free rather than given, a lower ρ is attained. One can find the minimal ρ for progressively smaller values of γ (better induced \mathcal{L}_{2}-norms), or minimize $\rho+\alpha \gamma$ where $\alpha>0$ is a suitable arbitrary 'weight'.

If B and D are linearly time-dependent over $\mathcal{C} o\left\{\Omega^{(j)}\right\}$,

$$
\begin{align*}
& B(t)=g_{1}(t) B\left(t_{0}\right)+g_{2}(t) B\left(t_{f}\right) \\
& D(t)=g_{1}(t) D\left(t_{0}\right)+g_{2}(t) D\left(t_{f}\right) \tag{22}
\end{align*}
$$

the latter LMIs provide the solution to such a time-varying system, but with $B^{(j)}, D^{(j)}$ replaced by $B_{0}^{(j)}=B^{(j)}\left(t_{0}\right)$, $D_{0}^{(j)}=D^{(j)}\left(t_{0}\right)$ in (19a), and by $B_{f}^{(j)}=B^{(j)}\left(t_{f}\right), D_{f}^{(j)}=$ $D^{(j)}\left(t_{f}\right)$ in (19b).

Several advanced versions of the time-convexity approach are given in [7], which may be directly and easily applied to our problem in order to obtain better results than those offered by the generic time-convexity approach, described above. The general time-convexity method addresses a polytopically uncertain time-varying system and applies a piecewise-linear $Q(t)$ with Q-jumps at the intermediate timeinstants; it even allows piecewise-constant vertex-dependent $\gamma^{(j)}(t)$. Details regarding the (straightforward) application of the latter method to our problem will not be given here.

C. Time-convexity With $Q_{f} \neq \Delta^{-1}$

The choice $P\left(t_{f}\right)=\Delta$, or $Q_{f}=\Delta^{-1}$, leads to the simple and elegant (9), (12), (13), (15), and (20). However, this choice constrains $Q(t)$, thus leading to more conservative results than those that may be obtained with a 'free' $Q_{f}>$ 0 . This choice also constrains (by (19)) Δ, the ' x_{f}-weight' matrix in (6), which in principle should be chosen freely by the control designer.

If $P\left(t_{f}\right)$ is not required to equal Δ, the term $x^{T}\left(t_{f}\right)(\Delta-$ $\left.P\left(t_{f}\right)\right) x\left(t_{f}\right)$, which is of an indeterminate sign(!), does not vanish from $J\left(\Omega, x_{0}\right)$ and (9) becomes

$$
\begin{equation*}
J\left(\Omega, x_{0}\right)<x_{0}^{T} P\left(t_{0}\right) x_{0}+x^{T}\left(t_{f}\right)\left(\Delta-P\left(t_{f}\right)\right) x\left(t_{f}\right) \tag{23}
\end{equation*}
$$

The RHS of (23) will now be reduced to a quadratic expression in x_{0} only (as in (9)), which enables transforming (23) into an LMI like (13), by utilizing the state-transition matrix which relates $x\left(t_{f}\right)$ to x_{0} and by applying (7c) to express w^{*} in terms of $x . \Delta$ may again be nonnegative definite.

Since $w=w^{*}$ maximizes the RHS of (7a), it should be applied to find the bound on $J\left(\Omega, x_{0}\right)$. So, substitute $w=$ $\gamma^{-2} B^{T} P x$ into (1a):

$$
\begin{equation*}
\dot{x}=A x+B\left(\gamma^{-2} B^{T} P x\right)=\left(A+\gamma^{-2} B B^{T} P\right) x \tag{24}
\end{equation*}
$$

Define $\hat{A}=A+\gamma^{-2} B B^{T} P$ and note that here $\hat{A}=\hat{A}(t)$, even though the system (1) is time-invariant, since here $P=P(t)$. Constrain $P(t)$ to be linear in time (compare (17)):

$$
\begin{equation*}
P(t)=P\left(t_{0}\right)+\left(t-t_{0}\right) \dot{P}, \quad \dot{P}=\frac{P\left(t_{f}\right)-P\left(t_{0}\right)}{t_{f}-t_{0}} \tag{25a,b}
\end{equation*}
$$

This results in linear dependence of $\hat{A}(t)$ on time:

$$
\begin{align*}
& \hat{A}(t)=\hat{A}_{0}+\left(t-t_{0}\right) \dot{\hat{A}} \\
& \hat{A}_{0}=A+\gamma^{-2} B B^{T} P_{0} \tag{26a-c}\\
& \dot{\hat{A}}=\gamma^{-2} B B^{T} \dot{P}
\end{align*}
$$

where $\hat{A}_{0}=\hat{A}\left(t_{0}\right), P_{0}=P\left(t_{0}\right)$.

Denote by Φ the state-transition matrix associated with $\hat{A}(t)$, which satisfies

$$
\begin{equation*}
\frac{d}{d t} \Phi\left(t, t_{0}\right)=\hat{A}(t) \Phi\left(t, t_{0}\right), \quad \Phi\left(t_{0}, t_{0}\right)=I \tag{27a-b}
\end{equation*}
$$

Since $\hat{A}(t)$ is linear in time, (27) has an explicit solution:

$$
\begin{equation*}
\Phi\left(t, t_{0}\right)=e^{\left(t-t_{0}\right) \hat{A}_{0}+\frac{1}{2}\left(t-t_{0}\right)^{2} \dot{\hat{A}}} \tag{28}
\end{equation*}
$$

Thus, for $w=w^{*}$ the state equation (1a) becomes the homogeneous equation (24), and with the time-linear $P(t)$ prescribed in (25) it has the explicit solution

$$
\begin{equation*}
x(t)=\Phi\left(t, t_{0}\right) x\left(t_{0}\right)=e^{\left(t-t_{0}\right) \hat{A}_{0}+\frac{1}{2}\left(t-t_{0}\right)^{2} \dot{\hat{A}}} x_{0} \tag{29}
\end{equation*}
$$

For $t=t_{f}$ we have

$$
\begin{equation*}
x_{f}=x\left(t_{f}\right)=e^{\left(t_{f}-t_{0}\right) \hat{A}_{0}+\frac{1}{2}\left(t_{f}-t_{0}\right)^{2} \dot{\hat{A}}} x_{0} \tag{30}
\end{equation*}
$$

Note that (24), (26) and (28)-(30) are (also) functions of the system matrices A and B, that is are Ω-dependent. The above expressions have the following versions at the vertices $\Omega^{(j)}$ of the system uncertainty region (with $P_{f}=P\left(t_{f}\right)$):

$$
\begin{align*}
& \hat{A}^{(j)}(t)=\hat{A}_{0}^{(j)}+\left(t-t_{0}\right) \dot{\hat{A}}^{(j)} \\
& \hat{A}_{0}^{(j)}=A^{(j)}+\gamma^{-2} B^{(j)} B^{(j)^{T}} P_{0} \tag{31a-c}\\
& \dot{\hat{A}}^{(j)}=\gamma^{-2} B^{(j)} B^{(j)^{T}} \dot{P}=\gamma^{-2} B^{(j)} B^{(j)^{T}} \frac{P_{f}-P_{0}}{t_{f}-t_{0}} \\
& \Phi^{(j)}\left(t, t_{0}\right)=e^{\left(t-t_{0}\right) \hat{A}_{0}^{(j)}+\frac{1}{2}\left(t-t_{0}\right)^{2} \dot{\hat{A}}^{(j)}} \\
& \Phi_{f}^{(j)}=\Phi^{(j)}\left(t_{f}, t_{0}\right)=e^{\left(t_{f}-t_{0}\right) \hat{A}_{0}^{(j)}+\frac{1}{2}\left(t_{f}-t_{0}\right)^{2} \dot{\hat{A}}^{(j)}} \tag{32a,b}
\end{align*}
$$

It is important to realize that $\Phi^{(j)}$ entails no convexity with respect to Ω, because of the exponentiation of the system matrices and because of the product $B^{(j)} B^{(j)^{T}}$. As for x_{f}, we denote the x_{f} corresponding to the $j^{\text {th }}$ vertex $-\Omega$ and to the $i^{t h}$ vertex- x_{0} as
$x_{f}^{(i, j)}=\Phi^{(j)}\left(t_{f}, t_{0}\right) x_{0}^{(i)}, \quad i=1, \ldots, M, j=1, \ldots, N$.
The solution in this section again consists of a set of BRL LMIs like (19), now in terms of P rather that Q, and a set of ICs LMIs broader than (20), which emanate from (23). Because of (33), the ICs LMIs now involve also $\Omega^{(j)}$, but no convexity over $\mathcal{C} o\left\{\Omega^{(j)}\right\}$ can be guaranteed.
The governing BRL LMIs are:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\frac{P_{f}-P_{0}}{t_{f}-t_{0}}+A^{(j)^{T}} P_{0}+P_{0} A^{(j)} & P_{0} B^{(j)} & C^{(j)^{T}} \\
B^{(j)^{T}} P_{0} & -\gamma I & D^{(j)^{T}} \\
C^{(j)} & D^{(j)} & -\gamma I
\end{array}\right]<0} \\
& {\left[\begin{array}{ccc}
\frac{P_{f}-P_{0}}{t_{f}-t_{0}}+A^{(j)^{T}} P_{f}+P_{f} A^{(j)} & P_{f} B^{(j)} & C^{(j)^{T}} \\
B^{(j)^{T}} P_{f} & -\gamma I & D^{(j)^{T}} \\
C^{(j)} & D^{(j)} & -\gamma I
\end{array}\right]<0}
\end{aligned}
$$

$j=1, \ldots, N$.
(34a,b)
The RHS of (23) is the (possibly negative) bound on the cost. It can be minimized by minimizing the (possibly negative) scalar ρ in

$$
\begin{gathered}
\rho>x_{0}^{T} P\left(t_{0}\right) x_{0}+x^{T}\left(t_{f}\right)\left(\Delta-P\left(t_{f}\right)\right) x\left(t_{f}\right) \quad \Rightarrow \\
\rho-x_{0}^{T} P\left(t_{0}\right) x_{0}>-x^{T}\left(t_{f}\right)\left(P\left(t_{f}\right)-\Delta\right) x\left(t_{f}\right)
\end{gathered}
$$

The governing ICs LMIs are now obtained by applying Schur complements on both sides of the latter inequality, and using (33):

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\rho & x_{0}^{(i)^{T}} \\
x_{0}^{(i)} & P_{0}^{-1}
\end{array}\right]>\left[\begin{array}{cc}
0 & x_{0}^{(i)^{T}} \Phi_{f}^{(j)^{T}} \\
\Phi_{f}^{(j)} x_{0}^{(i)} & \left(P_{f}-\Delta\right)^{-1}
\end{array}\right],} \\
& i=1, \ldots, M, \quad j=1, \ldots, N .
\end{aligned}
$$

The solution is obtained, in principle, by solving (34)-(35), where $\Phi_{f}^{(j)}$ is defined in (31)-(32), for the unknown matrices $P_{0}>0$ and $P_{f}>0$ and the scalar ρ, while minimizing ρ. The resulting minimal ρ is the minimal $J\left(\Omega, x_{0}\right)$ that can be assured over the whole ICs uncertainty region and (simultaneously) over the finite set of vertices of the systemmatrices uncertainty region. One may claim that addressing the whole $\mathcal{C} o\left\{\Omega^{(j)}\right\}$ in (34), by convexity, and all $\Omega^{(j)}$ in (35), provides 'some' assurance over the whole $\mathcal{C} o\left\{\Omega^{(j)}\right\}$. One may even add points within $\mathcal{C} o\left\{\Omega^{(j)}\right\}$, e.g. its 'center' defined by $f_{j}=1 / N \forall j$ (see [5],[6]), to the set solved in (35) in order to 'improve the coverage' of $\mathcal{C} o\left\{\Omega^{(j)}\right\}$. The resulting $P(t), t \in\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$, is given by (25).

Obviously, (34) and (35) cannot be solved together by LMI solvers because P_{0} and P_{f} appear nonlinearly in (35) and in (32b) (see (31b-c)). A plausible procedure to obtain a sub-optimal solution consists of the following three steps:

1) Solve (34) for $P_{0}>0$ and $P_{f}>0$;
2) Use these P_{0} and P_{f} to compute all $\Phi_{f}^{(j)}$ according to (32b) and (31b-c);
3) Plug these $\Phi_{f}^{(j)}, P_{0}$ and P_{f} in (35), and minimize ρ.

An alternative approach, which attempts to find the minimal cost over $\mathcal{C} o\left\{\Omega^{(j)}\right\}$ by 'full' convexity, hinges upon the following intuitive x_{f}-convexification conjecture:

Conjecture 1: Find among the $M N$ points $x_{f}^{(i, j)}$ in \mathcal{R}^{n} (see (33)) a subset of L vertices ($L \leq M N$) such that all these $M N$ points belong to $\mathcal{C} o\left\{x_{f}^{(k)}, k=1, \ldots, L\right\}$. Then, for any Ω in $\mathcal{C} o\left\{\Omega^{(j)}\right\}$ and any x_{0} in $\mathcal{C} o\left\{x_{0}^{(i)}\right\}$, the corresponding x_{f} (see (30)) is in $\mathcal{C} o\left\{x_{f}^{(k)}, k=1, \ldots, L\right\}$.

The conjecture is applied as follows. First, re-write (35) in terms of $x_{f}^{(k)}$:

$$
\begin{align*}
& {\left[\begin{array}{cc}
\rho & x_{0}^{(i)^{T}} \\
x_{0}^{(i)} & P_{0}{ }^{-1}
\end{array}\right]>\left[\begin{array}{cc}
0 & x_{f}^{(k)^{T}} \\
x_{f}^{(k)} & \left(P_{f}-\Delta\right)^{-1}
\end{array}\right],} \tag{36}\\
& i=1, \ldots, M, \quad k=1, \ldots, L .
\end{align*}
$$

Then, obtain a sub-optimal solution by the following five steps (steps 1 and 2 are unchanged):

1) Solve for $P_{0}>0$ and $P_{f}>0$;
2) Use these P_{0} and P_{f} to compute all $\Phi_{f}^{(j)}$;
3) Use these $\Phi_{f}^{(j)}$ and all the given $x_{0}^{(i)}$ to compute the $M N$ points $x_{f}^{(i, j)}$ (see (33)); the final-states can also be found by direct integration of the N vertex-systems (with the P_{0} and P_{f} of step 1) from the M vertex-ICs;
4) Find among these $M N$ points a subset of L vertices ($L \leq M N$) such that all $M N$ points $x_{f}^{(i, j)}$ belong to $\mathcal{C} o\left\{x_{f}^{(k)}, k=1, \ldots, L\right\} ;$
5) Plug these L points $x_{f}^{(k)}$, together with the P_{0} and P_{f} found in step 1 , in (36), and minimize ρ.

IV. Numerical Example

Consider these $\Omega^{(1: 3)}, x_{0}^{(1: 3)}$, and problem parameters:

$$
\begin{gathered}
A^{(1)}=\left[\begin{array}{cc}
0 & 1 \\
-1.8 & -0.5
\end{array}\right], A^{(2)}=\left[\begin{array}{cc}
-0.9 & 0.2 \\
0.6 & -0.4
\end{array}\right], A^{(3)}=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.1
\end{array}\right], \\
B^{(1)}=B^{(3)}=\left[\begin{array}{c}
-1.4 \\
1
\end{array}\right], B^{(2)}=\left[\begin{array}{c}
-0.6 \\
1
\end{array}\right], \\
C=\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right], D=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; t_{0}=0, t_{f}=2, \quad \Delta=\left[\begin{array}{cc}
2 & 0.2 \\
0.2 & 1.5
\end{array}\right], \\
x_{0}^{(1)}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right], x_{0}^{(2)}=\left[\begin{array}{l}
2 \\
2
\end{array}\right], x_{0}^{(3)}=\left[\begin{array}{c}
0 \\
-2
\end{array}\right], \gamma=20 .
\end{gathered}
$$

Applying (19)-(21), the minimal $J\left(\Omega, x_{0}\right)$ that can be jointly assured over the ICs and parameters uncertainty regions is $\rho=3996$, and $Q_{0}=\left[\begin{array}{cc}0.0425 & 0.0463 \\ 0.0463 & 0.0550\end{array}\right]$. If $x_{0}^{(1: 3)}$ is enlarged tenfold, ρ (unsurprisingly) grows by 10^{2} and Q_{0} remains the same. If γ is free and $\rho+10 \gamma$ is minimized, the solution is $\rho=70.68, \gamma=25.4$, and $Q_{0}=\left[\begin{array}{ll}0.1301 & 0.0208 \\ 0.0208 & 0.1381\end{array}\right]$. If $x_{0}^{(1: 3)}$ is enlarged tenfold, and $\rho+10 \gamma$ is minimized, we obtain $\rho=2547.3, \gamma=62.7$, and $Q_{0}=\left[\begin{array}{cc}0.2938 & -0.0000 \\ -0.0000 & 0.3374\end{array}\right]$.

Now we go through the three-step procedure for obtaining a (sub-optimal) solution of (34)-(35) without the conjecture. The first step results in $P_{0}=\left[\begin{array}{ll}2.8245 & 0.9005 \\ 0.9005 & 1.8362\end{array}\right], \quad P_{f}=$ $\left[\begin{array}{ll}0.2538 & 0.1828 \\ 0.1828 & 0.1536\end{array}\right]$. If γ is free, the result is $\gamma=19.42, P_{0}=$ $\left[\begin{array}{ll}2.0013 & 0.5682 \\ 0.5682 & 1.5818\end{array}\right]$ and $P_{f}=\left[\begin{array}{ll}0.1803 & 0.1573 \\ 0.1573 & 0.1373\end{array}\right]$. We proceed with the results applicable to the given γ.
The second step calls for the computation of $\Phi_{f}^{(1: 3)}$, which turn out to be $\Phi_{f}^{(1)}=\left[\begin{array}{cc}-0.4779 & 0.2235 \\ -0.4035 & -0.5908\end{array}\right], \Phi_{f}^{(2)}=$ $\left[\begin{array}{ll}0.2246 & 0.1224 \\ 0.3684 & 0.5328\end{array}\right]$, and $\Phi_{f}^{(3)}=\left[\begin{array}{cc}1.0318 & -0.0019 \\ -0.0091 & 1.2229\end{array}\right]$.
To demonstrate the design freedom and better performance afforded by not requiring $P\left(t_{f}\right)=\Delta$, we compute the third step (only in which Δ appears) with various Δ 's. The original Δ leads to $\rho=21.61$; a tenfold larger Δ leads to $\rho=55.75$; a 50% smaller Δ leads to $\rho=10.39$. Note the drastic drop in ρ relative to 3996 (about 99.5%, with the original Δ). However, the latter small ρ 's are not analytically guaranteed over the whole parameters uncertainty region.

Next, we 'trust the conjecture' and go through the fivestep procedure for obtaining a (sub-optimal) solution of (34)-(35). Steps 1 and 2 are the same as in the previous procedure. The results of steps 3 and 4 are depicted in Figure 1 ; the nine final states corresponding to the three vertexΩ and the three vertex- x_{0} are the same as (implicitly addressed) in the previous procedure; the convex hull $\operatorname{Co}\left\{x_{f}^{(k)}\right\}$, based on $L=5$ final states only, was obtained by Matlab's convhull function. Step 5 produces $\rho=21.61$, the same result as without the conjecture (this intuitively 'corroborates' the conjecture). If the conjecture is true, then under timeconvexity over $\left[\begin{array}{ll}t_{0} & t_{f}\end{array}\right]$ (without time sub-divisions), this is the minimal $J\left(\Omega, x_{0}\right)$ that can be jointly assured, using the single Lyapunov function $x^{T} P(t) x$, over the given ICs and parameters uncertainty regions, with the given γ and Δ.

V. Conclusions

Tractable solutions, based on time-convexity, have been presented to a practical finite-horizon robust H_{∞} analysis problem, where the optimization is with respect to a standard H_{∞} cost function with a given/free disturbance attenuation level. The problem is 'practical' because not only the system uncertain matrices lie in finite convex polytope; the uncertain initial conditions lie also in finite convex polytope. This approach removes the severe conservatism incurred by allowing 'any' initial condition.

Full parameters/ICS/time convexity applies when the finalstate weight matrix, which appears in the H_{∞} cost to be minimized, constrains the final value of matrix timefunction used in the quadratic Lyapunov function. Without this constraint, the result is not convex over the parameters uncertainty region because the state-transition matrix is not convex with respect to the system matrices. For this case, a sub-optimal simple solution procedure is suggested. Finally, a final-state convexity conjecture is proposed, under which full convexity may be guaranteed for the solution. The numerical example shows a dramatic advantage of the two procedures which do not require $P\left(t_{f}\right)=\Delta$.

Advanced versions of time-convexity (see [7]), more elaborate Lyapunov functions, and sophisticated BRL LMIformulations, can be applied within the proposed approach. Extension of the method to state-feedback control design is straightforward. The conjecture might be useful in other robust finite-horizon control problems.

Acknowledgement: I thank Prof. Uri Shaked of TAU for discussing the ideas presented in the paper with me and for his comments on the paper.

REFERENCES

[1] M. Athans and P.L. Falb. Optimal Control. McGraw-Hill, N.Y., 1966.
[2] F. Blanchini and S. Miani. "A New Class of Universal Lyapunov Functions for the Control of Uncertain Linear Systems", IEEE Trans. Automatic Control, Vol. 44, No. 3, pp. 641-647, 1999.
[3] S. Boyarski and U. Shaked. Discrete-time $H_{\infty} \& H_{2}$ control with structured disturbances and probability-relaxed requirements. Int. J. Control, 77:1243-1259, 2004.
[4] S. Boyarski. A probability-guaranteed approach to robust H_{∞} and H_{2} analysis, control, estimation and signal modeling. PhD thesis, Tel Aviv University, 2008.
[5] S. Boyarski and U. Shaked. "Robust H_{∞} control design for best mean performance over an uncertain-parameters box", Systems and control letters, Vol. 54, No. 6, pp. 585-595, 2005.
[6] S. Boyarski. Polytopic Best-Mean H_{∞} Performance Analysis. Proceedings of AEE'08, Trondheim.
[7] S. Boyarski and U. Shaked. Time-Convexity \& Time Gain-Scheduling in Finite-Horizon Robust H_{∞}-Control. Proc. of CDC2009, Shanghai.
[8] S. Boyarski and U. Shaked. H_{∞} Tracking with Commands Generated by Unstable Autonomous Systems Having Initial Conditions in Finite Hyper-rectangles. Proc. of GNC2010, Totonto.
[9] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan. LMIs in Systems and Control Theory, SIAM Frontier Series, 1994.
[10] J. Doyle, K. Zhou, K. Glover, and B. Bodenheimer. Mixed H_{2} / H_{∞} Perfor. Objectives: Opt. Control. IEEE TAC, 39(8):1575-1587, 1994.
[11] P. Gahinet, P. Apkarian and P. Chilali. "Affine parameter-dependent Lyapunov functions and real parametric uncertainty", IEEE Trans. on Automatic Control, Vol. 41, No. 3, pp. 436-442, 1996.
[12] E. Gershon, U. Shaked, and I. Yaesh. Control and Estimation of Statemultiplicative Linear systems. Springer, 2005.
[13] M. Green and D.J.N. Limebeer. Linear Robust Control. Pr. Hall, 1995.
[14] A. Hassibi and S. Boyd. "Quadratic Stabilization and Control of Piecewise-Linear Systems", Proc. of the ACC, Philadelphia, 1998.
[15] I. Horowitz. Synthesis of Feedback Systems. Academic, N.Y., 1963.
[16] P.P. Khargonekar, K.M. nagpal, and K.R. Poola. H_{∞} Control with transients. SIAM Control and Optimization, 29(6):1373-1393, 1991.
[17] H. Kwakernaak and R. Sivan. Lin. Opt. Cont. Sys. Wiley, NY, 1972.
[18] D.J.N. Limebeer, B.D.O. Anderson, P.P. Khargonekar and M. Green. "A game-theoretic approach to H_{∞} control for time-varying systems", Tech. Report, Dep. of EE, Imperial College, London, 1989.
[19] K.-Z. Liu and R. He. "A simple derivation of ARE solutions to the standard H_{∞} control problem based on LMI solution. Systems and Control Letters, 55(6):487-493, 2006.
[20] I. Masubuchi, A. Kume and E. Shimemura. "Spline-Type Solution to Parameter-Dependent LMIs", Proc. of the 37th CDC, Tampa, 1998.
[21] T. Namerikawa, M. Fujita, R.S. Smith, and K. Uchida. A generalized H_{∞} control design attenuating initial state uncertainties. Proc. of ACC 2002, 3:2204-2209, vol. 3, 2002.
[22] M.C. de Oliveira and R.E. Skelton. "Stability test for constrained linear systems", Perspectives in Robust Control, S. O. Reza Moheimani Ed., Lecture Notes in Cont. \& Info. Sci. 268, Springer, London, 2001.
[23] C. Scherer. Mixed H_{2} / H_{∞} Control for Time-Varying and Linear Parametrically-Varying Systems. Inter. Jour. of Robust and Nonlinear Control, 6:929-952, 1996.
[24] U. Shaked and C.E. de Souza. Continuous-time tracking problems in a H_{∞} setting, game theory approach. IEEE TAC, 40:841-852, 1995.
[25] D.J. Stilwell and W.J. Rugh. "Interpolation of Observer State Feedback Controllers for Gain Scheduling", IEEE Trans. Auto. Cont., Vol. 44, No. 6, pp. 1225-1229, 1999.
[26] G. Tadmor. "Worst-case design in the time domain: The maximum principle and the standard H_{∞} problem", Math. of Control Signals Systems, Vol. 3, No. 4, pp. 301-324, 1989.
[27] K. Uchida, A. Kojima, and M. Fujita. H_{∞} Control Attenuating InitialState Uncertainties. Int. J. of Control, 66(2):245-252, 1997.
[28] L. Xie and S. L. Shishkin. "Piecewise Lyapunov functions for robust stability of linear time-varying systems", 34th CDC, N. Orleans, 1995.
[29] I. Yaesh, and U. Shaked. Two degree of freedom H_{∞} optimization of multivariable feedback systems. IEEE TAC, 36:1272-1276, 1991.
[30] I. Yaesh, S. Boyarski, and U. Shaked. Probability-guaranteed robust H_{∞} performance analysis and state-feedback design. Systems and Control Letters, 48:351-364, 2003.
[31] K. Zhou, K. Glover, B. Bodenheimer, and J. Doyle. Mixed H_{2} and H_{∞} Performance Objectives I: Robust Performance Analysis. IEEE TAC, 39(8):1564-1574, 1994.

Fig. 1. The nine final vertex-states and their convex hull

