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Abstract— This paper addresses a linear finite-horizon robust
optimal H∞ analysis problem, where the system matrices
and the system initial conditions (ICs, x0) are concurrently
uncertain, both in a polytopic manner. Current finite-horizon
H∞ analysis practice assumes x0 ∈R

n; that is, allows infinite
ICs uncertainty. This assumption is unrealistically conservative,
and incompatible with the prevalent robust H∞ analysis prac-
tice of attributing finite uncertainty to the systems’s param-
eters/matrices. Here, the ICs uncertainty model is analogous
to the (convex) uncertainty model of the system matrices.
The development applies H∞ ‘first principles’, and exploits
convexity over the matrices uncertainty polytope, over the
ICs uncertainty polytope, and over time (‘time-convexity’). A
conjecture regarding polytopic final-state convexity in this setup
is given, and applied, to overcome non-convexity of the state-
transition matrix with respect to the system matrices. A detailed
numerical example shows a dramatic advantage of the methods
which do not constrain the final Lyapunov function.

I. INTRODUCTION

H∞ control with initial state uncertainty has been in-

vestigated by several researchers (e.g. [16][27]), however a

bound on the initial state uncertainty was not introduced. The

more recent work [21] deals with H∞ attenuation of both

disturbances and initial-state uncertainty for LTI systems in

the infinite-horizon case. Tadmor [26] was probably the first

to give a solution via state-space methods to the H∞ control

problem for linear time-varying systems for the finite-horizon

case; the results are in terms of two coupled indefinite Riccati

equations. A game-theoretic solution for the same problem

was given in [18]. State-space solutions for time-invariant

systems in finite horizon, while (for the first time) taking

initial conditions into account, were given in terms of one

differential Riccati equation (state-feedback) or two coupled

ones (output-feedback) in [16]. These works, and many later

ones which pose their results in differential linear matrix

inequalities (LMI) form, e.g. [9], do not provide a method

for actually solving the relevant LMIs for the (symmetric)

matrix time-function P (t).

A quite known approach for finding a general time-varying

P (t) is the difference-LMIs (DLMIs) method [12]. However,

this method is extremely time-consuming because the com-

putation time-step must be minute and an inversion of P (t) is

performed in each time-step. In contrast, the time-convexity

method proposed in [7] is computationally efficient, sim-

ple, and flexibly allows (in its piecewise form) elaborate

variations in P (t) with very little numerical overhead. The

core idea is to search for a time-linear P (t) and to exploit

convexity in (normalized) time over the scenario duration in

order to reduce the (originally differential) problem to ‘static’

LMIs at the scenario end-points.

Piecewise-quadratic/linear Lyapunov functions have been

extensively used for analyzing linear time-varying and

uncertain systems, mainly piecewise-linear/affine systems

(cell/region-dependent) and switched/hybrid systems (case-

dependent). For example, [28] aimed at reducing the con-

servatism of the quadratic stability test for uncertain time-

varying systems by using two-term piecewise quadratic Lya-

punov functions; the results involve the convex combination

of two matrices. In [14] piecewise-linear systems are an-

alyzed by piecewise-quadratic, region-dependent Lyapunov

functions. [2] addresses uncertain linear systems affected

(within a given polytope) by time-varying uncertain param-

eters. Note that [8] is the first work applying a linear time-

variation of P (t) and fully exploiting time-convexity.

ICs-uncertainty seems to be no less important, in prac-

tical situations, than parameter-uncertainty. In this paper,

finite uncertainty affects the system’s ICs. Addressing finite

ICs-uncertainty, analogously to the standard treatment of

parameter-uncertainty, removes severe conservatism inherent

in assuming x0 ∈ Rn. It is shown that the resulting LMIs

depend upon the ICs in a convex manner; this profound

fact admits conditions regarding a (joint) performance bound

over both the parameters and the ICs uncertainty regions.

Convexity over the parameters uncertainty region does not

formally hold when P (tf ) is unconstrained, and a suitable

‘covering’ conjecture is proposed and applied.

In [8], a tracking performance analysis paper, the ICs un-

certainty was specified as an interval for each component of

x0, thus the ICs uncertainty region was a hyper-rectangle in

Rn; the system itself was not uncertain; and the development

hinged on a theorem from [12]. Here, in contrast, we deal

with a general analysis problem; both the system matrices

and the system’s ICs are uncertain, both in a general convex

polytopic manner; and no use is made of the latter theorem:

the development applies ‘first principles’.

Notation: The signal norm addressed is the standard L2-

norm, ||w||22, [t0 tf ]
=

∫ tf

t0
wT (τ)w(τ)dτ , where wT is the

transpose of w. The space of continuous-time functions in

Rp that are square integrable over [t0 tf ] is Lp
2 [t0 tf ].

Co{G(j)} denotes the convex hull of G(j), j=1, . . . , N .

II. PROBLEMS FORMULATION

Consider the uncertain (stable or unstable) time-invariant

linear system (some time-variance will later be introduced)
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ẋ = Ax+Bw, x(t0) = x0

z = C x+Dw
(1a,b)

where x∈Rn is the system state, w∈Rp is a deterministic

energy-bounded disturbance in Lp
2 [t0 tf ], and z ∈ Rm

is the signal to be regulated. The matrices {A,B,C,D},

collectively denoted

Ω
∆
=

[

A B
C D

]

, (2)

belong to the convex hull Co{Ω(j), j = 1, . . . , N} of the

given N vertices (vertex-systems)

Ω(j) ∆
=

[

A(j) B(j)

C(j) D(j)

]

, j = 1, . . . , N . (3)

That is,

Ω =
∑N

j=1 fj Ω
(j), 0 ≤ fj ≤ 1,

∑N

j=1 fj = 1 . (4)

The variables fj are called the convex coordinates (CC) of

Ω in Co{Ω(j)}.

The initial conditions (ICs) vector x0 is also uncertain

in our setup. This is not a new idea, of course. However,

the common finite-horizon H∞ analysis practice assumes

x0 ∈ Rn; that is, allows infinite x0 uncertainty. This as-

sumption is most unrealistic since there must be ‘limits’

to x0, and control designers usually can make plausible

practical statements about them; thus, infinite x0 uncer-

tainty is a prohibitively conservative assumption. Moreover,

this assumption is incompatible with the prevalent robust

H∞ analysis practice of attributing finite/limited uncertainty

to the systems’s parameters. For these reasons, in our setup

we do not allow x0 to reside anywhere in Rn; its uncertainty

is finite. In fact, the x0 uncertainty model undertaken here is

analogous to the uncertainty of {A,B,C,D}: there are M

given vertices x
(i)
0 ∈Rn that define a convex ICs polytope

Co{x
(i)
0 , i=1, . . . ,M}, (only) in which x0 may reside:

x0 =
∑M

i=1 gi x
(i)
0 , 0 ≤ gi ≤ 1,

∑M

i=1 gi = 1, (5)

where gi are the CC of x0 in Co{x
(i)
0 }.

Denote by J(Ω, x0) the standard finite-horizon H∞ cost

(see [13]) corresponding to some Ω, that is a single system

in Co{Ω(j)}, and to a single x0∈Co{x
(i)
0 }:

J(Ω, x0) = ‖z(Ω, x0)‖
2
2, [t0 tf ]

− γ2‖w‖22, [t0 tf ]
+ xf

T∆xf .
(6)

‖w‖2, [t0 tf ] is the finite-horizon L2-norm of w. z(Ω, x0) is

the z which emanates, in response to w, from a system hav-

ing some Ω and some x0; and ‖z(Ω, x0)‖2, [t0 tf ] is its L2-

norm. Both L2-norms are computed with t ∈ [t0 tf ], where

t0 and tf are given. The scalar γ > 0, also given, is under

infinite-horizon H∞ scenario (where x0 is zero and J < 0
is assured) the bound on the disturbance attenuation level

(or induced L2-norm) supw∈L2 [0 ∞), w 6=0 ‖z‖2/‖w‖2 .

∆ is a given nonnegative definite ‘xf -weight’ matrix, where

xf = x(tf ). An analysis problem can now be posed:

Problem: Find the minimal J(Ω, x0) that can be jointly

assured over given Co{Ω(j)} and Co{x
(i)
0 }, for all w ∈

L2 [t0 tf ], w 6= 0, with given γ > 0 and ∆ ≥ 0.

III. SOLUTION

A. The prevailing LMIs

In the sequel, the very simple, conservative ‘quadratically

stabilizing’ method will be used because it facilitates a clear

exposition of our main idea. The latter, however, is by no

means limited to a single Lyapunov-function.

It can easily be shown that, by using the single Lyapunov

function xTP (t)x, 0<P (t) =PT (t), and ‘completing the

squares’, the following holds for the cost defined in (6),

computed for the single system (1) [9]:

J(Ω, x0) =
∫ tf

t0
xT (τ)Ψ(P (τ))x(τ)dτ + xT

0 P (t0)x0

−γ2
∫ tf

t0
(w−w∗)

T
(w−w∗) dτ + xT (tf )(∆− P (tf ))x(tf ),

R = γ2I −DTD, w∗ = γ−2BTPx,

Ψ(P (t)) = P (A+BR−1DTC) + (A+BR−1DTC)TP

+PBR−1BTP + CT (I +DR−1DT )C + Ṗ .
(7a-d)

An upper bound on J(Ω, x0) is identified as follows. The

term −γ2
∫ tf
t0

(w − w∗)
T
(w − w∗) dτ can obviously only

reduce J (i.e. J(w) < J(w∗)), hence can be eliminated from

the bound’s expression; this is tantamount to choosing w =
w∗. If a P (t) > 0 can be found such that Ψ(P (t)) < 0 is

assured, as in the celebrated bounded-real lemma (BRL) [13],

then the (negative) term
∫ tf

t0
xT (τ)Ψ(P (τ))x(τ)dτ can also

be eliminated. (Theoretical details regarding the negative-

definiteness of Ψ(P (t)) can be found in [19].) Finally,

constrain P (t) by choosing

P (tf ) = ∆. (8a-c)

This constraint will later be alleviated, enabling better per-

formance at the price of complication of the analysis and

some loss of convexity. The following is obtained:

J(Ω, x0) < xT
0 P (t0)x0. (9)

That is, xT
0 P (t0)x0 (unsurprisingly) constitutes the sought

upper bound on J(Ω, x0) under the worst-case disturbance

w∗, P (t) > 0, P (tf) = ∆ (this requires ∆ to be positive-

definite, rather than nonnegative definite), and Ψ(P (t)) < 0,

where t ∈ [t0 tf ].
The matrix inequality Ψ(P (t))< 0 is equivalent, by the

Schur complements formula, to the LMI

Ψ̃(P (t))
∆
=

[

Ṗ + ATP + PA PB CT

BTP −γI DT

C D −γI

]

< 0. (10)

That is, the requirement Ψ(P (t)) < 0 can be fulfilled by

assuring Ψ̃(P (t))< 0 for some P (t)> 0 during [t0 tf ].
Note that if the system is unstable the steady-state version

of (10), where Ṗ ≡ 0 and Ψ̃ = Ψ̃(P ), cannot be applied

since Ψ̃(P ) < 0 cannot be assured [13]. If the system is

asymptotically stable a constant P may be tried, but it is

usually too conservative in a finite-horizon setting. The latter

setting can be better handled by a time-varying P (t) since the

term Ṗ and the changing P (t) may make Ψ̃(P (t)) negative-

definite; the system may then be unstable, and even time-

varying.

Define Q(t)
∆
= P−1(t) > 0 and S

∆
= diag{Q(t), I, I}.

Note that (10) can be transformed into an equivalent LMI in

Q(t) by multiplying Ψ̃(P (t)) by S=ST >0 on both sides,
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since the negative-definiteness of Ψ̃(P (t)), now denoted

Ψ̄(Q(t)), is not altered by this operation. The result is

Ψ̄(Q(t))
∆
=





−Q̇+QAT +AQ B QCT

BT
−γI DT

CQ D −γI



 < 0, (11)

where Q̇= ˙(P−1) =−P−1ṖP−1 =−QṖQ has been used.

With Q(t), (9) can be rephrased as

J(Ω, x0) < xT
0 Q

−1(t0)x0. (12)

The (positive) bound xT
0 Q

−1(t0)x0 can be minimized, using

again the Schur complements formula, by minimizing the

scalar ρ > 0 while maintaining
[

ρ xT
0

x0 Q(t0)

]

> 0 . (13)

Thus, for a single known (possibly time-varying) Ω and a

single x0, the LMIs (11) and (13) need simply be solved

together for ρ > 0 and Q(t) > 0 while minimizing ρ. Note

that the resulting ρ is, in fact, the value of the (lowest) bound

xT
0 Q

−1(t0)x0 on J(Ω, x0). Note also that if γ is free, rather

than given, a lower bound on J is found, usually along with

a very high γ (which makes the result almost an H2 result);

however, it turns out that the decrease in ρ is often small.

Minimizing ρ + αγ, where α > 0 is an arbitrary weight,

is a reasonable option. The minimal γ is usually associated

with Q of extreme eigenvalues, thus it is common practice

to ‘pull back’ from the minimal γ.

The problem posed at the end of Section II requires

finding the minimal J(Ω, x0) over the whole of Co{Ω(j)}

and of Co{x
(i)
0 }, jointly. This can now, obviously, be readily

achieved by applying standard convexity practices since (11)

is convex in Ω and (13) is convex in x0. Thus, the solution

to the problem consists in simultaneously solving the two set

of LMIs (nicknamed ‘BRL LMIs’ and ‘ICs LMIs’)






− ˙Q(t) +Q(t)A(j)T + A(j)Q(t) B(j) Q(t)C(j)T

B(j)T
−γI D(j)T

C(j)Q(t) D(j)
−γI






< 0,

j=1, . . . , N,
(14)[

ρ x
(i)
0

T

x
(i)
0 Q(t0)

]

> 0, i=1, . . . ,M (15)

for the matrix function Q(t), which needs to satisfy

Q(t) > 0 ∀t ∈ [t0 tf ], Q(tf ) = ∆−1 > 0, (16a,b)

and for the scalar ρ > 0, while minimizing ρ. (A procedure

for finding Q(t) will be outlined in the next subsection.)

Note that Q(t) has, as customary in robust control, to

accommodate the Ω uncertainty; but, and this is new, it

has (simultaneously) to accommodate only a finite, given

x0 uncertainty region. This makes the solution inherently

‘tighter’ than methods which address x0∈Rn. Note also that

{A,B,C,D}(j) may, in principle, be time-varying; time-

linear {B,D}(j) will be addressed later. If one wishes to

solve ‘freely’ for Q(t), without the constraint Q(tf ) = ∆−1,

the term xT (tf )(∆−P (tf ))x(tf ) remains in (7a) and requires

further treatment, that will be shown later.

B. Solutions Utilizing Time-convexity

A well-known approach for finding a general time-varying

P (t) (or Q(t)) is the difference-LMIs (DLMIs) method

[12], which is inherently suitable for time-varying systems.

However, this method is extremely time-consuming because

the computation time-step must be minute and an inversion

of P (t) is performed in each time-step. In contrast, the time-

convexity method proposed at length in [7] is computation-

ally efficient, simple, and flexibly allows (in its piecewise

form) elaborate variations in P (t) with very little numerical

overhead.

In its generic form, the time-convexity approach allows

Q(t) to vary linearly with time over [t0 tf ], and (11) is

assured for all t∈ [t0 tf ] by convexity. To this end, define

Q(t) = g1(t)Q(t0) + g2(t)Q(tf ) ,

0 ≤ g1(t) ≤ 1 , 0 ≤ g2(t) ≤ 1 ,

g1(t) + g2(t) = 1 , g2(t)
∆
= t−t0

tf−t0
,

(17a-e)

where in our setup Q(t0) is an unknown constant matrix,

Q(tf ) is the given ∆−1 (see (16b)), and g1(t), g2(t) are the

convex coordinates of Q(t) in Co{Q(t0), Q(tf)}. In fact, g2
is merely the normalized time, ranging from 0 at t0 to 1 at

tf . Note that Q(t0)>0 and Q(tf)>0 assure, by the convex

description (17a-d), that Q(t)>0 for t0≤ t≤ tf , as required

by (16a). Obviously, Q̇ =
Q(tf )−Q(t0)

tf−t0
= Constant.

This convex characterization of Q(t) over [t0 tf ] is

inherited to Ψ̄(Q(t)) because the latter is affine in Q(t) and

otherwise contains constants. Thus,

Ψ̄(Q(t))= g1(t)Ψ̄(Q(t0)) + g2(t)Ψ̄(Q(tf )) (18)

i.e. Ψ̄(Q(t)) ∈ Co{Ψ̄(Q(t0)), Ψ̄(Q(tf ))}. Thus, it suffices to

find a Q(t0)> 0 for which Ψ̄(Q(t0))< 0 and to verify that

Ψ̄(Q(tf)) < 0 for the given Q(tf ) = ∆−1 > 0, since then

Ψ̄(Q(t)) < 0 ∀t ∈ [t0 tf ] by (18).

Thus, under basic time-convexity and with Q0 = Q(t0),
Qf = Q(tf), the general equations (14)-(16) governing the

solution to the problem specify to






−
Qf−Q0

tf−t0
+Q0A

(j)T + A(j)Q0 B(j) Q0C
(j)T

B(j)T
−γI D(j)T

C(j)Q0 D(j)
−γI






< 0,







−
Qf−Q0

tf−t0
+QfA

(j)T + A(j)Qf B(j) QfC
(j)T

B(j)T
−γI D(j)T

C(j)Qf D(j)
−γI






< 0,

j=1, . . . , N,
(19a,b)

[

ρ x
(i)
0

T

x
(i)
0 Q0

]

> 0, i=1, . . . ,M (20)

Q0 > 0, Qf = ∆−1 > 0. (21a-c)

The solution is obtained by solving the above for the

unknowns Q0 and ρ, while minimizing ρ (Qf is given by

(21c)). The resulting Q(t), t ∈ [t0 tf ], is given by (17).

Note that the choice of ∆ is restricted beyond just being

positive-definite, since Qf = ∆−1 appears in both (19b) and

(19a).
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As noted earlier, if γ is free rather than given, a lower

ρ is attained. One can find the minimal ρ for progressively

smaller values of γ (better induced L2-norms), or minimize

ρ+ αγ where α > 0 is a suitable arbitrary ‘weight’.

If B and D are linearly time-dependent over Co{Ω(j)},

B(t) = g1(t)B(t0) + g2(t)B(tf ) ,
D(t) = g1(t)D(t0) + g2(t)D(tf ) ,

(22)

the latter LMIs provide the solution to such a time-varying

system, but with B(j), D(j) replaced by B
(j)
0 = B(j)(t0),

D
(j)
0 = D(j)(t0) in (19a), and by B

(j)
f = B(j)(tf ), D

(j)
f =

D(j)(tf ) in (19b).

Several advanced versions of the time-convexity approach

are given in [7], which may be directly and easily ap-

plied to our problem in order to obtain better results than

those offered by the generic time-convexity approach, de-

scribed above. The general time-convexity method addresses

a polytopically uncertain time-varying system and applies a

piecewise-linear Q(t) with Q-jumps at the intermediate time-

instants; it even allows piecewise-constant vertex-dependent

γ(j)(t). Details regarding the (straightforward) application of

the latter method to our problem will not be given here.

C. Time-convexity With Qf 6= ∆−1

The choice P (tf )=∆, or Qf =∆−1, leads to the simple

and elegant (9), (12), (13), (15), and (20). However, this

choice constrains Q(t), thus leading to more conservative

results than those that may be obtained with a ‘free’ Qf >
0. This choice also constrains (by (19)) ∆, the ‘xf -weight’

matrix in (6), which in principle should be chosen freely by

the control designer.

If P (tf ) is not required to equal ∆, the term xT (tf )(∆−
P (tf ))x(tf ), which is of an indeterminate sign(!), does not

vanish from J(Ω, x0) and (9) becomes

J(Ω, x0) < xT
0 P (t0)x0 + xT (tf )(∆− P (tf ))x(tf ). (23)

The RHS of (23) will now be reduced to a quadratic

expression in x0 only (as in (9)), which enables transforming

(23) into an LMI like (13), by utilizing the state-transition

matrix which relates x(tf ) to x0 and by applying (7c) to

express w∗ in terms of x. ∆ may again be nonnegative

definite.

Since w = w∗ maximizes the RHS of (7a), it should be

applied to find the bound on J(Ω, x0). So, substitute w =

γ−2BTPx into (1a):

ẋ = Ax+B (γ−2BTPx) = (A+ γ−2BBTP )x . (24)

Define Â=A+γ−2BBTP and note that here Â= Â(t), even

though the system (1) is time-invariant, since here P =P (t).
Constrain P (t) to be linear in time (compare (17)):

P (t) = P (t0)+(t− t0)Ṗ , Ṗ =
P (tf )− P (t0)

tf − t0
. (25a,b)

This results in linear dependence of Â(t) on time:

Â(t) = Â0 + (t− t0)
˙̂
A ,

Â0 = A+ γ−2BBTP0 ,
˙̂
A = γ−2BBT Ṗ ,

(26a-c)

where Â0 = Â(t0), P0 = P (t0).

Denote by Φ the state-transition matrix associated with

Â(t), which satisfies
d

dt
Φ(t, t0) = Â(t)Φ(t, t0), Φ(t0, t0) = I. (27a-b)

Since Â(t) is linear in time, (27) has an explicit solution:

Φ(t, t0) = e(t−t0)Â0+
1
2 (t−t0)

2 ˙̂
A. (28)

Thus, for w = w∗ the state equation (1a) becomes the

homogeneous equation (24), and with the time-linear P (t)
prescribed in (25) it has the explicit solution

x(t) = Φ(t, t0)x(t0) = e(t−t0)Â0+
1
2 (t−t0)

2 ˙̂
A x0 . (29)

For t = tf we have

xf = x(tf ) = e(tf−t0)Â0+
1
2 (tf−t0)

2 ˙̂
A x0 . (30)

Note that (24), (26) and (28)-(30) are (also) functions of

the system matrices A and B, that is are Ω-dependent. The

above expressions have the following versions at the vertices

Ω(j) of the system uncertainty region (with Pf = P (tf )):

Â(j)(t) = Â
(j)
0 + (t− t0)

˙̂
A

(j)

Â
(j)
0 = A(j) + γ−2B(j)B(j)TP0

˙̂
A

(j)

= γ−2B(j)B(j)T Ṗ = γ−2B(j)B(j)T Pf−P0

tf−t0

(31a-c)

Φ(j)(t, t0) = e(t−t0)Â
(j)
0 + 1

2 (t−t0)
2 ˙̂
A

(j)

Φ
(j)
f = Φ(j)(tf , t0) = e(tf−t0)Â

(j)
0 + 1

2 (tf−t0)
2 ˙̂
A

(j) (32a,b)

It is important to realize that Φ(j) entails no convexity with

respect to Ω, because of the exponentiation of the system

matrices and because of the product B(j)B(j)T. As for xf ,

we denote the xf corresponding to the jth vertex-Ω and to

the ith vertex-x0 as

x
(i,j)
f = Φ(j)(tf , t0)x

(i)
0 , i=1, . . . ,M, j=1, . . . , N. (33)

The solution in this section again consists of a set of BRL

LMIs like (19), now in terms of P rather that Q, and a set

of ICs LMIs broader than (20), which emanate from (23).

Because of (33), the ICs LMIs now involve also Ω(j), but

no convexity over Co{Ω(j)} can be guaranteed.

The governing BRL LMIs are:






Pf−P0

tf−t0
+ A(j)TP0 + P0A

(j) P0B
(j) C(j)T

B(j)TP0 −γI D(j)T

C(j) D(j)
−γI






< 0 ,







Pf−P0

tf−t0
+ A(j)TPf + PfA

(j) PfB
(j) C(j)T

B(j)TPf −γI D(j)T

C(j) D(j)
−γI






< 0 ,

j=1, . . . , N .
(34a,b)

The RHS of (23) is the (possibly negative) bound on

the cost. It can be minimized by minimizing the (possibly

negative) scalar ρ in

ρ > xT
0 P (t0)x0 + xT (tf )(∆− P (tf ))x(tf ) ⇒

ρ− xT
0 P (t0)x0 > −xT (tf )(P (tf )−∆)x(tf ).

The governing ICs LMIs are now obtained by applying Schur

complements on both sides of the latter inequality, and using

(33):
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[

ρ x
(i)
0

T

x
(i)
0 P0

−1

]

>





0 x
(i)
0

T
Φ

(j)
f

T

Φ
(j)
f x

(i)
0 (Pf −∆)−1



 ,

i=1, . . . ,M, j=1, . . . , N.

(35)

The solution is obtained, in principle, by solving (34)-(35),

where Φ
(j)
f is defined in (31)-(32), for the unknown matrices

P0 > 0 and Pf > 0 and the scalar ρ, while minimizing

ρ. The resulting minimal ρ is the minimal J(Ω, x0) that

can be assured over the whole ICs uncertainty region and

(simultaneously) over the finite set of vertices of the system-

matrices uncertainty region. One may claim that addressing

the whole Co{Ω(j)} in (34), by convexity, and all Ω(j) in

(35), provides ‘some’ assurance over the whole Co{Ω(j)}.

One may even add points within Co{Ω(j)}, e.g. its ‘center’

defined by fj = 1/N ∀j (see [5],[6]), to the set solved in

(35) in order to ‘improve the coverage’ of Co{Ω(j)}. The

resulting P (t), t∈ [t0 tf ], is given by (25).

Obviously, (34) and (35) cannot be solved together by

LMI solvers because P0 and Pf appear nonlinearly in (35)

and in (32b) (see (31b-c)). A plausible procedure to obtain

a sub-optimal solution consists of the following three steps:

1) Solve (34) for P0 > 0 and Pf > 0;

2) Use these P0 and Pf to compute all Φ
(j)
f according to

(32b) and (31b-c);

3) Plug these Φ
(j)
f , P0 and Pf in (35), and minimize ρ.

An alternative approach, which attempts to find the mini-

mal cost over Co{Ω(j)} by ‘full’ convexity, hinges upon the

following intuitive xf -convexification conjecture:

Conjecture 1: Find among the MN points x
(i,j)
f in Rn

(see (33)) a subset of L vertices (L≤MN ) such that all these

MN points belong to Co{x
(k)
f , k=1, . . . , L}. Then, for any

Ω in Co{Ω(j)} and any x0 in Co{x
(i)
0 }, the corresponding

xf (see (30)) is in Co{x
(k)
f , k=1, . . . , L}.

The conjecture is applied as follows. First, re-write (35)

in terms of x
(k)
f :

[

ρ x
(i)
0

T

x
(i)
0 P0

−1

]

>





0 x
(k)
f

T

x
(k)
f (Pf −∆)−1



 ,

i=1, . . . ,M, k=1, . . . , L.

(36)

Then, obtain a sub-optimal solution by the following five

steps (steps 1 and 2 are unchanged):

1) Solve for P0 > 0 and Pf > 0;

2) Use these P0 and Pf to compute all Φ
(j)
f ;

3) Use these Φ
(j)
f and all the given x

(i)
0 to compute the

MN points x
(i,j)
f (see (33)); the final-states can also

be found by direct integration of the N vertex-systems

(with the P0 and Pf of step 1) from the M vertex-ICs;

4) Find among these MN points a subset of L vertices

(L≤MN ) such that all MN points x
(i,j)
f belong to

Co{x
(k)
f , k=1, . . . , L};

5) Plug these L points x
(k)
f , together with the P0 and Pf

found in step 1, in (36), and minimize ρ.

IV. NUMERICAL EXAMPLE

Consider these Ω(1:3), x
(1:3)
0 , and problem parameters:

A
(1)=

[

0 1
−1.8 −0.5

]

, A
(2)=

[

−0.9 0.2
0.6 −0.4

]

, A
(3)=

[

0.01 0
0 0.1

]

,

B
(1)=B

(3)=
[

−1.4
1

]

, B
(2)=

[

−0.6
1

]

,

C=
[

−2 1
1 1

]

, D=
[

1
1

]

; t0 = 0, tf = 2, ∆=
[

2 0.2
0.2 1.5

]

,

x
(1)
0 =

[

−2
2

]

, x
(2)
0 =

[

2
2

]

, x
(3)
0 =

[

0
−2

]

, γ = 20 .

Applying (19)-(21), the minimal J(Ω, x0) that can be

jointly assured over the ICs and parameters uncertainty

regions is ρ = 3996, and Q0 =
[

0.0425 0.0463
0.0463 0.0550

]

. If x
(1:3)
0

is enlarged tenfold, ρ (unsurprisingly) grows by 102 and Q0

remains the same. If γ is free and ρ+10γ is minimized, the

solution is ρ = 70.68, γ = 25.4, and Q0=
[

0.1301 0.0208
0.0208 0.1381

]

.

If x
(1:3)
0 is enlarged tenfold, and ρ+10γ is minimized, we ob-

tain ρ = 2547.3, γ = 62.7, and Q0=
[

0.2938 −0.0000
−0.0000 0.3374

]

.

Now we go through the three-step procedure for obtaining

a (sub-optimal) solution of (34)-(35) without the conjecture.

The first step results in P0 =
[

2.8245 0.9005
0.9005 1.8362

]

, Pf =
[

0.2538 0.1828
0.1828 0.1536

]

. If γ is free, the result is γ = 19.42, P0=
[

2.0013 0.5682
0.5682 1.5818

]

and Pf =
[

0.1803 0.1573
0.1573 0.1373

]

. We proceed

with the results applicable to the given γ.

The second step calls for the computation of Φ
(1:3)
f ,

which turn out to be Φ
(1)
f =

[

−0.4779 0.2235
−0.4035 −0.5908

]

, Φ
(2)
f =

[

0.2246 0.1224
0.3684 0.5328

]

, and Φ
(3)
f =

[

1.0318 −0.0019
−0.0091 1.2229

]

.

To demonstrate the design freedom and better performance

afforded by not requiring P (tf ) = ∆, we compute the

third step (only in which ∆ appears) with various ∆’s. The

original ∆ leads to ρ = 21.61; a tenfold larger ∆ leads

to ρ = 55.75; a 50% smaller ∆ leads to ρ = 10.39.

Note the drastic drop in ρ relative to 3996 (about 99.5%,

with the original ∆). However, the latter small ρ’s are not an-

alytically guaranteed over the whole parameters uncertainty

region.

Next, we ‘trust the conjecture’ and go through the five-

step procedure for obtaining a (sub-optimal) solution of

(34)-(35). Steps 1 and 2 are the same as in the previous

procedure. The results of steps 3 and 4 are depicted in Figure

1; the nine final states corresponding to the three vertex-

Ω and the three vertex-x0 are the same as (implicitly ad-

dressed) in the previous procedure; the convex hull Co{x
(k)
f },

based on L = 5 final states only, was obtained by Matlab’s

convhull function. Step 5 produces ρ = 21.61, the same re-

sult as without the conjecture (this intuitively ‘corroborates’

the conjecture). If the conjecture is true, then under time-

convexity over [t0 tf ] (without time sub-divisions), this is

the minimal J(Ω, x0) that can be jointly assured, using the

single Lyapunov function xTP (t)x, over the given ICs and

parameters uncertainty regions, with the given γ and ∆.
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V. CONCLUSIONS

Tractable solutions, based on time-convexity, have been

presented to a practical finite-horizon robust H∞ analysis

problem, where the optimization is with respect to a standard

H∞ cost function with a given/free disturbance attenuation

level. The problem is ‘practical’ because not only the system

uncertain matrices lie in finite convex polytope; the uncertain

initial conditions lie also in finite convex polytope. This ap-

proach removes the severe conservatism incurred by allowing

‘any’ initial condition.

Full parameters/ICS/time convexity applies when the final-

state weight matrix, which appears in the H∞ cost to

be minimized, constrains the final value of matrix time-

function used in the quadratic Lyapunov function. Without

this constraint, the result is not convex over the parameters

uncertainty region because the state-transition matrix is not

convex with respect to the system matrices. For this case, a

sub-optimal simple solution procedure is suggested. Finally,

a final-state convexity conjecture is proposed, under which

full convexity may be guaranteed for the solution. The

numerical example shows a dramatic advantage of the two

procedures which do not require P (tf) = ∆.

Advanced versions of time-convexity (see [7]), more

elaborate Lyapunov functions, and sophisticated BRL LMI-

formulations, can be applied within the proposed approach.

Extension of the method to state-feedback control design

is straightforward. The conjecture might be useful in other

robust finite-horizon control problems.
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Fig. 1. The nine final vertex-states and their convex hull
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