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Abstract— Affine connection control systems are mechanical
control systems that model a wide range of real systems
such as robotic legs, hovercrafts, planar rigid bodies, rolling
pennies, snakeboards and so on. In 1997 the accessibility and a
particular notion of controllability was intrinsically described
by A. D. Lewis and R. Murray at points of zero velocity.
Here, we present a novel generalization of the description of
accessibility algebra for those systems at some points with
nonzero velocity as long as the affine connection restricts to
the distribution given by the symmetric closure. The results are
used to describe the accessibility algebra of different mechanical
control systems.

I. INTRODUCTION

A wide range of mechanical control systems such as
snakeboard, underwater vehicles and so on, can be described
in terms of an affine connection on the configuration mani-
fold Q [1].

An analytic affine connection control system (ACCS)
Σ is a 4-tuple (Q,∇,Y , U) where Q is a configuration
manifold,∇ is an affine connection on Q, Y = {Y1, . . . , Yr}
is a set of vector fields on Q so-called control or input
vector fields, U is a subset of Rr.

The typical assumption on U is to be an almost proper
control set, that is, zero is in the convex hull of U (0 ∈
conv(U)) and the affine hull of U is the entire Euclidean
space Rr (aff(U) = Rr).

The dynamics are described by a second-order differential
equation on Q

∇γ′(t)γ
′(t) = uaYa(γ(t)) (I.1)

where γ : I ⊂ R→ Q, u : I → U ⊂ Rr.
It is well-known the control system (I.1) is equivalent to

a first–order control–affine system on TQ

Υ′(t) = Z(Υ(t)) + uaY Va (Υ(t)), (I.2)

where Υ: I → TQ projects onto Q to γ through τQ : TQ→
Q, Z is the geodesic spray and Y Va is the vertical lift of the
vector field Ya on Q to TQ.

One of the key objects to describe the accessibility and
controllability of control-affine systems such as (I.2) is the
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involutive closure Lie∞(Z,Y V ) of the vector fields in (I.2)
and the “symmetric” closure Sym(∞)(Y ) of Y that will
be defined in Section II-B. In [5] the accessibility distri-
bution was characterized at points of zero velocity. In this
paper we are going to extend this characterization to points
with velocity in Sym(∞)(Y ) as long as ∇ is restricted to
Sym(∞)(Y ), cf. Proposition 4.4. This will allow us to extend
the characterization of accessibility for mechanical control
systems in [5], cf. Theorem 4.5.

The paper is organized as follows. Section II reviews the
main properties and related results about accessibility of the
mechanical control systems under study. It also introduces
the notion of a connection which restricts to a distribution
that will be an essential assumption for the results below.
Sections III and IV contain all the novel results of this
paper. Theorem 3.1 characterizes a family of generators of
Lie(∞)(Z,Y V ) at any vq ∈ TQ. This family is not a
minimal set of generators, but it provides a suitable set of
generators for obtaining all the remaining results in this paper
that culminate in Propositions 4.3, 4.4 and Theorem 4.5.
Section V applies the above results to two mechanical
control systems: the planar rigid body with variable-direction
thruster and the rolling penny.

We shall assume all manifolds are paracompact, Haus-
dorff, and of class Cω (analytic). All maps and geometric
objects will be assumed to be of class Cω . The set of
analytic functions on a manifold Q is denoted by Cω(Q).
For a manifold Q, its tangent bundle will be denoted by
τQ : TQ → Q. If π : E → M is a vector bundle over M ,
we denote by Γω(E) the set of analytic sections of E. By
0x ∈ Ex we denote the zero vector in the fiber at x. The
analyticity assumption is necessary to have sufficient and
necessary characterizations of the accessibility algebra, cf.
Theorems 2.2, 2.3, 4.5. The control set is always assumed
to be almost proper.

II. NOTATION AND PREVIOUS CONCEPTS

This section contains the properties of control systems
and some notions of differential geometry that would be
necessary at some point in the development of this paper.
This is not a detailed description. We refer to [1], [3], [4],
[5], [8], [9] for more details.

A. Properties of a control system

Typical studied properties of a control system are ac-
cessibility and controllability. The former has been widely
understood [8], [9], whereas the latter is still under study
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[1]. To define them formally we first need to introduce the
notion of a reachable set from vq ∈ TQ at time T ∈ R+

R(vq, T ) =

{
w ∈ TQ

∣∣∣∣ ∃ a trajectory (Υ, u) of (I.2)
s. t. Υ(0) = vq, Υ(T ) = w

}
Then the reachable set from vq up to time T is defined as
follows R(vq,≤ T ) = ∪t∈[0,T ]R(vq, t).

These reachable sets collect the information about states
and velocities that can be reached by trajectories of the
control system (I.2). When we study a mechanical system,
we might just be interested in the reachable states. Then the
reachable set RQ(q, T ) in Q from q at time T is

RQ(q, T ) =

{
q ∈ Q

∣∣∣∣ ∃ a trajectory (Υ, u) of (I.2) s. t.
τQ(Υ(0)) = q, τQ(Υ(T )) = q.

}
As before, the reachable set RQ(q,≤ T ) in Q from q up
to time T is given by ∪t∈[0,T ]RQ(q, t).

Definition 2.1: Let Σ be an analytic ACCS and vq ∈ TQ.
1) Σ is accessible from vq if there exists T > 0 such

that int(R(vq,≤ t)) 6= ∅ for t ∈ (0, T ].
2) Σ is configuration accessible from q ∈ Q if there

exists T > 0 such that int(RQ(q,≤ t)) 6= ∅ for each
t ∈ (0, T ].

B. Characterization of accessibility algebra at zero velocity

For any control-affine system on Q

q̇ = f0(q) + uafa(q), (II.3)

the accessibility distribution at q is the involutive closure
at q of the distribution generated by the drift vector field f0

and the control vector fields {fa}a=1,...,r.
Theorem 2.2 ([8], [9]): The control-affine system

in (II.3) is accessible from q if and only if
Lie(∞)(f0, f1, . . . , fr)q ' TqQ.

This same result can also be applied to the control sys-
tem (I.2). Observe that to define the accessibility algebra the
control set does not play any role.

Let us review now the intrinsic description of the accessi-
bility algebra at zero velocity given in [5]. At 0q there exists
the following natural isomorphism, cf. [1, Lemma 6.33],

T0q
TQ ' TqQ⊕ TqQ. (II.4)

Given an affine connection ∇, there exists a complemen-
tary subbundle HTQ, called horizontal subbundle, of the
vertical subbundle V TQ = ker(TτQ) such that TTQ =
HTQ⊕V TQ. We refer to [3, page 87] for a characterization
of this subbundle. Then the splitting in (II.4) corresponds
with the splitting into horizontal and vertical subspace.

For an affine connection the symmetric product of two
vector fields is defined as follows

〈X : Y 〉 = ∇XY +∇YX.

Analogously to the involutive closure of vector fields, we
define the symmetric closure Sym(∞)(Y ) of a set Y of
control vector fields as the distribution being the smallest R-
subspace of vector fields containing Y and closed under the
symmetric product.

Theorem 2.3: [5, Lemma 5.7] Let Σ be an ACCS. If CΣ =
{Z,Y V }, then, for q ∈ Q,

Lie(∞)(CΣ)0q = Lie(∞)(Sym(∞)(Y ))q ⊕ Sym(∞)(Y )q.

Moreover:
1) Σ is accessible from 0q if and only if Sym(∞)(Y )q =

TqQ.
2) Σ is configuration accessible from 0q if and only if

Lie(∞)(Sym(∞)(Y ))q = TqQ.

C. On connections restricted to distributions

As mentioned above, the generalization of Theorem 2.3
in this paper is only possible under suitable assumptions,
cf. Theorem 4.5. An affine connection ∇ restricts to a
distribution D if ∇XY is a section of D for every section
Y of D [4] and X ∈ Γω(TQ)..

Associated with an affine connection, we define the cur-
vature of ∇ as a (1, 3)-tensor field on Q such that

R(X,Y )W = ∇X∇YW −∇Y∇XW −∇[X,Y ]W

for X,Y,W ∈ Γω(TQ).
Proposition 2.4: [4, Proposition 4.3] Let q ∈ Q and let

u, v ∈ TqQ. If ∇ restricts to D, then the endomorphism
R(u, v) of TqQ leaves the subspace Dq invariant.

Another object of interest is the following one.
Definition 2.5: A distribution D on Q is geodesically

invariant under an affine connection ∇ on Q if, for every
geodesic γ : I → Q for which γ′(t0) ∈ Dγ(t0) for some
t0 ∈ I , it holds that γ′(t) ∈ Dγ(t) for every t ∈ I .

From the definition we have that a distribution D on Q
is geodesically invariant under an affine connection ∇ on
Q if, as a submanifold of TQ, D is invariant under the
geodesic spray associated with ∇. One can then show that
a distribution is geodesically invariant if and only if the
symmetric product of any D-valued vector fields is again
a D-valued vector field [4, Theorem 5.4]. Observe that if ∇
restricts to a distribution D, then D is geodesically invariant
under ∇.

III. PRIMITIVE BRACKETS

A systematic way to construct the accessibility algebra
is to compute iteratively the Lie brackets in Lie∞(Z,Y V ).
One of the key points to obtain the characterization of
the accessibility algebra reviewed in Theorem 2.3 was to
identify a family of primitive brackets that were enough to
span the accessibility distribution at 0q . The novel result
of this section is to identify the primitive brackets for
the accessibility distribution at non-zero velocity. At zero
velocity we recover the same primitive brackets as in [5].

Theorem 3.1: If vq ∈ TQ, then any tangent vector in
Lie∞(Z,Y V )vq is spanned by a linear combination of
elements in:

1) {Zvq};
2) Avq = (Sym(∞)(Y ))Vvq ;
3) Bvq = {adlZ(Sym(∞)(Y ))Vvq | l ∈ N ∪ {0}}, i.e., the

smallest distribution containing A and invariant under
the geodesic spray;
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4) Cvq = Lie(∞)({adlZ(Sym(∞)(Y ))V | l ∈ N})vq , i.e.,
the smallest involutive distribution containing B −A.

Proof: As stated in [5, Proposition 3.1] any vector field
in Lie(∞)(Z,Y V ) can be written as a linear combination of
brackets of the form [Wk, [Wk−1, [. . . , [W2,W1] . . . ]]] where
Wi ∈ {Z,Y V }, i = 1, . . . , k. Thus we only need to prove
this theorem for Lie brackets of this form.

Let us prove the result by induction on the length k of the
Lie brackets that generate the entire Lie(∞)(Z,Y V ) at vq .

For k = 1, 2, 3, the result is straigtforward having in mind
that [Y V2 , [Z, Y V1 ]] = 〈Y2 : Y1〉V .

For k = 4, the possible vector fields are:
• [Z, [Z, [Z, Y V ]]] = ad3

Z(Y V ) that lives in the distribu-
tion of type 3.

• [Y V2 , [Z, [Z, Y V1 ]]] is not that straightforward and we
must use the Jacobi identity.

[Y V2 , [Z, [Z, Y V1 ]]] = −[[Z, Y V1 ], [Y V2 , Z]

− [Z, [[Z, Y V1 ], Y V2 ]] = [[Z, Y V1 ], [Z, Y V2 ]]

+ [Z, 〈Y2 : Y1〉V ].

Thus the first summand is one of type 4 and the second
one is of type 3.

• [Z, [Y V2 , [Z, Y V1 ]]] = [Z, 〈Y2 : Y1〉V ] is of type 3.
• [Y V3 , [Y V2 , [Z, Y V1 ]]] = [Y V3 , 〈Y2 : Y1〉V ] = 0.
Let us prove the induction step. If any Lie bracket of length

k > 1 is either of type 2 or 3 or 4, then we only need to
bracket these types of vector fields with Z and the family
Y V and check that they are of type 2 or 3 or 4.
• [Z,A], [Z,B] are both of type 3.
• [Z, C] needs some more work.

A Lie bracket in C can be written as

[adksZ W
V
s , [. . . , [adk2Z W

V
2 , adk1Z W

V
1 ] . . . ]],

where Wi ∈ Sym(∞)(Y ), ki ∈ N, i = 1, . . . , s.
We prove that [Z, C] can always be written as a linear
combination of vector fields of type 3 and 4 by induction
on the number of vertical vector fields involved in a
vector field of type C.
For s = 1, [Z, adk1Z W

V
1 ] = adk1+1

Z WV
1 is trivially of

type 3.
Let us introduce the following notation to shorten the
expressions:

Vi = adkiZW
V
i , (III.5)

Vi1...is = [Vis , [. . . , [Vi2 ,Vi1 ] . . . ]]. (III.6)

The induction step is the following one for s ≥ 2: If
[Z,Vi1...is ] can be written as a linear combination of
vector fields of type 4 for any vector field Vi1...is in C
with s vertical vector fields involved, see (III.6), then
[Z,Vi1...is+1

] is a linear combination of vector fields of
type 4 for any vector field Vi1...is+1 in C with s + 1
vertical vector fields involved.

[Z,Vi1...is+1
] = [ad

kis+1
+1

Z WV
is+1

,Vi1...is ]

+ [ad
kis+1

Z WV
is+1

, [Z,Vi1...is ]].

The first summand is of type 4. By induction hypothesis
[Z,Vi1...is ] can be expressed as a linear combination of
vector fields of type 4. The induction concludes.

• [Y V ,A] = 0.
• [Y V ,B] needs some work. An element of B is given by

adsZ(WV ) where WV ∈ A, then

[Y V , adsZ(WV )] =

− [ads−1
Z (WV ), [Y V , Z]]− [Z, [ads−1

Z (WV ), Y V ]]

= [ads−1
Z (WV ), [Z, Y V ]] + [Z, [Y V , ads−1

Z (WV )]].

The first summand is of type 4. For the second one we
need to do further study. It can be proved by induction
on s that [Y V , ads−1

Z (WV )] is a linear combination of
vector fields of type 2, 3 and 4. As the bracketing of
Z with any of these three types of distributions is of
type 3 and 4 according to the first cases considered,
our reasoning concludes.

• [Y V , C] needs some more work. As in the case [Z, C],
we consider induction on the number s of vertical lift
of vector fields in C in order to prove that all the
vector fields in [Y V , C] can be expressed as a linear
combination of vector fields of type 4.
For s = 1, we have [Y V , adk1Z W

V
1 ].

We prove it by induction on k1. For k1 = 1,
[Y V , ad1

ZW
V
1 ] = 〈Y : W1〉V .

By induction it can be proved that for k1 > 1

[Y V , adk1Z W
V
1 ] = (k1 − 1)[adk1−1

Z (WV
1 ), ad1

Z(Y V )]

+

k1−2∑
j=1

A
(k1)
j [adjZ(WV

1 ), adk1−jZ (Y V )]

+ adk1−1
Z (〈Y : W1〉V )

=

k1−1∑
j=1

A
(k1)
j [adjZ(WV

1 ), adk1−jZ (Y V )]

+ adk1−1
Z (〈Y : W1〉V ),

where A(k1)
j ∈ N satisfies

A
(k1)
0 = 1, A

(k1)
1 = A

(k1−1)
1 ,

A
(k1)
j = A

(k1−1)
j +A

(k1−1)
j−1 for 2 ≤ j ≤ k1 − 2,

A
(k1)
k1−1 = k1 − 1.

Hence the vector fields are a linear combination of
vector of type 3 and 4.
Having in mind the notation introduced in (III.5) and
(III.6), consider now the induction step. Assume it is
true for s ≥ 2 that the vector fields in [Y V , C] can be
rewritten as linear combination of vector fields of type
4, let us prove it for s+ 1.

[Y V ,Vi1...is+1
] =

− [Vi1...is , [Y V ,Vis+1 ]]− [Vi1...is+1 , Y
V ]

= −[Vi1...is , [Y V ,Vis+1
]] + [Vis+1

, [Y V ,Vi1...is ]].
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Both summands are of type 4 because [Y V ,Vs],
[Y V ,Vi1...is ] are of type 4 by induction. Now the proof
by induction is concluded.

Immediately from this result, we have the following de-
scription of the accessibility algebra at some points with non-
zero velocity.

Corollary 3.2: If vq ∈ Sym(∞)(Y ), then

Lie(∞)(Z,Y V )vq ⊆ TvqSym(∞)(Y ).

Proof: Note that

Lie(∞)(Z,Y V )vq = Lie(∞)(Z, (Sym(∞)(Y ))V )vq ,

because Yq ⊆ Sym(∞)(Y )q and Sym(∞)(Y )Vvq ⊆
Lie(∞)(Z,Y V )vq since 〈Ya : Yb〉V = [Y Va , [Z, Y

V
b ]].

As Sym(∞)(Y ) is geodesically invariant by definition, the
geodesic spray is tangent to Sym(∞)(Y ), cf. Section II-C.
Thus, on Sym(∞)(Y ) the remaining type of vector fields in
Theorem 3.1 are also tangent to Sym(∞)(Y ) because of the
definition of Lie bracket.

IV. DESCRIPTION OF THE ACCESSIBILITY ALGEBRA

We are going to introduce here how to compute inductively
and explicitly the vector fields in Lie∞(Z,Y V ) since they
would be necessary later on. At zero velocity there are
many objects that vanish as described in [5], but at non-
zero velocity the computations become more involved and
it is useful to consider objects defined along the projection
map τQ : TQ→ Q as described in [6], [7].

Given a connection ∇ on Q, at any vq ∈ TQ there exists a
pointwise splitting of TvqTQ analogous to the one in (II.4).

TvqTQ ' Hvq (TQ)⊕ Vvq (TQ) ' TqQ⊕ TqQ. (IV.7)

For any vector field on TQ, the horizontal and the vertical
projector at vq ∈ TQ are denoted by horvq : TvqTQ →
Hvq (TQ) ' TqQ, vervq : TvqTQ → Vvq (TQ) ' TqQ,
respectively.

Remember that the vertical lift of a vector field X on
Q is the vector field XV on TQ defined by XV (vq) =
vlftvq (X(q)), where vlftvq : TqQ→ TvqTQ is given by

vlftvq (Xq) =
d

dt

∣∣∣∣
t=0

(vq + tXq).

The horizontal lift of the tangent vector vq ∈ TqQ at
point q ∈ Q is the tangent vector in TvqTQ given by

hlftq(vq) = (TvqτQ|HvqTQ)−1(vq).

Then, the horizontal lift of the vector field X ∈ Γω(TQ)
is the vector field XH in Γω(TTQ) defined by XH(vq) =
hlftq(X(τQ(vq))). Locally, if X = Xi∂/∂qi, then

XH(vq) =Xi(q)

(
∂

∂qi
− Γjik(q)vk

∂

∂vj

)
,

XV (vq) =Xi(q)
∂

∂vi
.

It is possible to rewrite Lie brackets in Lie(∞)(Z,Y V ) in
terms of the splitting in (IV.7). The computation of the vector
fields in Lie(∞)(Z,Y V ) can be restricted to the brackets of
the form [Xk, [Xk−1, [. . . , [X2, X1] . . . ]]] cf. [5, Proposition
3.1]. For vector fields X and W on Q, it can be computed
that

[Z,XH +WV ] = (∇vX −W )⊕ (−R(X, v)v +∇vW ),
(IV.8)

[Y V , XH +WV ] = 0⊕ (−∇XY ), (IV.9)

where R is the curvature tensor associated with ∇ and v
denotes the vector field Id : TQ → TQ defined along the
projection τQ : TQ→ Q.

The horizontal and vertical lift are defined analogously for
vector fields X defined along the projection τQ : TQ → Q,
that is, τQ ◦ X = τQ. The vector fields with the smallest
length in Lie(∞)(Z,Y V ) can be rewritten as follows

[Z, Y V ] = −Y ⊕∇vY, (IV.10)

[Y V1 , [Z, Y V2 ]] = 0⊕ 〈Y1 : Y2〉,
[Z, [Z, Y V ]] = −2∇vY

⊕ (R(Y, v)v + ver(∇HvH (∇vY )V )), (IV.11)

where ∇H denotes the horizontal lift of a connection defined
on [10]. Note that for coordinates (qi, vi) the only non-zero
Christoffel symbols HΓjji of ∇H needed for our computa-
tions are:

HΓl
ji

= HΓl
ji

= Γlji, (IV.12)

where i is the index corresponding to qi and i is the
index corresponding to vi. From here it easily follows
∇HXHY

V (vq) ∈ VvqTQ.
Note that in (IV.10) and (IV.11) there are vector fields

depending on the velocities. To compute the iterated Lie
bracket from here we must use

[Z,XH +WV ](vq) = (vervq (∇HvHX
V )−W )

⊕ (−R(X, v)v + vervq (∇HvHW
V )),

(IV.13)

[Y V , XH +WV ](vq) = vervq (∇HY V X
V )

⊕ (vervq (∇HY V W
V +∇HXHY

V )).
(IV.14)

instead of (IV.8) and (IV.9). Observe that in (IV.13)
and (IV.14) the vertical projector is always acting over ver-
tical vector fields because of the definition of the horizontal
lift ∇H of ∇.

A. On the tangent space to a distribution

It would be very useful to have a decomposition of the
tangent space to a distribution in terms of the horizontal
and vertical subspace. However this is only possible at
points with zero velocity or if the connection restricts to
the distribution, cf. Section II-C, as proved in the following
proposition.

Proposition 4.1: If ∇ restricts to a distribution D, then

TvqD ∩Hvq (TQ) ' TqQ and TvqD ∩ Vvq (TQ) ' Dq
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for every vq ∈ D.
Proof: Let k be the rank of the distribution D, consider

a D-adapted basis {Y1, . . . , Yn} on Q such that

spanR{Y1(q), . . . , Yk(q)} = Dq, for every q ∈ Q.

The Christoffel symbols associated with the D-adapted
basis {Y1, . . . , Yn} are given by ∇Yi

Yj = ΓlijYl. As ∇
restricts to D, we have Γαia = 0 for α = k + 1, . . . , n;
a = 1, . . . , k; i = 1, . . . , n. Then the basis of the horizontal
subspace of TvqTQ on D is tangent to D since

Y Hi = Yi − Γlijv
jY Vl = Yi − Γcibv

bY Vc ,

for i = 1, . . . , n; b, c = 1, . . . , k.
The tangency of vector fields on TQ can be intrinsically

characterized as follows. We let πD : TQ → TQ/D be
the canonical projection such that the following diagram
commutes

TQ
πD //

τQ
  

TQ/D

τD
||

Q

At 0q ∈ TQ/D, there exists the following natural splitting

T0q
TQ/D ' TqQ⊕ (TqQ/Dq), (IV.15)

cf. [1, Lemma 6.33]. Hence we define the projection
π2 : T0q

TQ/D → TqQ/Dq onto the second component of
the splitting in (IV.15). The vector field Y Hi on TQ is tangent
to D if and only if

π2((TvqπD ◦ Y Hi )(vq)) = 0q

for every vq ∈ D. This equation is true because it is well-
known that Y Vc is tangent to D for c = 1, . . . , k. The result
follows from here.

Now, under suitable assumptions, we are going to describe
intrinsically the distribution of vector fields of type 3 in
Theorem 3.1. First we need the following result.

Proposition 4.2: If ∇ restricts to a distribution D, then
∇H restricts to the distribution DV .

Proof: It follows from (IV.12) and from considering a
D-adapted basis on Q. To be more precise, for any section
CaY Va of DV

∇HAiYi+BiY V
i

(CaY Va ) = (AiYi +BiY Vi )(Ca)Y Va

+ ΓaicA
iCcY

V
a ∈ Γ∞(DV ).

Proposition 4.3: If∇ restricts to a distribution D, then the
smallest distribution DZ invariant under the geodesic spray
that contains D satisfies

DZ(vq) ' Dq ⊕Dq for every vq ∈ D.

Proof: Let us prove it by induction on the number s
of iterated Lie brackets with the geodesic spray.

For s = 1, 2, it follows from Propositions 2.4 and 4.2 by
looking at (IV.10) and (IV.11). Assume the result is true for
s, let us prove it for s+1. Consider the following Lie bracket

[Z,XH +WV ](vq) = (vervq
(∇H

vHXV)−W)

⊕ (−R(X, v)v + vervq
(∇H

vHWV)),

where X|D, W |D are D-valued vector fields along τQ and
vervq

is the projection onto the vertical subspace according
to the splitting in (IV.7). Thus the vertical lifts of X and
W are sections of DV . By Proposition 4.2 we conclude that
both ∇HvHX

V and ∇HvHW
V are vector fields tangent to D.

Moreover they are vertical vector fields, then their vertical
projections are sections of D. As the curvature tensor leaves
D invariant, cf. Proposition 2.4, the result follows.

Proposition 4.4: If ∇ restricts to Sym(∞)(Y ), then

Sym(∞)(Y )q ' Lie(∞)(Z,Y V )vq ∩ Vvq (TQ),
(IV.16)

Lie(∞)(Sym(∞)(Y ))q ⊆ Lie(∞)(Z,Y V )vq ∩Hvq (TQ),
(IV.17)

for every vq ∈ Sym(∞)(Y ).
Proof: The hypothesis, Corollary 3.2 and Proposi-

tion 4.1 leads to

Lie(∞)(Z,Sym(∞)(Y )V )vq ⊆ TvqSym(∞)(Y )

' TqQ⊕ Sym(∞)(Y )q.

Since Sym(∞)(Y )Vvq sits in Lie(∞)(Z,Sym(∞)(Y )V )vq for
every vq ∈ TQ,

Sym(∞)(Y )q ' Lie(∞)(Z,Y V )vq ∩ Vvq (TQ).

To prove (IV.17) first note that by Theorem 3.1 and
Proposition 4.3

Sym(∞)(Y )q ⊆ Lie(∞)(Z,Y V )vq ∩Hvq (TQ).

Using (IV.10) and (IV.8), for every Y1, Y2 ∈
Γω(Sym(∞)(Y )) we have

[[Z, Y V1 ], [Z, Y V2 ]](vq) = [Y1, Y2]q ⊕Wq,

for every vq ∈ Sym(∞)(Y ) where W ∈ Γω(Sym(∞)(Y ))
because of (IV.16). From here (IV.17) follows.

Theorem 4.5: Let Σ be an analytic ACCS. If ∇ restricts
to Sym(∞)(Y ), then

1) Σ is accessible from vq ∈ Sym(∞)(Y ) if and only if
Sym(∞)(Y )q = TqQ.

2) Σ is configuration accessible from vq ∈ Sym(∞)(Y )
if and only if Lie(∞)(Z,Y V )vq = TvqSym(∞)(Y ).

Proof: The proof follows from the proof of Theo-
rem 2.2 and Theorem 2.3 using (IV.16) in Proposition 4.4.

Moreover, if Lie(∞)
vq (Z,Y V ) = TvqSym(∞)(Y ), then

horizontal subspace of Lie(∞)
vq (Z,Y V ) at vq ∈ Sym(∞)(Y )

is the entire tangent space TqQ.
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V. EXAMPLES

Let us use Theorem 4.5 to describe the accessibility of
some mechanical controls systems defined by an affine con-
nection from points with nonzero velocity. These examples
are more thoroughly described in [1, Section 7.4.2-3].

A. Planar body with variable-direction thruster

The configuration manifold for the system is Q = S1 ×
R2. We denote the coordinates by (θ, x, y). The Riemannian
metric for the system is G = Jdθ⊗dθ+m(dx⊗dx+ dy⊗
dy), where m is the mass of the body and J is its moment of
inertia about its center of mass. Then the Christoffel symbols
are all zero. This system has two input vector fields given by

Y1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
,

Y2 = −h
J

∂

∂θ
− sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
.

As Sym(∞)Yq = TqQ, it is trivial that ∇ restricts to
Sym(∞)Yq . Moreover, Lie(∞)(Sym(∞)Y )q ' TqQ. Having
in mind Proposition 4.1, Proposition 4.4 and Theorem 4.5,
we can conclude that the system is accessible and configu-
ration accessible from vq ∈ Sym(∞)Y .

B. Rolling disk

The configuration manifold is Q = R2 × S1 × S1. The
coordinates are denoted by (x, y, θ, φ). This system has
constraints and to study the accessibility of the system the
constrained connection in [1, Section 4.5.5] will have to be
considered. The configuration manifold then is restricted to
Q with dimension 2.

All the Christoffel symbols associated with the constrained
connection are zero in terms of the G-orthogonal generators

X1 = ρ cos θ
∂

∂x
+ ρ sin θ

∂

∂y
+

∂

∂φ
, X2 =

∂

∂θ
.

Two input vector fields are considered for this system

Y1 =
1

Jspin
X2, Y2 =

1

mρ2 + Jroll
X1.

Let us consider different cases of input vector fields:
1) Y1 only: The constrained affine connection restricts to

Sym(∞)Y1 = Y1. The system is not accessible from
vq ∈ Sym(∞)Y1 because of Theorem 4.5. Analogously
for Y2 only.

2) Y1 and Y2: The constrained affine connection restricts
to Sym(∞)(Y1, Y2)q = TqQ. Using similar reasoning
as for the planar rigid body, we conclude that the
system is accessible and configuration accessible from
vq ∈ Sym(∞)Y .

In order to decide about the configuration accessibility for
single-input case, we will have to compute Lie(∞)(Z,Y ). In
these particular cases computations show that the horizontal
subspace of Lie(∞)(Z,Y V ) is never the entire tangent space
TqQ. Thus the system is not configuration accessible from
vq ∈ Sym(∞)Y when Y = {Y1} or Y = {Y2}.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we have generalized results about the
accessibility for mechanical control systems called affine
connection control systems that were proved in [5]. Precisely,
Theorem 2.3 has been extended to Theorem 4.5. The latter
result characterizes intrinsically the accessibility properties
of a mechanical control system at points with velocities in
Sym(∞)Y if ∇ restricts to Sym(∞)Y .

First we have identified the primitive brackets at nonzero
velocity in Theorem 3.1. This result and Proposition 4.1 have
allowed us to characterize the accessibility distribution at
points in Sym(∞)Y as long as ∇ restricts to Sym(∞)Y ,
see Corollary 3.2, Propositions 4.3 and 4.4.

B. Future Works

It still remains to extend Theorem 4.5 to any velocity point
under the assumption of having ∇ restricted to Sym(∞)Y
and also discarding this assumption. Once we succeed to
completely characterize the accessibility algebra, our efforts
will focus on extending the characterization of controllability
in the sense of small time local controllability given in [5]
at points with non-zero velocity, cf. Definition 2.1. It is
expected that infinitesimal holonomy algebra, cf. [3], will
play an important role for these extensions.
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