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Abstract— The paper proposes a method in which the con-
struction of the variable geometry suspension system and the
design of robust suspension control are performed simultane-
ously in order to enhance vehicle stability. In the control scheme
a predefined road trajectory required by the driver with a
steering command is followed to carry out various maneuvers.
The variable geometry suspension system provides the modifica-
tion of the mechanical geometry efficiently. During maneuvers
an autonomous control system influences the camber angles
of the rear wheels by using a variable geometry suspension
system. The control system must guarantee various crucial
vehicle performances such as trajectory tracking, roll stability
and geometry limits. Since there is an interaction between the
construction design and the control design a balance must be
achieved between them.

I. INTRODUCTION AND MOTIVATION

The paper focuses on the construction design of a variable
geometry suspension system. The suspension determines
such critical components as the height of the roll center and
half track change. The advantages of the variable geometry
suspension are the simple structure, low energy consumption
and low cost compared to other mechanical solutions such
as an active front wheel steering. Since various safety and
economy properties of the vehicle are determined by the
suspension geometry it has significant influence on the
control design. The control input is the camber angles of the
rear wheels, with which the driver is supported to perform
the various vehicle maneuvers, such as a sharp cornering.

Several papers for various kinematic models of suspension
systems have been published. A review of the first variable
geometry systems was presented by [1]. The control system
varied the leverage ratio between the spring/damper unit and
the road wheel assembly. A nonlinear model of the Macpher-
son strut suspension system was published by [2]. By using
this model the kinematic parameters such as camber, caster
and king-pin angles were examined. The kinematic design of
a double-wishbone suspension system was examined by [3].
Seeking to meet the performance requirements often leads
conflict situations and requires a compromise considering
the kinematic and dynamic properties, see [4]. The vehicle
handling characteristics based on a variable roll center sus-
pension was proposed by [5]. A rear-suspension active toe
control for the enhancement of driving stability was proposed
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by [6], [7]. The main focus on these methods is on the
construction solution and the control design has received
little attention. However, besides performances, the control
design must handle important tasks such as disturbance
attenuation and robustness against uncertainties.

In the paper robust LPV (Linear Parameter Varying)
methods are proposed for control design. Based on the LPV
modeling approaches the highly nonlinear effects can be
considered in the state space description. Furthermore this
state space representation of the LPV model is valid in
the entire operating region of interest. The advantage of
LPV methods is that the controller meets robust stability
and nominal performance demands in the entire operational
interval, since the controller is able to adapt to the current
operational conditions, [8], [9].

This paper is organized as follows. Section II presents the
control-oriented modeling of the tire and its formalization
in lateral dynamics of vehicle model. In Section III the
nonlinear variable geometry kinematic model of the suspen-
sion system is analyzed. The performances in the control-
oriented LPV model are presented in Section IV. In Section
V the integration of the design of parameter-dependent LPV
control and the construction of variable geometry suspension
system is performed. Section VI illustrates the operation of
the control system through different vehicle maneuvers.

II. LATERAL DYNAMICS OF VEHICLE MODEL

In the trajectory tracking control system the control input
is the camber angle of the rear wheels. The model used in the
control design is based on the bicycle model of the vehicle.
In the model the wheel camber angle must also be taken into
consideration. The Magic form of the tire dynamics describes
the effect of the wheel camber angle on the lateral tire forces
(Fy), see [10]. The curves of Fy via α as a function of
wheel camber angle are illustrated by dashed line in Figure 1.
Although the Magic form gives a highly accurate description
of the tire model, a simplified form of the tire model is
constructed for numerical reasons.

The main idea of the model construction is that the
model approximates the Magic form in terms of small
side-slip angles. The general Magic form is Fy =
Dy sin{Cyatan[Byα − Ey(Byα − atan(Byα))]}, where
By, Cy, Dy, Ey are parameters of the tire model and α is
the wheel side-slip angle. In case of small side-slips the
lateral force can be approximated in the following form:
Fy = Cα where C is cornering stiffness and α is the
tire side-slip angle. The parameter By is extended with the
following assumptions: By = Kyα/(CyDy + εy), where
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Fig. 1. Considering the wheel camber in the tire model

Kyα = Kyα0(1 − pKy3(sin γ)2)ζ3 in which Kyα0 depends
on the vertical load of tire and pKy3, ζ3, εy are parameters.
The linearized tire model can be extended with the effect of
wheel camber. It is approximated as a vertical offset of the
γ = 0 curve, see the curve illustrated by solid line in Figure
1. This control-oriented lateral tire model in the direction of
the wheel ground contact velocity is approximated

Fy = Cα + Cγγ (1)

where Cγ is a coefficient which represents the degree of
offset and γ is the wheel camber angle. Note that the second
term occurs only in the rear wheels in the model.

The vehicle is moving in the entire plane of the road, thus
both the longitudinal and the lateral dynamics must be taken
into consideration as shown in Figure 2. The driver input of
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Fig. 2. Lateral model of the vehicle

the system is the front steering angle δ, while the control
input of the trajectory tracking system is the camber angle
of the rear wheels γ. The longitudinal velocity is denoted by
v.

The lateral dynamics of the vehicle is approximated by
the bicycle model of the vehicle:

Jψ̈ = C1l1αf − C2l2αr − C2,γ l2γ (2a)

mv(ψ̇ + β̇) = C1αf + C2αr + C2,γγ (2b)

where J is the yaw inertia of the vehicle, l1 and l2 are
geometric parameters, C1 and C2 are cornering stiffnesses, ψ
is the yaw of the vehicle, β is the side-slip angle. Moreover,
αf = −β + δ − l1 ∙ ψ̇/v and αr = −β + l2 ∙ ψ̇/v are the
tire side slip angles at the front and rear, respectively. In
the design of trajectory tracking control it is necessary to

guarantee that the lateral position of the vehicle tracks the
geometry of the road.

III. MODELING OF A VARIABLE GEOMETRY SYSTEM

In this section the kinematic model of the variable geom-
etry mechanism based on the double wishbone suspension
system is presented (see Figure 3). This model contains
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Fig. 3. Kinematic model of the suspension system

the geometry of the actuator and shows the suspension
displacements. In this approach the masses, inertias and
elasticity of the construction elements can be ignored. Thus
the arms of the suspension are modeled as bar elements.

The suspension system is analyzed in a local coordinate
system, whose center point is C. Point A in the variable
geometry system is able to move only in a horizontal
direction. In the variable geometry suspension the change of
point A in the direction y is the real input of the mechanism,
which is denoted by ay . Two further points B and D are
marked on the tire, which moves both in directions y and z.
T is the road-wheel contact point, which moves as a function
of the road irregularities, ty, tz . The aim is to formalize
the relationship between the input ay and the wheel camber
output γ.

The coordinates of the points of suspension can be deter-
mined by using the following equations:

D2
y + D2

z = L2
DC (3a)

(Dy − By)2 + (Dz − Bz)
2 = L2

BD (3b)

(Ay − By)2 + (Az − Bz)
2 = L2

AB (3c)

(Dy − Ty)2 + (Dz − Tz)
2 = L2

TD (3d)

(By − Ty)2 + (Bz − Tz)
2 = L2

TB (3e)

where (Ay, By, Cy, Dy, Ty ,Az, Bz, Cz, Dz, Tz) are the co-
ordinates of suspension points in directions y and z,
LAB ,LDC are the lengths of arms, LBD, LTB , LTD are
distances between points. The values of point coordinate A
are divided into two parts: Ay = Āy +ay and Az = Āz +az .
Similarly, the values of the other point coordinates are also
divided into two parts. The first part represents the constant
nominal values of the suspension coordinates, i.e., the steady
state position of the vehicle, while the second part shows the
displacements of the suspension points. There are constrains
on the suspension system, which are defined by az = 0,
cy = 0 and cz = 0. The output of the system is the camber
of the wheel: γ = arccos{(Bz − Dz)/LBD}.

The goal of this model is to formalize the relationship
between the actuator movement ay and the wheel camber.
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Using equation (3) the relationship is formalized between
ay and the variables η =

[
by bz dy dz ty

]T
. In the

equation tz is the disturbance. Consequently, (3) is arranged
into the following forms:

Aη(η) η = K(tz) + Bη(ay) ay (4a)

Cηη = Dη. (4b)

The vector η is expressed from (4) as follows:

η = Aη(η)−1[K(tz) + Bη(ay)ay] (5)

The input of the mechanism ay is expressed as follows:

ay = (CηAη(η)−1Bη(ay))−1[Dη − CηAη(η)−1K(tz)]
(6)

It is a parameter-varying expression, which depends on η,
tz and ay . In this equation η is unknown, the variables Aη ,
Dη , and K(tz) change as a function of η and tz . Moreover,
Bη depends on ay . Consequently, the input of the variable
geometry mechanism ay can only be computed by using an
iterative procedure.

To solve this expression it is necessary to know the road
excitation tz and choose accurate initial values for both η0

and ay0. In the first step a new η is determined based on (5).
In the second step the input ay is computed based on (6). In
the third step a mean square error is computed:

ϑ =
∑

((η − η0)
2 + (ay − ay0)

2) (7)

The numerical solution of the problem is acceptable, if ϑ <
ε, where ε is a predefined small real number. Otherwise the
re-iteration is performed by selecting ay0 = ay and η0 = η.

In the following part of the section the effects of the input
ay on vehicle components are analyzed. The relationship
between ay and γ as a function of tz based on the numerical
solution of (6) is shown in Figure 4. An analysis shows that
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Fig. 4. ay - γ characteristics

it is possible to approximate the ay - γ curves with linear
functions in the following form:

γ = κ + ξ1tz + ε1ay (8)

It is noted that both wheels have the same static wheel
camber on one axle. The static components of the lateral
forces are approximately equal, thus in the next computations
the constant κ is omitted from (8).

The construction of suspension determines the height of
the roll center of the chassis (hM ). The roll center is

determined by A,B,C,D and T points. The intersection of
the arms (A,B) and (C,D) is marked by K. The intersection
of the line (T,K) and the vertical centerline of the chassis
is the roll center itself. The relationship between ay and
hM as a function of tz based on the numerical solution of
(6) is shown in Figure 5. The height of the roll center can
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Fig. 5. Height of roll center

be divided into static and dynamic components as follows:
hM = hM,st + ΔhM . Component hM,st represents the
height of the roll center of a stationary vehicle, while ΔhM

represents the change of the height during travelling. The
dynamic component is expressed in the following form:

ΔhM = ξ2tz + ε2ay (9)

During travelling the half track change (ΔB) is also an
important economical dynamic parameter of the suspension
system, since it is related to tire wear. The relationship
between ay and ΔB as a function of tz based on the
numerical solution of (6) is shown in Figure 6. The figure
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shows that although the relationship between ay and ΔB
can be approximated linearly in low velocities, the nonlinear
effects of the half track change increase in the high velocity
domain. Thus the low and the high velocities are separated
in the analysis. In the low velocity domain the following
approximation is accepted: −20mm ≤ tz ≤ 20mm and
v < 60km/h. In this domain the suspension parameter ΔB
is approximated in the following form:

ΔB = ξ3tz + ε3ay (10)

IV. PERFORMANCES IN THE CONTROL-ORIENTED MODEL

In the trajectory tracking control the lateral dynamics must
be taken into consideration and the vehicle must follow
the reference yaw-rate signal. The difference between the
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yaw-rate of the vehicle and the reference yaw-rate must be
minimized:

z1 = |ψ̇ref − ψ̇| → min (11)

It is necessary to emphasize that the activation of wheel
camber is important only at high velocities, since at low
velocities in the urban traffic the driver usually does not
require any assistance. In the high velocity domain the
vehicle can reach instability at the critical velocity [10]:
vcrit =

√
g(l1 + l2)/η, where η is the understeering coeffi-

cient. It suggests that the assistance of the rear wheel camber
is particularly important around vcrit. A weighting function
Wz1 is applied in order to avoid the critical velocity, see
Figure 7.

It has also shown that roll center depends on the controller
actuation (ay) and tz . The height of the roll center has an
important role in the roll dynamics of the vehicle [11]:

(Ixx + mΔh2)φ̈ = mgΔhφ + mv(β̇ + ψ̇) − Bi

4∑

i=1

Fsusp,i

where Δh is the difference between the height of the center
of gravity of the chassis and the roll center (Δh = hCG −
hM ), φ is the chassis roll angle, Ixx is the inertia of the
chassis, Bi is the half track and Fsusp,i are the vertical forces
of suspension. In order to improve roll stability the height of
the roll center hM must be minimized. Since hM is divided
into two parts, i.e., hM = hM,st + ΔhM , two performance
criteria are formulated. According to the performance z2 the
difference between the roll center and the center of gravity
must be minimized and according to the performance z3 the
dynamic displacement of the height of the roll center based
on (9) must be minimized:

z2 = |hCG − hM,st| → min (12)

z3 = |ΔhM | = |ξ2tz + ε2ay| → min (13)

Equation of the roll dynamics shows, that the roll of the
chassis depends on the velocity of the vehicle. Since the roll
of the chassis is critical at high velocities, therefore the same
assumption is used as in case of trajectory tracking.

During the control tasks it is necessary to prevent large
control inputs. Therefore the fourth performance focuses on
the minimum of the input displacement:

z4 = |ay| → min (14)

The control input is rather an economy parameter and not a
safety parameter, thus it might be reduced in the high velocity
domain. The selected weighting functions Wz3 and Wz4 are
shown in Figure 7.

An additional important economy parameter is the half
track change, because this parameter influences the tire wear.
An average automobile drives the most of its lifespan in ur-
ban traffic, therefore it is necessary to guarantee economical
operation at low velocities. Using a linear approximation and
based on (10) the fifth performance criterion is formalized
in the following form:

z5 = |ΔB| = |ξ2tz + ε3ay| → min (15)

The analysis shows that the half track change has nonlinear
effects. Because of model uncertainties the half track change
weighting function Wz5 must be selected in such a way that
performance z5 has low values outside the validity range. The
inadequacy of this performance can be compensated for with
a sixth performance, which extends the half track change to
the entire velocity range:

z6 =
∫ ∫

|ΔB|daydtz. (16)

It is also an economy performance, which must be taken into
consideration at low velocities.
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The designed performances must be considered both in the
control design and the construction design. In the control
design the control input of the mechanism ay affects the
performance specifications. In the construction design the
selected points Bz and Dz play an important role, since
these parameters influence most performances significantly.
Therefore the integration of control design and suspension
construction leads to an optimization task.

Performances can be divided into two groups. Perfor-
mances z1, z3, z4 and z5 can be expressed by linear com-
binations of the control input ay and disturbance ty . Vector
Z1 includes the performances which are used in the control
design:

Z1 =
[
z1 z3 z4 z5

]T
(17)

Performances z2 and z6 cannot be expressed by any linear
combination and they are used only in the construction
design. Vector Z2 includes the performances which are used
in the construction design:

Z2 =
[
z2 z6

]T
(18)

V. INTEGRATION OF CONTROL DESIGN AND SUSPENSION

CONSTRUCTION

The goal of this paper is to design the integration of
the control design and the variable geometry suspension
construction. First the design of a control system based on
the performance Z1 is proposed and second the integrated
design based on performances Z1 and Z2 is proposed.
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Control design
In Section II a lateral vehicle model is introduced, see

(2). This model contains wheel camber γ as control input,
which can be replaced with ay according to (8). The mo-
tion equation of the vehicle is constructed in a state-space
representation form:

ẋ = A(ρ)x + B1(ρ)w + B2(ρ)u (19)

where the state vector of the system contains the yaw-rate
and the side-slip angle x =

[
ψ̇, β

]T
. The control input of the

system is ay on the rear wheels u = ay , while front steering
of the vehicle and tz are handled as the disturbances of the
system w =

[
δ, tz

]T
. The system matrices depend on the

velocity of the vehicle nonlinearly. The velocity is assumed
to be a measured signal. Using a scheduling variable ρ = v
the nonlinear model is transformed into an LPV model.

In the trajectory tracking problem a reference signal ψ̇ref

is introduced in order to guarantee the tracking of the
road geometry. The control design is based on a weighting
strategy, which is formalized through a closed-loop intercon-
nection structure, see Figure 8. Input and output weighting
functions are typically selected to the specifications of dis-
turbances and the inverse of the specifications on the outputs.

G(ρ)

K(ρ)

Wp
δ

Δ

Z1

u

y
ψ̇ref

ρ

Wu

Wd

Z2

Bz

Dz

Wn

wntz

Fig. 8. Closed-loop interconnection structure

The control design is based on the LPV method that
uses parameter-dependent Lyapunov functions, see [8], [9].
The quadratic LPV performance problem is to choose the
parameter-varying controller in such a way that the resulting
closed-loop system is quadratically stable and the induced L2

norm from the disturbance and the performances is less than
a predefined value. The existence of a controller that solves
the quadratic LPV performance problem can be expressed as
the feasibility of a set of Linear Matrix Inequalities (LMIs),
which can be solved numerically.

Integrated design
In the integrated design the construction of variable ge-

ometry suspension must also be designed. In the construc-
tion design the variables of the system Bz and Dz must
be taken into consideration. It is important to emphasize
that the control design and the construction design are not
independent. The construction of the system influences the
characteristics γ(ay, tz), ΔB and ΔhM , which are parts of

the control design according to (17). The performances in
(18) also affect the dynamics of the vehicle.

In the integrated design the operator norms from inputs of
the system to the performance outputs Z1 have an essential
role. Ti,j(Bz, Dz) is the operator, in which i is the input
and j is the output of the system, see Figure 8. Weighting
functions Wz,i represent the importance of the performances
of Z1. These features have been considered in the design of
LPV control. In the following the construction components
are taken into consideration. The analysis shows that the
velocity influences both the lateral dynamics of the vehicle
and performance weighting functions.

Step 1: In the first step the velocity domain is gridded for
several points and all of the selected grid points the operator
norms ‖Ti,j(v,Bz, Dz)‖ are computed. Since the priority of
the different velocities is considered in the control design, it
is possible to compute the algebraic average of the operator
norms. Then the computed operator norms are summarized:
‖Tj(Bz, Dz)‖ =

∑
i ‖Ti,j(Bz, Dz)‖. The result of these

computations are indexes, which represent the fulfillment of
the performance Z1 in a given suspension construction.

Step 2: In the second step it is possible to compute the
performances of Z2 in a given construction. These perfor-
mances must be normalized using a maximum value of the
performances zi,max: Jz,k(Bz, Dz) = |zk(Bz, Dz)|/zk,max.
The result of these computations are also indexes, which
represent the fulfillment of the Z2 performance at a given
suspension construction.

Step 3: In the third step these performance indexes are
summarized, which results in a global cost for the fulfillment
of Z1 and Z2 performances in a given suspension construc-
tion:

J (Bz, Dz) =
∑

j

‖Tj(Bz, Dz)‖ +
∑

k

Jz,k(Bz, Dz). (20)

It can be shown that the computed cost J (Bz, Dz) depends
on the suspension construction. Finally, it is necessary to
find the construction parameters Bz and Dz , with which
J (Bz, Dz) can be minimized. The formulated optimization
task is:

inf
Bz∈B

inf
Dz∈D

J (Bz, Dz) (21)

It is noted that both Bz and Dz have bounds and they are
determined by the construction of the wheel hub and the size
of tire, therefore the optimization has a validity range: B =
[Bz,min Bz,max], D = [Dz,min Dz,max]. In the optimization
task (21) different methods can be applied, e.g., [12], [13].

VI. SIMULATION RESULTS

In the example the efficiency of the integrated method
based on the yaw-rate tracking scenario is presented. The
vehicle is travelling along a predefined road, while the
variable geometry suspension system supports the driver to
guarantee trajectory tracking. In the design of the differ-
ent suspension systems different construction systems and
weighting strategies are applied in the control design. The
first suspension system (Sys1) creates a balance between the
different performances, the second system (Sys2) minimizes

7456



the half track change (z5 and z6), while the third system
(Sys3) minimizes the control input (z4).

The vehicle is travelling along a course, which is depicted
in Figure 9(a). The driver generates the front wheel steering
angle as illustrated in Figure 9(b). During the maneuver the
velocity of vehicle is shown in Figure 9(c). Figure 9(d) shows
the tracking of the yaw rate of the vehicle with different
control systems and without any control. In the uncontrolled
vehicle the driver is not able to compensate for either the
understeering or the oversteering motion of the vehicle,
therefore the tracking error of the yaw-rate significantly
increases. At the same time in all of the controlled vehicles
the tracking of the reference yaw-rate with an acceptable
threshold is guaranteed. Figure 9(e) shows the control inputs
of the different systems, while Figure 9(f) shows the wheel
camber angles. In system Sys3 the minimization of the
control input ay is preferred, while in the other two systems
larger control actuation is generated during the maneuver.
However, according to the half track change the tendencies
differ as it is shown in Figure 9(g).

The performances of the yaw rate tracking are similar in
all the three cases, see Figure 9(d). This result shows that
acceptable tracking requires similar wheel camber angles.
These camber angles are achieved in different ways: in Sys3

the actuation ay is minimized and the half track change
is increased, while in Sys2 the minimization of the half
track change is preferred besides increased actuation ay .
Figure 9(h) illustrates that the construction of the suspension
system significantly influences the roll angles of chassis.
This example shows that both the control design with the
performance weighting strategy and the different selection of
constructions influence the dynamics of the vehicle, therefore
it is required to design them simultaneously in an integrated
way.

VII. CONCLUSION

The paper has proposed the simultaneous design of robust
control and the construction of a variable geometry suspen-
sion system for the enhancement of vehicle stability. While
the driver performs a maneuver by using the steering wheel,
an autonomous control system modifies the camber angles
of the rear wheels. The control design is based on robust
LPV methods, in which both performance specifications
and model uncertainties are taken into consideration. There
is a trade-off between the control design and the variable
geometry suspension construction, therefore an optimization
criterium which contains both the parameters of the suspen-
sion construction and the parameters of control design is
formalized.
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