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Abstract— A particular cascade structure system identifica-
tion problem is formulated for the purpose of characterising
the vacuum-plasma response for a magnetic confinement fu-
sion experiment. A predictor-form closed-loop subspace system
identification approach is advocated due to (i) plant instability
(ii) sizes of input-output vectors and (iii) inherent multivariate
eigenmodes of the physical system. Since experiment data come
in relatively short batches, specialised means for data merging
for subspace identification are developed. A batchwise delete-
group jackknife procedure is utilised to estimate the standard
error of the estimate of the dominant unstable empirical plasma
response eigenvalue.

I. INTRODUCTION

The development of magnetic confinement thermonuclear

fusion (MCF) power plants involves many scientific and

technologial challenges [1], [2], [3]. MCF aims to confine

an ionised hydrogen isotope gas mainly using strong (several

Teslas) magnetic fields, of which the bulk is generated

by external superconducting coils and an internal electrical

current. The ionised gas-like state of matter is known as

the plasma state. Thermonuclear fusion of the two hydrogen

isotopes deuterium and tritium (D-T) appears most easy to

attain. The cross-section for D-T fusion essentially requires

a plasma thermal energy of ∼ 108 Kelvins for reactor-grade

amplification of input heating power. This temperature is

significantly higher than the innards of the sun (but the

required matter density is much lower). A fusion reactor is

dimensioned at a length scale of several meters. It may not

come as a surprise, then, that an assortment of instabilities

tend to develop in a machine designed to sustain the implied

temperature gradients in a steady-state. The multibillion-euro

international flagship experiment reactor ITER [4], just start-

ing to be built in France, is designed to provide substantial

answers to the scientific and engineering feasibility issues of

MCF.

Some specific issues for identification and control of

magnetohydrodynamic (MHD) stability of toroidal MCF

machines are considered in this work. MHD is the main

continuum fluid theory for modeling (global) plasma stability

[5], [6]. MHD stability feedback control is expected to be

a key technology for future reactors [7]. A particular MHD

instability is the resistive wall mode (RWM) thought to set

limitations on the efficiency of power generation in advanced

MCF reactors [8]. Other MHD-related research suggests

that empirical separation of vacuum and plasma response

contributions to the full magnetic field could be crucial for
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the ability to mitigate certain edge-localised MHD instabil-

itites [9]. The ambition here is to begin development and

application of subspace system identification methods (SIMs)

[10], [11] to provide useful techniques for (i) improvement

of plasma control and (ii) novel scientific measurements of

in situ plasma stability. The latter implies some estimation

of uncertainty of the estimates.

SIMs can handle general discrete-time multi-input multi-

output (MIMO) linear time-invariant (LTI) state-space sys-

tems [11] and quite recently also closed-loop datasets [10],

[12]. The computational basis in numerical linear algebra

makes SIMs applicable for quite large MIMO plants. Cas-

cade structures and merging of data are recurring themes in

SIM applications [13]. These topics are both given particular

treatment in the present work.

This paper is organised as follows. Section II outlines

the experimental MCF plant and the control circuitry. The

identification problem is detailed herein and the approaches

to solving it are declared. Section III introduces the nota-

tions of SIMs and proposes a batchified modification of an

established SIM from the literature. Jackknife uncertainty

estimation from computational statistics are then adapted for

the batchwise partitioning of data which is natural here.

Section IV then employs the above methods to datasets

from the MCF experiment. Results are presented for the top

plasma response eigenvalue, including standard errors, using

various cascade-based SIM recipes. Conclusions are given in

the final section V.

II. CASCADE APPROACHES AND

VACUUM-PLASMA SEPARATION

The signal schematic for the feedback control system for

nonaxisymmetric stabilisation of the MCF plant EXTRAP

T2R (T2R) is shown in Figure 1. T2R is briefly introduced

in subsection II-A where the signals in Figure 1 will be given

physical meaning. In subsections II-B and II-C the structural

aspects of the interconnections are considered.

The first consideration of cascade structure, subsection II-

B, is an attempt to avoid (or assess impact of) the potential

errors-in-variables problem [14] associated with the direct

identification, from ũ to y, of the process of interest G
(T2R), which is embedded in a cascade to which d is

the noise free input. The second cascade structure, detailed

in subsection II-C, is implicit (not due to data acquisition

hardware or software signal routing) and relates to physical

modeling of the plant.
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Fig. 1. Signal schematic of closed-loop actuator-process cascade with
process input measurement and exogenous dither injection input.

A. The MCF plant: EXTRAP T2R reversed-field pinch

The reversed-field pinch (RFP) [15] is an MCF device

in which the toroidal and poloidal magnetic field strengths

are of the same order. In the tokamak [3] the toroidal

field is an order of magnitude stronger than the poloidal

field. The tokamak is currently more progressed in terms of

fusion reactor prospects, but RFPs and tokamaks share many

MHD stability phenomena, so knowledge transfer is often

bidirectional between the devices. EXTRAP T2R (T2R) [16]

is an RFP device with particular focus on feedback control

of MHD modes [17], [18].

The T2R signals and system blocks of Figure 1 are as

follows. y ∈ R
64×1 is the time-integrated voltages from

an array of magnetic flux loops wired in saddle-fashion

outside the conducting resistive shell of the toroidal plasma

chamber. ũ ∈ R
64×1 is a vector of measured currents in

similarly saddle-looped conductors which are actively driven

(actuators). d ∈ R
64×1 is the input to the digital-to-analog

converter that feeds the power amplifier racks F . G is

the T2R plant (the external plasma response). The digital

nominal PID controller is denoted C and has the capability

to stabilise T2R. r ∈ R
64×1 is the reference for the controller

which is zeroed throughout this work, and w ∈ R
64×1 is the

dither injection which is generated as described in [18]. The

sample-interval is τs = 0.1ms.

B. Actuator identification for cascade input filtering

It is well known that errors on the inputs lead to bias in

system identification. The presence of eu in Figure 1 might

therefore be an issue. A direct method to clean-up ũ is to

first estimate F to form the predictor filter, denoted F̂ , as

detailed in subsection III-A. Then filter out the vector signal

ûF̂ = F̂

(

d

ũ

)

(1)

and replace ũ with ûF̂ for subsequent direct identification

of the process G.

In the case of measurement noise only (expected case) and

an F of modest complexity (also expected) this may help to

improve the estimate of G. But if eu is insignificant already,

this may instead worsen the accuracy of the estimate of G
by introducing new errors due to inexactness of F̂ and its

initial conditions.

C. Cascade structure for plasma response isolation

Figure 2 shows two processes that both take the position

of G in Figure 1. G0 is the magnetic diffusion dynamics

(entirely stable) that the dry system (no plasma in the toroidal

chamber) exhibits. Therefore G0 includes the effect of the

possibly nontrivial external structures carrying passive eddy-

currents. G1 = (I + Γ)G0 is the wet system dynamics

(plasma in the toroidal chamber). G1 is known to be un-

stable and also sports significant stochastic (e.g. other MHD

activity) behaviour alluded by H in Figure 1. When G0 takes

the place of G in schematic 1 H can be set to I and e can

be thought of as very small.

A recurring idea in MHD modeling of plasma stability is

to let the total magnetic field be a superposition of terms from

(i) sources external to the plasma and (ii) sources internal to

the plasma [19], [8], [20]. The approach here is to confine the

plasma response to the system Γ as depicted in the bottom

of Figure 2. This essentially means that I + Γ is the linear

permeability system as detailed in [20]. It is then expected

that the plasma eigenvalues are solely inside Γ.

Fig. 2. G0 vacuum field diffusion and G1 = (I+Γ)G0 plasma response
cascade model. Nondimensional plasma permeability is I + Γ. Plasma
eigenvalues are supposed to reside in system Γ.

Assume now that an estimate of the vacuum system Ĝ0

is given. Provided a dataset {u1,y1} acquired from plasma

experiments it is possible to simulate ŷ0|1 = Ĝ0u1 and then

identify either of

1) the system I + Γ with input ŷ0|1 and output y1.

2) the system Γ with input ŷ0|1 and output δy = y1 −
ŷ0|1.

This will be done in the data analysis of section IV below

using the multibatch signal processing introduced in the next

section III.
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III. SUBSPACE SYSTEM IDENTIFICATION WITH

BATCH MANAGEMENT

A. Standard representations of discrete-time LTI systems

The usual innovation and predictor forms of multi-input

multi-output (MIMO) linear time-invariant discrete-time sys-

tems are central for the formulation of SIMs [10]. The

innovation form of the LTI system (A,B,C,D,K) is given

by

x̂(k + 1) = Ax̂(k) +Bu(k) +Ke(k) (2a)

y(k) = Cx̂(k) +Du(k) + e(k) (2b)

The related predictor form is

x̂(k + 1) = AK x̂(k) +BKz(k) (3a)

y(k) = Cx̂(k) +Du(k) + e(k) (3b)

with

AK = A−KC (4a)

BK =
(

B −KD K
)

(4b)

and the stacked signal

z(k) =

(

u(k)
y(k)

)

(5)

The hat symbol in equations (2) and (3) imply state estimate

status. The innovation sequence is {e(k)}. The predictor

filter form (3) is obtained by (i) removal of the innovation

from output equation (3b) and (ii) substitution of ŷ for y in

(3b).

A generic MIMO plant (stable or unstable) where u(k) ∈
R

nu×1 and y(k) ∈ R
ny×1 is considered in the following

subsections.

B. Merging of multiple batches in subspace identification

Particular modifications of the standard SIMs are re-

quired to properly handle multiple datasets. Let Db =
{

y(b)(k),u(b)(k)
}Nb

k=1
be a single set of experimental input

and output vector data. The experiment is indexed by b and

the length of the recording is Nb. Db will be referred to as

a batch in the following. Denote the complete available set

of batches be DB = {Db}
nb

b=1 where nb is the number of

batches. The complete number of time-samples is
∑nb

b=1 Nb.

The aim of the next subsection is to incorporate this data in

an established SIM in a sensible way. The SIM of choice

is the SSARX method due to Jansson [12] which utilises a

vector autoregressive exogenous (VARX) preestimation step

to be able to cope with closed-loop acquired datasets. The

VARX preestimation may also act as an order selection for

the future and past horizons associated to the SIM.

C. Multibatch VARX preestimation with cross-validation

Define the past lag vector

zp(k) =







z(k − 1)
...

z(k − p)






(6)

where z(k) is the joint signal (5). Let z
(b)
p (k) denote the past

lag vector (6) made from batch data Db. Introduce

Y (b)
q =

(

y(b)(q + 1) . . . y(b)(Nb)
)

(7a)

Z(b)
q =

(

z
(b)
q (q + 1) . . . z

(b)
q (Nb)

u(b)(q + 1) . . . u(b)(Nb)

)

(7b)

where q is the VARX lag order. Batch data matrices (7) are

then merged as follows.

Yq =
(

Y
(1)
q . . . Y

(nb)
q

)

(8a)

Zq =
(

Z
(1)
q . . . Z

(nb)
q

)

(8b)

All batches are thus accounted for in the standard least-

squares estimation problem

Ĥq = argmin
Hq

‖Yq −HqZq‖
2
F

= YqZ
T
q

(

ZqZ
T
q

)−1
(9)

where ‖ · ‖F denotes the Frobenius matrix norm ‖M‖F =
√

tr (MMT ) and tr (·) matrix trace [10], [21], [22]. The

argument lag-q predictor-form Markov coefficient matrix in

(9) has the structure

Hq =
(

H(1) . . . H(q) Dq

)

(10)

with Dq being the direct feedthrough.

Lag order selection can be suggested by cross-validation

as described in the following. Select a column group size

r and find the largest integer g such that rg is less than or

equal to the number of columns in (8). Let Y 1
q denote the

first r columns of Yq , Y 2
q columns r + 1 . . . 2r and so on.

Employ an analogous notation for submatrices of Zq . For

each lag-order q, repeatedly compute

Ĥj
q =

(

YqZ
T
q − Y j

q Z
j
q

T
)(

ZqZ
T
q − Zj

qZ
j
q

T
)−1

(11a)

Êj
q = Y j

q − ĤqZ
j
q (11b)

for j = 1 . . . g to be able to evaluate

ρCV (q, r) =





g(r)
∑

j=1

tr
(

Êj
q Ê

j T
q

)



 /η(q, r) (12)

where η(q, r) =
∑g(r)

j=1 tr
(

Y j
q Y

j
q
T
)

. Assume that r is small

enough to only weakly influence (12). The simplification

ρCV (q, r) = ρCV (q) then results in a lag selection heuristic

q⋆ = argminq ρCV (q) (for any reasonable r).

D. Multibatch SSARX rehash

The simple idea of merging data matrices from different

batches for least-squares estimation of VARXs can be re-

cycled for the SSARX SIM [12]. A few logistical consid-

erations are needed however. A superscript (·)(b) indexes

batches in the following presentation. Some notation is

borrowed from [10].

Assuming a large enough past horizon p such that Ap
K ≈ 0

the fundamental SIM data equation is

yf (k) = H̄fpzp(k)+ Ḡfzf−1(k)+ D̄fuf (k)+ef (k) (13)
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The future horizon signal vectors are

zf−1(k) =











z(k)
z(k + 1)

...

z(k + f − 2)











(14)

and

yf (k) =











y(k)
y(k + 1)

...

y(k + f − 1)











(15)

with uf (k) and ef(k) stacked the same way as (15). Further

Ḡf =











0 0 . . . 0
H(1) 0 . . . 0

...
...

. . .
...

H(f − 1) H(f − 2) . . . H(1)











(16)

H̄fp =











H(1) H(2) . . . H(p)
H(2) H(3) . . . H(p+ 1)

...
...

. . .
...

H(f) H(f + 1) . . . H(f + p− 1)











(17)

and

D̄f = If ⊗D (18)

where If is the identity matrix in R
f×f , ⊗ the Kronecker

product operator and D the direct feedthrough matrix of the

system. The block Markov coefficients H(j) in (16) and (17)

can be expressed in terms of the state-space matrices (in case

these are known) as H(j) = CAj−1
K BK .

At this stage the multibatch VARX procedure of subsec-

tion III-C is invoked to preestimate Markov coefficients to

prefill (16) and (18) wich are used for preprocessing of all

batches b to form

ỹ
(b)
f (k) = y

(b)
f (k)− Ḡfz

(b)
f−1(k)− D̄fu

(b)
f (k) (19)

and to construct the data matrices

Ỹ
(b)
f =

(

ỹ
(b)
f (k1) . . . ỹ

(b)
f (k

(b)
2 )

)

(20a)

Z(b)
p =

(

z
(b)
p (k1) . . . z

(b)
p (k

(b)
2 )

)

(20b)

whith k1 = p+ 1 and k
(b)
2 = Nb − f + 1. Matrices (20) are

joined into

Ỹf =
(

Ỹ
(1)
f . . . Ỹ

(nb)
f

)

(21a)

Zp =
(

Z
(1)
p . . . Z

(nb)
p

)

(21b)

Matrices (21) are now analysed using canonical correlations

[23], [12]:

Rỹf ỹf
= Ỹf Ỹ

T
f (22a)

Rzpzp
= ZpZ

T
p (22b)

M = R
−1/2
ỹf ỹf

ỸfZ
T
p R

−1/2
zpzp

(22c)

Calculate the singular value decomposition of M : M =
UΣV T and define the projection matrix

Jn = V T
n R−1/2

zpzp
(23)

where Vn is the first n columns of V . The state sequence

estimate is now x̂(k) = Jnzp(k). The state dimension n may

be selected by inspecting the decay of the singular values.

Valid dimensions are 1 ≤ n ≤ fny.

Matrix (23) is now employed to compose the final multi-

batch least-squares equations for the state space matrices. Let

x̂(b)(k) = Jnz
(b)
p (k) and form

X̂(b)
n =

(

x̂(b)(p+ 1) . . . x̂(b)(Nb)

u(b)(p+ 1) . . . u(b)(Nb)

)

(24a)

Y (b)
n =

(

y(b)(p+ 1) . . . y(b)(Nb)
)

(24b)

and

X̂
(b)
n,1 =

(

x̂(b)(p+ 2) . . . x̂(b)(Nb)
)

(25a)

X̂(b)
n,z =

(

x̂(b)(p+ 1) . . . x̂(b)(Nb − 1)

z(b)(p+ 1) . . . z(b)(Nb − 1)

)

(25b)

for b = 1 . . . nb. Join the batches

X̂n =
(

X̂
(1)
n . . . X̂

(nb)
n

)

(26a)

Yn =
(

Y
(1)
n . . . Y

(nb)
n

)

(26b)

X̂n,1 =
(

X̂
(1)
n,1 . . . X̂

(nb)
n,1

)

(26c)

X̂n,z =
(

X̂
(1)
n,z . . . X̂

(nb)
n,z

)

(26d)

for estimation of the system (ÂK , B̂K , Ĉ, D̂) as follows.

(

Ĉ D̂
)

= YnX̂
T
n

(

X̂nX̂
T
n

)−1

(27)

(

ÂK B̂K

)

= X̂n,1X̂
T
n,z

(

X̂n,zX̂
T
n,z

)−1

(28)

The extraction of Â, B̂ and K̂ is dictated by the relations (4).

Finally, the initial states (for b = 1 . . . nb) can be estimated

by forming the observability matrix

Ôf =











Ĉ

ĈÂK

...

ĈÂf−1
K











(29)

and matrices (16) and (18), all from the hatted quantities of

equations (27) and (28). The data relation [10]

y
(b)
f (k)− ˆ̄Gfz

(b)
f−1(k)−

ˆ̄Dfu
(b)
f (k) = Ôf x̂

(b)(k) + e
(b)
f (k)

(30)

is then invoked with f = p and k = 1 to pose a least-

squares problem for x̂(b)(1). The innovations are obtained by
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patching together the residuals generated by (27) and (30).

This concludes the multibatch SSARX method1,2.

E. A delete-batch grouped jackknife

For the particular application it turns out to be conve-

nient to utilise a grouped jackknife procedure [24] for the

estimation of the standard errors of the multibatch SIM

estimates3. The natural mutual exclusive groups of data are

the batches themselves. In this subsection a generic scalar

estimator θ̂ = θ̂ (DB) is adopted. θ̂ should be thought of as

a function of the output (Â, B̂, Ĉ, D̂, K̂) of the multibatch

SIM introduced above.

The basic delete-m jackknife assumes all groups to be of

equal size but this is not quite true for the batches of time-

series vector data in the present work. After data pretreatment

slicing [11], the batches differ slightly in their respective

Nb. Therefore it appears worthwhile to also try the so-called

delete-mj jackknife [24] wich is designed for unevenly sized

groups of data.

Let DB(j) denote the set of nb − 1 batches formed by

removing batch j from the set DB . SIM application on the

set DB(j) yields the estimate θ̂(j), j = 1 . . . nb, whereas

SIM application on the full dataset yields the estimate θ̂.

Let θ̄(m) = (1/nb)
∑nb

j=1 θ̂(j). mj = Nj denotes the record

length of the omitted batch j, n =
∑nb

j=1 mj and hj =

n/mj . Let also θ̃(j) = hj θ̂−(hj−1)θ̂(j) and θ̂J(mj) = nbθ̂−
∑nb

j=1(1−mj/n)θ̂(j). The delete-m jackknifed standard error

σm estimate is defined by

σ2
m =

nb − 1

nb

nb
∑

j=1

{

θ̂(j) − θ̄(m)

}2

(31)

and the delete-mj ditto σmj
by

σ2
mj

=
1

nb

nb
∑

j=1

1

hj − 1

{

θ̃(j) − θ̂J(mj)

}2

(32)

Equation (32) reduces to equation (31) in case all mj are

equal. For the present application these expressions are

anticipated to be evaluated to approximately the same value.

IV. EXPERIMENTAL DATA ANALYSIS

A vacuum dataset from open-loop operation consisting of

nvac
b = 40 batches totaling Nvac = 34040 vector samples

was acquired from dithering T2R and is here denoted Dvac
B .

A plasma dataset Dpla
B acquired from mandatory closed-loop

dithered operation of T2R was also packaged, with npla
b = 74

1It is possible to iterate SSARX by replacing the VARX preestimate with
the Markov coefficients implied by the obtained system matrices and then
repeat the entire algorithm. When the Markov coefficients cease to change
significantly, the iterated SSARX stops. Iterations were not used in this
work.

2Enforcement of a zero direct feedthrough reduces to a special case of
the outlined algorithm; appropriate truncations of the matrices and equations
above are done when D should not be present.

3Another possibility would be a nonparametric bootstrap resampling [25]
of the batches, which can be seen as independent identically distributed
random outcomes. That same reasoning also motivates the batchwise
jackknife. Bootstrapping may be more accurate but is also expected to be
more time-consuming.

TABLE I

MAXIMUM EIGENVALUE MAGNITUDE, θ̂ = maxj |λj(Â)|, AND

JACKKNIFED ESTIMATOR STANDARD ERRORS FOR THE T2R PLASMA

RESPONSE USING VARIOUS CASCADE SIM RECIPES WITH THE

MULTIBATCH SSARX METHOD.

Data θ̂ σm σmj

{ũ,y}, D = 0 1.0292 5.81× 10−4 5.90× 10−4

{ũ,y}, D 6= 0 1.0291 6.00× 10−4 6.07× 10−4

{

û
F̂
,y

}

, D = 0 1.0292 5.64× 10−4 5.66× 10−4

{

û
F̂
,y

}

, D 6= 0 1.0292 5.88× 10−4 5.90× 10−4

{

ŷ0|1,y1

}

, D 6= 0 1.0292 4.76× 10−4 4.79× 10−4

{

ŷ0|1, δy
}

, D = 0 1.0294 4.61× 10−4 4.64× 10−4

and a total Npla = 33113. Detrending was performed to

remove possible axisymmetric drifts. Scaling was done such

that the signals obtained unity root mean square magnitude.

No prefiltering was done.

An initial blocked CV, using a blocksize of r = 1000 (to

save computational time), suggested the VARX order q∗ ≈
10 for the input-output data {ũ,y}. It has been argued that

CV may suggest too small lag orders when the objective is

accurate identification of the underlying physical processes

and not merely signal prediction [26], [27]. This argument,

in combination with a shallow minimum of ρCV (q) (on the

large-q side), lead to the selection of f = p = q = 15 for the

SIM horizons for estimation of G and f = p = q = 10 for

estimation of F , when applicable. No SVD truncation was

done for any of the SIM estimates. All empirical system state

dimensions were defaulted to n = nyf .

The maximal eigenvalue modulus of the Â-matrix, using

the multibatch SSARX method, for the various cascade SIM

recipes above, are presented in Table I. The delete-batch

jackknife standard errors are also given. Specifically

θ̂ = max
j

∣

∣

∣λj

(

Â
)∣

∣

∣ (33)

where λj (·) picks out the jth eigenvalue of a matrix. It can

be seen that all cascade SIM recipes produce similar results.

Note that the standard error estimates pertain to the final

dataset given to the SIM and does not include the additional

uncertainties induced by filtering or simulation pretreatments.

It turns out that the eigenvector corresponding to the

maximally unstable eigenvalue can be mapped directly to the

theoretical monochromatic Fourier eigenmode with poloidal

mode number 1 and toroidal mode number −11. This can

be seen by projection onto the output array using Ĉ. Also in

theory is (1,−11) the most unstable. This modal visualisa-

tion procedure for state space systems was developed earlier

[28], [29] and is reinvoked here to hint at the empirical modal

structure of Γ. The result is drawn in Figure 3.

An RFP researcher is likely to recognise the essentials

of the typical RFP-theory ideal MHD resistive-shell mode

structure in Figure 3. There are admittedly a few question

marks for some of the features at the left and right fringes

of the plot but a discussion of these is beyond the scope of

this work.
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Fig. 3. T2R empirical mode visualisation. Â-matrix eigenvalue magnitude
is on the vertical axis and toroidal mode number n is along the horizontal
axis. The colouring shows the spatial Fourier power spectrum of the
projected (by Ĉ) eigenvectors.

V. CONCLUSIONS

The SSARX subspace system identification method of

Janssson [12] was remixed for the purpose of accomodating

multibatch data. Two particular cascade structures in the

identification problem were explicitly handled by filtering

and simulation, respectively. The experimental data from

the RFP machine T2R was analysed using these multistep

applications of the proposed SIM. The aim of developing

the SIM as a scientific measurement technique for MHD

modal estimation lead to the formulation of jackknifed

standard error estimation based on a natural multibatch data

partitioning. It was noted that the multibatch SSARX method

appears to pick up empirical plasma response modes that,

jointly, indeed resemble the theoretical RFP spectrum. This

is encouraging.

ACKNOWLEDGEMENTS

The authors acknowledge support from the EURATOM fu-

sion research programme through the contract of association

EURATOM-VR.

REFERENCES

[1] IOP, “Fusion as en energy source - challenges and opportunities,”
Institute of Physics Reports, September 2008. [Online]. Available:
http://www.iop.org

[2] R. Hawryluk, D. Campbell, G. Janeschitz, P. Thomas, R. Albanese
et al., “Principal physics developments evaluated in the ITER design
review,” Nuclear Fusion, vol. 49, no. 6, p. 065012.

[3] J. Wesson, Tokamaks, 3rd ed., ser. International Series of Monographs
in Physics. New York: Oxford Science Publications, 2004, no. 118.

[4] “International thermonuclear experimental reactor (ITER) website,”
February 2010. [Online]. Available: http://www.iter.org

[5] H. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics,
1st ed. Cambridge University Press, 2004.

[6] H. Goedbloed, R. Keppens, and S. Poedts, Advanced Magnetohydro-

dynamics, 1st ed. Cambridge University Press, 2010.
[7] M. Walker et al., “Emerging applications in tokamak plasma control:

Control solutions for next generation tokamaks,” IEEE Control System

Magazine, vol. 26, pp. 35–63, 2006.
[8] M. S. Chu and M. Okabayashi, “Stabilization of the external kink

and the resistive wall mode,” Plasma Physics and Controlled Fusion,
vol. 52, no. 12, p. 123001.

[9] T. Evans et al., “Edge stability and transport control with resonant
magnetic perturbations in collisionless tokamak plasmas,” Nature

Physics, vol. 2, pp. 419–423, 2006.
[10] S. J. Qin, “An overview of subspace identification,” Computers and

Chemical Engineering, vol. 30, pp. 1502–1513, 2006.
[11] Y. Zhu, Multivariable System Identification For Process Control.

Elsevier, 2001.
[12] M. Jansson, “Subspace identification and ARX modeling,” in IFAC

Symposium on System Identification, Aug 2003.
[13] B. Wahlberg, M. Jansson, T. Matsko, and M. Molander, “Experiences

from subspace system identification - comments from process industry
users and researchers,” in Modeling, Estimation and Control, ser.
Lecture Notes in Control and Information Sciences. Springer Berlin
/ Heidelberg, 2007, vol. 364, pp. 315–327.
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