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Abstract— In this paper we study the existence and stability
of linear invariant manifolds in a network of diffusively coupled
identical dynamical systems. Symmetry under permutation of
different units of the network is helpful to construct explicit
formulae for linear invariant manifolds of the network, in
order to classify them, and to examine their stability through
Lyapunovs direct method. A particular attention is drawn to
the situation when all the subsystems without interconnections
are globally asymptotically stable and the oscillatory behavior
is forced via diffusive coupling.

I. INTRODUCTION

The high number of scientific contributions in the field
of synchronization of coupled dynamical systems reflects
the importance of this subject. The reason for this impor-
tance appears to be threefold: synchronization is common
in nature, coupled dynamical systems display a very rich
phenomenology and, finally, it can find applications.

First of all, many situations can be modelled as ensembles
of coupled oscillators: a large number of examples of syn-
chronization in nature can be found in [1], [2], and references
therein.

The rich phenomenology constitutes another reason for
the importance of these studies. Coupled dynamical systems
have been shown to give rise to rather complex phenomena.
Milton Erikson, used to tell a story, that a centipede was
asked how it was able to move all the hundred legs in
such a synchronous way. After this question had been put
to the poor creature, it had been unable to make a step
ever since [3]. Apparently a very primitive and distributed
nervous system can generate complex wave-like patterns and
this problem will be addressed in the paper. The centipede
tale is not so meaningless as it seems from a first glance.
There is an evidence 1 that wave-like motions of centipede’s
legs are generated by a spatially distributed neural network
rather than by a local generator. Questions like this motivated
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studies of the so called central pattern generators, see, e.g.
[4] and references therein.

Synchronization is therefore important, so it is especially
important to develop criteria that guarantee its stability, if
applications are sought. In this paper we consider networks
of identical systems coupled through diffusion, and we give
conditions that guarantee asymptotic stability of a particular
invariant manifold (a synchronous state) of a given network.
The diffusion which is very important for cooperative behav-
ior of living cells, was usually considered as a smoothening
or trivializing process. However it turns out that it can result
in nontrivial oscillatory behavior in different systems. In this
paper we are concerned with oscillatory phenomena occur-
ring in systems consisting of diffusively coupled subsystems
described by ordinary differential equations. A motivation
of our study is the paper by Smale [5] who proposed
an example of two 4th order diffusively coupled systems.
Each system describes a mathematical cell and by itself is
inert or dead in the sense that it is globally asymptotically
stable. In interaction, however “the cellular system pulses (or
expressed perhaps overdramatically, becomes alive!) in the
sense that the concentrations of the enzymes in each cell will
oscillate infinitely”. In his paper Smale posed the problem
to find conditions under which globally asymptotically stable
systems being diffusively coupled will oscillate. For related
results see [6], [7], [8]. Our approach is based on exploiting
concepts related to stability such as passivity and minimum-
phaseness to study synchronization [9], [10], [11], [12] (for
an input-output approach, see [13]).

Synchronous motion is most often understood as the
equality of corresponding variables of two identical systems.
In other words, the trajectories of two (or more) identical
systems will follow, after some transient, the same path in
time. This situation is not, of course, the only commonly
understood situation of synchronization. Other different re-
lationships between coupled systems can be considered syn-
chronous. In this paper we consider a situation when two
different kinds of symmetries in the network, i.e. global and
internal, can result in two types of synchronization: in-phase
and anti-phase.

Symmetry considerations are helpful to classify several
invariant sets, and a possible hierarchy to accommodate
them. The symmetry generated by the coupling only has
been termed global, to distinguish it from the additional sym-
metries brought upon by the dynamical systems modelling
each unit, that has been termed internal. This terminology
has been introduced in [14] where it is studied how these
two groups of symmetries interact.
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In this paper we exploit symmetry under permutation
of a given network of dynamical systems coupled through
diffusion in order to classify some linear invariant manifolds
and investigate their stability. More specifically, we see that
to any specific symmetry it is associated a linear invariant
manifold, and we show how to construct a Lyapunov function
to determine its stability, from the same specific symmetry.
Therefore, under the conditions formulated in this work,
stability in the network descends from its topology.

Throughout the paper we use the following notations. Ik
denotes the k × k identity matrix. The Euclidean norm in
Rn is denoted as || · ||, ||x||2 = x>x, where > defines
transposition. The notation col(x1, . . . , xn) stands for the
column vector composed of the elements x1, . . . , xn. This
notation will also be used in case where the components xi
are vectors again. For matrices A and B the notation A⊗B
(the Kronecker product) stands for the matrix composed of
submatrices AijB, where Aij , i, j = 1 . . . n, stands for the
ij-th entry of the n× n matrix A.

II. DIFFUSIVE CELLULAR NETWORKS

The subject of our research is the existence and stability
of partial synchronization regimes in diffusive networks. To
make the problem statement clearer, we start our discussion
by introducing the concept of diffusive network. In 1976
Smale [5] proposed a model of two interacting cells based on
two identical coupled oscillators, and noticed that diffusion,
rather counterintuitively, does not necessarily smooth out
differences between the two systems’ outputs, giving the
example of two stable systems that can display oscillations
when connected via diffusive coupling. Taking inspiration
from Smale’s previous research, a diffusive cellular network
describes a network composed of identical dynamical sys-
tems coupled through diffusive coupling that cannot be de-
composed into two or more disconnected smaller networks.

To put these statements into a more mathematical descrip-
tion, let us consider k identical systems of the form

ẋj = f(xj) +Buj , yj = Cxj , (1)

where f is a smooth vector field, j = 1, . . . , k, xj(t) ∈ Rn

is the state of the j-th system, uj(t) ∈ Rm and yj(t) ∈ Rm

are, respectively, the input and the output of the j-th system,
and B,C are constant matrices of appropriate dimension.
We assume that matrix CB is similar to a positive definite
matrix, and the k systems are interconnected through mutual
linear output coupling,

uj = −γj1(yj−y1)−γj2(yj−y2)− . . .−γjk(yj−yk) (2)

where γij are nonnegative constants. With no loss of gener-
ality we assume in the sequel that CB is a positive definite
matrix.

Define the k × k matrix Γ as

Γ =


∑k

i=2 γ1i −γ12 · · · −γ1k

−γ21

∑k
i=1,i6=2 γ2i · · · −γ2k

...
...

. . .
...

−γk1 −γk2 · · ·
∑k−1

i=1 γki

 (3)

where all row sums are zero. With definition (3), the collec-
tion of k systems (1) with feedback (2) can be rewritten in
the more compact form{

ẋ = F (x) + (Ik ⊗B)u
y = (Ik ⊗ C)x

(4)

with the feedback given by

u = −(Γ⊗ Im)y, (5)

where we denoted x = col(x1, . . . , xk), F (x) =
col(f(x1), . . . , f(xk)) ∈ Rkn, y = col(y1, . . . , yk), and
u = col(u1, . . . , uk) ∈ Rkm.

If matrix Γ is symmetric, has only one zero eigenvalue
and γij ≥ 0, system (1,2) is referred to as diffusive cellular
network.

All main points have now been introduced in order to for-
mulate a clear problem statement. Can we exploit symmetry
in the network to identify its linear invariant manifolds, and
benefit from a representation of the system as (1,2), and/or
(4,5), typical for control purposes, in order to give conditions
that guarantee stability of some linear invariant manifolds?

III. SYMMETRIES AND INVARIANT MANIFOLDS

If a given network possesses a certain symmetry, this
symmetry must be present in matrix Γ. In particular, the net-
work may contain some repeating patterns, when considering
the arrangements of constants γij , hence the permutation of
some elements will leave the network unchanged. The matrix
representation of a permutation σ of the set {1, 2, ..., k} is
a permutation matrix Π ∈ Rk×k. Permutation matrices are
orthogonal, i.e. Π>Π = Ik, and they form a group with
respect to the multiplication.

Rewrite the dynamics of (4,5) in the closed loop form

ẋ = F (x) +Gx (6)

where G = −(Ik ⊗ B)(Γ ⊗ Im)(Ik ⊗ C) ∈ Rkn×kn, that
can be simplified as G = −Γ ⊗ BC. Let us recall here
that given a dynamical system as (6), the linear manifold
AM = {x ∈ Rkn : Mx = 0}, with M ∈ Rkn×kn, is
invariant if Mẋ = 0 whenever Mx = 0. That is, if at a
certain time t0 a trajectory is on the manifold, x(t0) ∈ AM ,
then it will remain there for all time, x(t) ∈ AM for all
t. The problem can be summarized in the following terms:
given G and F (·) find a solution M to

MF (x(t0)) +MGx(t0) = 0 (7)

for all x(t0) for which Mx(t0) = 0. A natural way to solve
(7) is to exploit the symmetry of the network.

A. Global symmetries

In representation (6), we can establish conditions to iden-
tify those permutations that leave a given network invariant.
To this end we will establish conditions that guarantee that
the set ker(Ikn −Π⊗ In) is invariant.

Let Σ = Π⊗ In for simplicity, and assume that at time t0
x(t0) satisfies (Ikn−Σ)x(t0) = 0. Consider (6), and suppose

7850



that there is a solution X of the following system of linear
equations:

(Ik −Π)Γ = X(Ik −Π). (8)

Since Π is a permutation matrix, it also follows that
ΣF (x) = F (Σx). If we multiply both sides of (6) by Ikn−Σ,
we obtain, at time t0,

(Ikn − Σ)ẋ(t0) = F (x(t0))− F (Σx(t0))

−(X ⊗BC)(Ikn − Σ)x(t0) = 0

because we assumed (Ikn−Σ)x(t0) = 0. Therefore, (Ikn−
Σ)x(t) = 0 for all t, and we can reformulate this result as:

Lemma 3.1: Given a permutation matrix Π such that (8)
has a solution X , the set

ker(Ikn −Π⊗ In) (9)

is a linear invariant manifold for system (6).
An important particular case arises when X = Γ, that is,

Π and Γ commute. At this point one can make a remark on
how to find a permutation Π that commutes with Γ. It is
possible to characterize the coupling matrix Γ as an affine
combination of permutation matrices.

Theorem 3.2: Let Γ be a k × k symmetric matrix with
nonnegative off-diagonal elements and zero row sums. Let
% > 0 be the largest absolute value of diagonal elements.
Then there are numbers τi ≥ 0,

∑
i τi = 1 and permutation

matrices Πi so that

Γ = %

(
Ik −

∑
i

τi
2

(Πi + Π>
i )

)
(10)

To prove the result one can notice that Ik − %−1Γ is
bistochastic and invoke the seminal Birkhoff – von Neumann
theorem, see.e.g. [15]. In many situations, representation (10)
involves permutations from a commutative group, hence in
this case any permutation matrix from this group commutes
with Γ.

B. Internal symmetries

Additional internal symmetries in the differential equa-
tions governing the dynamics of the elements of the network
will lead to the existence of additional linear invariant
manifolds. Consider one uncoupled element of the network,
ẋj = f(xj), with initial condition xj(0), generating the
particular solution xj(t). It is easy to see that if

Jf(xj) = f(Jxj), (11)

with J ∈ Rn×n constant matrix, then Jxj(t) is a solution as
well, generated by the initial condition Jxj(0). This property
of f(·) defines an additional symmetry to the network, that
originates additional invariant manifolds. In this paper we
focus on a particular case of internal symmetries: we will
assume that f(·) is an odd function, so J = −In. In this
case, instead of (8) one can consider the following equation
with respect to X:

(Ik + Π)Γ = X(Ik + Π). (12)

As in the last argument, we can formulate the following
statement:

Lemma 3.3: Suppose f is an odd function: for all x it
follows that f(−x) = −f(x). Given a permutation matrix
Π such that (12) has a solution X , the set

ker(Ikn + Π⊗ In) (13)

is a linear invariant manifold for system (6).

IV. ON GLOBAL ASYMPTOTIC STABILITY OF THE LINEAR
INVARIANT MANIFOLDS

A permutation matrix Π satisfying (8) for some X defines
a linear invariant manifold of system (6), given by (9). This
expression stands for a set of linear equations of the form

xi − xj = 0 (14)

for some i and j that can be read off from the nonzero
elements of the Π matrix under consideration. Therefore, we
can identify a particular manifold associated with a particular
matrix Π by the correspondent set IΠ of pairs i, j for which
(14) holds. In this case it is natural to refer (9) to as the
in-phase synchronization manifold.

In a similar way, if the internal symmetries are taken into
account, the set ker(Ikn + Π ⊗ In) can be represented in a
form of linear equations

xi + xj = 0

and the corresponding invariant manifold (13) is referred to
as anti-phase synchronization manifold.

We begin with the in-phase synchronization manifolds.
From now on we consider a particular class of symmetries,
for which X = Γ, i.e. we assume that there is a permutation
Π that commutes with Γ. For such a Π consider the following
problem: find the smallest λ so that

(Ik −Π)>Γ(Ik −Π) ≤ λ(Ik −Π)>(Ik −Π). (15)

Due to Gershgorin theorem, Γ is positive semi-definite. Since
Γ commutes with Π it follows that Γ commutes with (Ik −
Π)>(Ik−Π). Due to commutativity, any eigenvector of Γ is
either in range(Ik−Π) or in ker(Ik−Π). So, λ is the largest
eigenvalue of Γ taken under restriction that the corresponding
eigenvector lies in range of Ik −Π.

Theorem 4.1: Suppose that
i) The system (4, 5) is ultimately bounded.

ii) There exists a positive definite matrix P and positive ε
such that for all x ∈ Rn the following inequality

P
∂f(x)

∂x
+

(
∂f(x)

∂x

)>

P ≤ −εIn

holds.
iii) There is a k × k permutation Π which commutes with

Γ: ΠΓ = ΓΠ.
Let λ′ be the largest eigenvalue of Γ under restriction that

the corresponding eigenvector lies in the range of Ik −Π.
Then there exists a positive λ̄ such that if λ′ < λ̄ the set
ker(Ikn −Π⊗ In) contains a globally asymptotically stable
compact subset.
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Before giving a proof of this statement, it is worth giving
some clarifying remarks on the assumptions imposed. First
of all, it is not difficult to notice that Assumption ii implies
global asymptotic stability of the system without coupling
(when all the factors γij are taken zero). The Lyapunov
function that proves global asymptotic stability is quadratic
and since the coupling appears in the system equations in a
linear way, it is not surprising that for “small enough” γij’s,
the stability will be preserved. If the coupling factors are
small, yet non-zero to ensure the existence of a permutation
matrix from the theorem statement, then Lemma 3.1 guar-
antees that there is a linear invariant manifold. Clearly, this
manifold contains a globally asymptotically stable compact
subset - the origin. Now let us consider the coupled system
for larger γij’s. It can be a situation when for such a coupling,
the origin is unstable, but the linear invariant manifold (9) is
stable in the sense that it contains a globally asymptotically
stable compact subset that differs from the origin. This idea
explains that a possible proof of the result is based on treating
the coupling as a linear ”destabilizing” feedback, and one
simply has to find conditions to ensure that this feedback
can not destabilize a particular linear invariant manifold.

Proof: Consider the following Lyapunov function can-
didate with ξ := Π⊗ Inx

V (x) = x>(Ikn −Π⊗ In)>(Ik ⊗ P )(Ikn −Π⊗ In)x

= (x− ξ)>(Ik ⊗ P )(x− ξ)

Its time derivative along the solutions of the coupled
system satisfies

V̇ = (F (x) +Gx)>(Ikn −Π⊗ In)>(Ik ⊗ P )

× (Ikn −Π⊗ In)x

+x>(Ikn −Π⊗ In)>(Ik ⊗ P )

× (Ikn −Π⊗ In)(F (x) +Gx)

Since Π is a permutation it follows that

(Ikn−Π⊗In)F (x) = F (x)−F ((Π⊗In)x) = F (x)−F (ξ).

Assumption ii implies that

(x− ξ)>(Ik ⊗ P )(F (x)− F (ξ))

+(F (x)− F (ξ))>(Ik ⊗ P )(x− ξ) ≤ −ε||x− ξ||2.

Using definition of G, one has

(Ikn −Π⊗ In)G = −(Ikn −Π⊗ In)(Γ⊗BC)

= −(Ik ⊗ In −Π⊗ In)(Γ⊗BC)

= −(Ik −Π)Γ⊗BC
= −Γ(Ik −Π)⊗BC

Let β be the smallest solution of the following generalized
eigenvalue problem det(PBC + (BC)>P − βP ) = 0.

It can be derived that

V̇ ≤ (−ε+ 2λ′|β|)V

and the result follows.

Similarly, stability of the anti-phase synchronization man-
ifold can be established by the following result.

Theorem 4.2: Suppose that f is an odd function: for all
x ∈ Rn it follows that f(−x) = −f(x) and all assumptions
i-iii of the previous theorem hold. Let λ′ be the largest
eigenvalue of Γ under restriction that the corresponding
eigenvector lies in the range of Ik + Π.
Then there exists a positive λ̄ such that if λ′ < λ̄ the set
ker(Ikn + Π⊗ In) contains a globally asymptotically stable
compact subset.

V. DIFFUSION DRIVEN OSCILLATIONS

From the assumptions imposed on f one can conclude
that without interconnections between the subsystems all
the solutions converge to a globally asymptotically stable
equilibrium point (it follows from the assumption ii). So, an
oscillatory behavior can be brought via the way the systems
are interconnected.

In this section we present conditions that guarantee that the
network of diffusively coupled systems exhibits oscillatory
behavior. We begin with a definition of oscillatory system
that will be in use in the sequel.

Consider the following nonlinear system

ẋ = F (x), y = h(x), x(t) ∈ Rn, y(t) ∈ R1. (16)

where F satisfies assumptions guaranteeing existence of a
unique solution on the infinite time interval, and y represents
the output of the dynamical system (16). The system (16)
is called oscillatory with respect to a scalar output y in
the sense of Yakubovich if it is ultimately bounded and for
almost all initial conditions there is no limit limt→∞ y(t).
We call the system oscillatory if it is oscillatory with respect
to at least one of the components of the vector x.

The following result can be proved similarly to the proof
of Theorem 1.1, 3◦, 5◦ [6].

Theorem 5.1: Assume that
i) The equation F (x) = 0 has only isolated solutions
x̄j , j = 1, 2....

ii) The system (16) is ultimately bounded.
iii) x̄j are hyperbolic fixed points and each matrix ∂F

∂x (x̄j)
has at least one eigenvalue with positive real part.

Then the system (16) is oscillatory in the sense of
Yakubovich.

The proof of the statement is based on the Hartman-
Grobman theorem.

The goal of this section is to build an example of a
network of diffusively coupled systems that has the following
property: i) each uncoupled system is globally asymptotically
stable at the origin ii) the origin is the unique equilibrium
of the network iii) each subsystem of the network has odd
symmetry iv) for strong enough coupling the network is
oscillatory in the sense of Yakubovich.

To accomplish the goal consider the network (1,2) with

f(xj) = Axj −Bφ(zj), xj ∈ Rn, n ≥ 3

with scalar φ, zj and yj and matrices A,B,C of the corre-
sponding dimensions that satisfy the following assumption
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Assumption 5.2: The following conditions hold
i) The matrix A is Hurwitz, so there is a positive definite

matrix P = P>, so that A>P + PA < 0.
ii) zj = Zxj , where Z> = PB with the matrix P as in i.

iii) φ is an odd smooth strictly increasing function with the
following property:

∀C > 0 ∃σ > 0 ∀z > σ φ(z) > Cz.

iv) Let Wy(s) be the transfer function of the linear part
from uj to yj = Cx taking φ(zj) = 0: Wy(s) = C(sI−
A)−1B. Then Wy(s) is nondegenerate, it has relative
degree one with even number of zeroes with positive
real part and Wy(0) > 0.

v) Let Wz(s) be the transfer function Wz(s) = Z(sI −
A)−1B. Then Wz(0) > 0.

Theorem 5.3: Consider a network of diffusively coupled
systems (1,2) with a symmetric Γ as in (3) that satisfies
Assumption 5.2.

There is a number λ̄ > 0 so that if the largest eigenvalue
of Γ exceeds λ̄ then the network is oscillatory in the sense
of Yakubovich.

Proof: To prove the result one can verify conditions
i-iii of Theorem 5.1. We sketch the prove.
i)We are going to prove that the origin is the unique
equilibrium of the closed loop system. The Jacobi matrix
of the right-hand side is given by

J(x) = Ik ⊗A− Γ⊗BC − Ik ⊗BZφ′(zj)

Since Γ is similar to a diagonal matrix with nonnegative
entries there is a nonsingular k × k matrix S so that

(S⊗In)J(S−1⊗In) = Ik⊗A−Λ⊗BC−Ik⊗BZφ′ (17)

where Λ is a diagonal matrix with nonnegative entries λj .
The right-hand side of (17) is a block-diagonal matrix of the
form

Jj = A− λjBC −BZφ′(zj)

To calculate its determinant recall the following identity
det(Q+RT ) = det(Q) det(I +RQ−1T ) that yields

det Jj = det(A)(1−BA−1Cλj −BA−1Zφ′(zj))

= det(A)(1 +Wy(0)λj +Wz(0)φ′(z)). (18)

Since Wy(0) > 0, Wz(0) > 0, λj ≥ 0 and φ′(zj) > 0 one
concludes that the Jacobi matrix is nonsingular at any point.

Now consider an auxiliary system replacing Γ with εΓ,
where ε ∈ [0, 1] is a parameter. As before, for any such an ε
the Jacobian of the right-hand side is nonsingular. Suppose
for some ε = ε∗ ∈ [0, 1] there is an equilibrium point xeq of
the auxiliary system which is different from the origin. Due
to the implicit function theorem this point is determined as a
solution of some equation xeq = F(ε∗). Decreasing ε from
ε∗ to zero, one concludes that there is some equilibrium
point different from the origin when ε = 0. However it
contradicts with the global asymptotic stability of the free
system (uj = 0). This contradiction proves the uniqueness
of the equilibrium point.

ii) To prove the ultimate boundedness, consider the following
Lyapunov function V (x) = x>(Ik⊗P )x with P from item i
of Assumption 5.2. Then using items ii and iii of Assumption
5.2 one can find such a number C so that V (x) > C implies
V̇ < 0.
iii) Similar to the proof of item i, to prove the instability of
the origin it suffices to prove instability of the linear system

ξ̇ = (A− λBC)ξ (19)

for sufficiently large λ > 0. Due to Assumption 5.2.iv
stability of this system is determined by the roots of the
following polynomial Qn−1(s) + εRn(s) = 0, where ε =
1/λ and Qn−1(s) is the numerator of Wy(s) of degree n−1
and Rn(s) is a Hurwitz polynomial of degree n (denominator
of Wy(s)). Since Qn−1 is unstable for sufficiently small ε
system (19) is unstable. In particular, one can utilize the
argument used in the proof of Lemma 2 in [16] to show that
n− 1 eigenvalues of the closed loop system will tend to the
roots of Qn−1(s) as ε → 0, while the rest eigenvalue will
remain negative since CB > 0. The proof is completed. It is
worth mentioning that we have not required (see Assumption
5.2.iv) that the zero dynamics of (A,B,C) has an even
number of unstable zeroes. Note, however, that since A is
Hurwitz Wy(0) has the same sign as Πn−1

i (−σi), where
σi are the zeroes of the numerator of Wy(s). Therefore,
Wy(0) > 0 necessarily implies that the number of unstable
zeroes is even and, hence, n ≥ 3.

The theorems presented in the paper allow one to design
a network of diffusively coupled systems, so that each free
system is globally asymptotically stable, the network is
oscillatory in the sense of Yakubovich and there are different
in- and anti-phase synchronous motions determined by the
global and internal symmetries of the network. Such net-
works, if they possess circular topology can generate wave-
like patterns similar to coordinated motion of centipedes’
legs. In the next section we demonstrate how to make the
theory operational via an example.

VI. AN EXAMPLE

Consider a ring of four diffusively coupled systems

ẋj = Axj +B(uj − z3
j ), j = 1, . . . , 4, x(t) ∈ R3

zj = Zx, yj = Cx, u = −Γy

with

A =

 1 −1 1
1 0 0
−4 2 −3


B = (0 0 1)>, C = (0 0 1), Z = B>P

where P is a solution of the following Lyapunov equation

A>P + PA = −I3.

In this case we have

Wy(s) =
s2 − s+ 1

s3 + 2s2 + 2s+ 1
, Wz(s) =

s2 + 1.5s+ 1

s3 + 2s2 + 2s+ 1
,
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Fig. 1. Synchronous behavior in a ring of 4 systems, yj(t)+2(j−1), j =
1, . . . , 4 versus time. γ = 1.5a.

and therefore, all the conditions imposed in Assumption 5.2
are satisfied and CB > 0, as required from the definition
of diffusive coupling. The coupling between the systems is
defined by the following coupling matrix

Γ = γ


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


with a positive parameter γ. The largest eigenvalue of Γ
is 4γ. Consider a symmetric permutation 1 ↔ 2, 3 ↔ 4
and the corresponding permutation matrix Π1, that commutes
with Γ. The largest eigenvalue of Γ under restriction that
the corresponding eigenvector is in the range of I4 + Π1

is 2γ. Consider a symmetric permutation 1 ↔ 3, 2 ↔ 4
and the corresponding permutation matrix Π2, that commutes
with Γ. The largest eigenvalue of Γ under restriction that the
corresponding eigenvector is in the range of I4 − Π2 is 2γ
too. Finally, one concludes that there is a number a > 0 so
that if a < γ < 2a (a can be calculated in this case from the
condition of Hopf bifurcation: a = (

√
13−1)/8) the network

is oscillatory in the sense of Yakubovich and the intersection
of sets ker(I12 + Π1 ⊗ I3) and ker(I12 −Π2 ⊗ I3) contains
globally asymptotically stable compact subset. It means that
the first and third subsystems oscillate in phase, the second
and the fourth subsystems are in phase as well, while the
first and the second subsystems are in anti-phase.

The results of computer simulation are depicted on Fig.
1. It can be seen that after some transient period the syn-
chronous regime is settled. Computer simulation reveals that
for γ > 2a this regime is stable as well. At the same time in
this case the unstable manifold of the origin is transverse to
the synchronous manifold, so no conclusion about the global
stability can be derived in this case. A possible way to study
synchronization in this case is to apply the method developed
in [4].

A more relevant for the topic of the paper example with
24 neurons described by the previous model, that demon-
strates wave-like oscillation will be analyzed in forthcoming
publications, for the results of computer simulations, see

http://www.youtube.com/watch?v=OlKLfY8MM6o

VII. CONCLUSIONS

The paper addresses a problem of pattern generation in
diffusive networks. A motivation for our study was an exam-
ple studied by Smale [5]. He wrote: “There is a paradoxical
aspect to the example. One has two dead (mathematically
dead) cells interacting by a diffusion process which has a
tendency in itself to equalize the concentrations. Yet in in-
teraction, a state continues to pulse indefinitely”. It is shown
in this paper that globally asymptotically stable systems
being interconnected via diffusive coupling can generate
synchronous wave-like patterns if the network and individual
subsystems possess some symmetries: if a coupling strength
exceeds some bifurcation threshold, synchronous oscillations
appear spontaneously like a Mexican wave in a football
stadium.
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