
Distributed Algorithms for Control of Demand Response and

Distributed Energy Resources

Alejandro D. Domı́nguez-Garcı́a and Christoforos N. Hadjicostis

Abstract— This paper proposes distributed algorithms for
control and coordination of loads and distributed energy
resources (DERs) in distribution networks. These algorithms
are relevant for load curtailment control in demand response
programs, and also for coordination of DERs for provision
of ancillary services. Both the distributed load-curtailment and
DER coordination problems can be cast as distributed resource
allocation problems with constraints on resource capacity. We
focus on linear iterative algorithms in which each resource j

maintains a set of values that is updated to be a weighted linear
combination of the resource’s own previous set of values and
the previous sets of values of its neighboring resources. This
set of values can be used by each node to determine its own
contribution to load curtailment or to resource request.

I. INTRODUCTION AND MOTIVATION

Driven by the US-DoE SmartGrid initiative and its Eu-

ropean counterpart, electrical energy systems are undergoing

radical transformations in functionality in a quest to increase

efficiency and reliability. These transformations are not only

in the bulk power transmission system, but also in distri-

bution systems, and are enabled by the integration of new

technologies, such as: i) advanced communication and con-

trol; ii) integration of distributed energy resources (DERs),

e.g., photovoltaics (PV); and iii) new storage-capable loads,

e.g., plug-in hybrid electric vehicles (PHEVs).

Focusing on the distribution level, proper coordination

and control of loads and DERs, for both generation and

storage, provides more flexibility in the provision of ancillary

services, which can result in enhanced efficiency and relia-

bility. Load control is currently achieved through demand

response programs in which participants, i.e., demand re-

sponse resources (DRRs), sign a contract with an aggregating

entity—the demand response provider—so as their load can

be curtailed by the aggregator in response to market prices

or in order to ensure system reliable operation, in exchange

for lower electricity prices. DER control is envisioned to be

The work of A. D. Domı́nguez-Garcı́a was supported in part by the
National Science Foundation (NSF) under grant ECCS-CAR-0954420. The
work of C. N. Hadjicostis was supported in part by the European Community
(EC) 7

th Framework Programme (FP7/2007-2013), under grants INFSO-
ICT-223844 and PIRG02-GA-2007-224877. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of NSF or EC.

A. D. Domı́nguez-Garcı́a is with the Department of Electrical and
Computer Engineering at the University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA. E-mail: aledan@ILLINOIS.EDU.

C. N. Hadjicostis is with the Department of Electrical and Computer
Engineering at the University of Cyprus, Nicosia, Cyprus, and also with
the Department of Electrical and Computer Engineering at the Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. E-mail:
chadjic@UCY.AC.CY.

achieved through similar aggregating entities that will gather

together and coordinate a set of DERs to provide specific

services to the grid, in exchange for monetary benefits.

In the above scenario, there are several ways in which

demand response providers and DER aggregators can coor-

dinate and control DRRs and DERs respectively1. In this

paper, we pursue a distributed control strategy, in which the

aggregator initially relays requests to a limited number of re-

sources that it can directly communicate with. Then, through

a distributed algorithm, the initial requests are disseminated

to all other available resources. This dissemination process

relies on a distributed linear-iterative algorithm, where each

resource can exchange information with a number of other

close-by resources, and subsequently makes a control deci-

sion based on locally available information.

The class of algorithms discussed in this paper is similar in

spirit to distributed linear-iterative algorithms for consensus

problems (see, e.g., [1], [2]); however the end goal here is

very different. In consensus problems, the objective is to have

a set of nodes reach agreement on a value that is function of

their initial conditions. In our setup, the objective is for the

nodes to converge to a value (not necessarily the same for

everyone) that lies within an interval defined by upper and

lower node-capacity limits, while the sum of the values is

equal to the amount of resource requested by the aggregator.

Another difference is the communication modality as we

allow for asymmetric exchange of information, whereas in

most consensus works, except for a few instances (see, e.g.,

[3], [4]), symmetric information exchange is assumed.

The remainder of this paper is organized as follows.

Section II provides background on graph theory and poses

the distributed resource coordination problem. Section III de-

scribes several algorithms that solve the distributed resource

coordination problem. The performance of the algorithms

is compared in Section IV through a numerical example.

Concluding remarks are presented in Section V.

II. PROBLEM FORMULATION AND MOTIVATION

Information exchange between resources is described by

a directed graph G = {V , E}, where V = {1, 2, . . . , n} is

the vertex set (each vertex corresponds to a resource), and

E ⊆ V × V is the set of edges, where (j, i) ∈ E if node

j can receive information from node i. We assume no self-

loops in G (i.e., (j, j) /∈ E for all j ∈ V). All nodes that

1Throughout the paper, we will interchangeably use the term aggregator

to refer to a demand response provider or to a DER aggregator, and will
also interchangeably use the term resource to refer to a DRR or DER.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 27

can transmit information to node j are called its neighbors,

and are represented by the set Nj = {i ∈ V : (j, i) ∈ E}.

The number of neighbors of j is called the in-degree of j
and is denoted by D−

j . The number of nodes that have j as

neighbor is called the out-degree of j and is denoted by D+
j .

Let πj [k] be the amount of resource requested from node

j at the k round of information exchange between nodes.

Let 0 < πmin
j < πmax

j , for j = 1, 2, . . . , n, be the minimum

and maximum capacity that node j can provide, and define

the corresponding maximum (minimum) resource capacity

vector as πmax = [πmax
1 , πmax

2 , . . . , πmax
n]′ (πmin =

[πmin
1 , πmin

2 , . . . , πmin
n]′). Let ρd,

∑n
j=1 πmin

j ≤ ρd ≤
∑n

j=1 πmax
j , be the total amount of resource requested by the

aggregator. The objective is to design a distributed iterative

algorithm such that, at step k, each node j updates its

resource request based on i) its current request, and ii) the

current request of neighboring nodes that communicate with

j, so that the limits limk→∞ πj [k] = πss
j , j = 1, 2, . . . , n

exist and satisfy

πmin
j ≤ πss

j ≤ πmax
j , ∀j, and

n
∑

j=1

πss
j = ρd. (1)

In the algorithms proposed in this paper, the graph de-

scribing the information exchange is assumed to be strongly

connected, and each node j updates its resource request πj [k]

as a function of some µj [k] =
[

µ̂j [k], µ̌j [k]
]′

that each node

j obtains recursively as a linear combination of its previous

µj [k] and the previous {µi[k] | i ∈ Nj} of its neighbors;

specifically,

µj [k + 1] = pjj [k]µj [k] +
∑

i∈Nj

pji[k]µi[k], (2)

where the pji[k]’s are a set of time-varying weights chosen

such that for every k,
∑n

i=1 pij [k] = 1, ∀j; and pji[k] > 0
if i ∈ Nj and pji[k] = 0 otherwise. Additionally, there is

at least node i for which pjj [k] > 0. Each node obtains the

value of πj [k] from µj [k] via

πj [k] = fj(µj [k]), (3)

for some function fj : R
+2 7→ R

+ to be described.

In the proofs of the algorithms discussed in the subsequent,

the following lemma from [5] plays a fundamental role.

Lemma 1: Let P be a primitive column stochastic ma-

trix with diagonal entries pjj , j = 1, 2, . . . , n, and let

v = πss = [πss
1 , πss

2 , . . . , πss
n]′ > 0 be the unique so-

lution to v = Pv, normalized so that
∑n

j=1 πss
j = ρ.

Let ∆ = diag
(

δ1, δ2, . . . , δn

)

be a diagonal matrix with

0 < δj ≤ 1
1−pjj

, ∀j = 1, 2, . . . , n, with at least one

i ∈ {1, 2, . . . , n} such that 0 < δi < 1
1−pii

, and define

P̂ = P∆ + (I − ∆), where I is the identity matrix. Then,

(i) P̂ is a primitive column stochastic matrix, and (ii) if

v̂ = π̂ss = [π̂ss
1 , π̂ss

2 , . . . , π̂ss
n]′ > 0 is the unique solution

to v̂ = P̂ v̂, normalized so that
∑n

j=1 π̂ss
j = ρ, we have

δj π̂
ss
j = απss

j , ∀j = 1, 2, . . . , n,

for some constant α > 0.

III. ALGORITHMS FOR DISTRIBUTED ALLOCATION

We formulate three algorithms that solve the distributed

resource allocation problem. The first one uses constant

weights, while the other two update their weights based on

the algorithm progress. It is assumed that the aggregator

(who knows the amount of resource ρd that needs to be

collectively provided by the nodes) can communicate with

l ≥ 1 nodes, and initially sends out to each one of them

a command demanding ρd/l units of resource. Then, µ̂j [0]
is set to xj = ρd/l if j is a neighbor of the aggregator

and xj = 0 otherwise. Additionally, each node sets µ̌j [0] =
πmax

j − πmin
j > 0.

A. Algorithm 1

This algorithm uses constant weights for iteration (2).

Specifically, each node j sets its weights to be pjj =
1/(1 + D+

j) and pij = 1/(1 + D+
j) for all i that have j

as a neighbor, i.e., all i such that j ∈ Ni. As a result, each

node will be updating its value as

µj [k + 1] =
1

1 + D+
j

µj [k] +
∑

i∈Nj

1

1 + D+
i

µi[k], (4)

where D+
i is the number of nodes that i can transmit

information to (the out-degree of node i). Then, provided

the directed graph describing the communication modality

between nodes is strongly connected, a simple algorithm for

solving the distributed resource allocation problem is given

in the following Lemma.

Lemma 2: Let µj [k] = [µ̂j [k], µ̌j [k]]′, ∀j, be the result of

iteration (4) with initial conditions µ̂j [0] = xj − πmin
j and

µ̌j [0] = πmax
j − πmin

j . Then, a solution to the distributed

resource allocation problem can be asymptotically achieved

as limk→∞ πj [k], where

πj [k] = πmin
j +

µ̂j [k]

µ̌j [k]
(πmax

j − πmin
j). (5)

Proof: Define µ̂[k] = [µ̂1[k], µ̂2[k], . . . , µ̂n[k]]′, ∀k ≥
0, and µ̌[k] = [µ̌1[k], µ̌2[k], . . . , µ̌n[k]]′, ∀k ≥ 0. Then, we

can rewrite (4) in matrix form as

µ̂[k + 1] = Pcµ̂[k], µ̂[0] = x − πmin, (6)

µ̌[k + 1] = Pcµ̌[k], µ̌[0] = πmax − πmin, (7)

where x = [x1, x2, . . . , xn]′. By construction, it is easy to

see that Pc is a primitive column stochastic matrix. Then,

the Perron-Frobenius theorem (see, e.g., [6]) states that Pc

has a unique eigenvalue with largest modulus at λ1 = 1.

Let v be the right eigenvector of Pc associated with λ1

and let w be the left eigenvector of Pc associated with λ1,

normalized so that v′w = 1. From the fact that Pc is column

stochastic, the entries of the vector w must be all equal.

Without loss of generality, let w = [1, 1, . . . , 1]′, and since

v′w = 1, the entries of v must add up to one. Let µ̂ss and µ̌ss

be the steady-state solutions of (6) and (7) respectively. By

28

Perron-Frobenius, we have that limk→∞ P k
c = vw′, therefore

µ̂ss = vw′µ̂[0] =
(

n
∑

j=1

(xj − πmin
j)

)

v =
(

ρd −
n

∑

j=1

πmin
j

)

v,

µ̌ss = vw′µ̌[0] =
(

n
∑

j=1

(πmax
j − πmin

j)
)

v, (8)

from which it follows that

lim
k→∞

πj [k] = lim
k→∞

(

πmin
j +

µ̂j [k]

µ̌j [k]
(πmax

j − πmin
j)

)

= πmin
j +

µ̂ss
j

µ̌ss
j

(πmax
j − πmin

j), ∀j. (9)

where 0 ≤
µ̂ss

j

µ̌ss
j

=
ρd−

P

n
j=1

πmin
j

P

n
j=1

(πmax
j

−πmin
j

)
≤ 1. From (9), it is

obvious that (1) holds. It is important to note that
µ̂j [k]
µ̌j [k] is a

finite quantity for all k ≥ 0 as µ̌j [k] > 0, ∀k ≥ 0.

B. Algorithm 2

In this algorithm, and following the notation of (2), each

node j will periodically update its request after a fixed

number of iterations k0 have elapsed, for k0 sufficiently

large. Let k = rk0, r = 1, 2, . . . , be the instants at which

updates occur; then, we define

πr
j = πmin

j + [1 0]µr
j , (10)

where µr
j ≡

[

µ̂j [rk0], µ̌j [rk0]
]′

.

Also every k0 steps, a node j will adjust the weights over

which it has control (i.e, pjl[rko] = pjl[rko + 1] = · · · =
pjl[(r+1)ko−1] for all l such that j ∈ Nl) based on its own

µr
j and the {µr

i | i ∈ Nj} of its neighbors. We use the term

super-iteration to distinguish between the updates every k0

steps and the k0 iterative updates each node conducts with a

fixed weight matrix. We focus on the iterative procedure by

which the weights are updated, which is solely governed by

evolution of µ̌r
j = µ̌j [rk0], r = 1, 2,

Initially, we start with a weight matrix that has each node

j equally distribute its initial value µ̌j [0] = πmax
j − πmin

j

among itself and the nodes that have j as neighbor. Then,

the resulting iteration is of the form in (4). Define µ̌[k] =
[µ̌1[k], µ̌2[k], . . . , µ̌n[k]]′, ∀k ≥ 0; we can then write

µ̌[k + 1] = P0µ̌[k], µ̌[0] = πmax − πmin, (11)

where P0 = Pc (as defined in (7)). Note that matrix P0 can

also be rewritten as

P0 = P∆0 + (I − ∆0), (12)

where ∆0 = diag
(

δ0
1 , δ0

2 , . . . , δ
0
j , . . . , δ0

n

)

is a diagonal ma-

trix with nonzero entries δ0
j =

D+

j

1+D+

j

satisfying2 1
2 ≤ δ0

j <

1, ∀j = 1, 2, . . . , n, and P is the matrix used for updating

the values when each node distributes its own value equally

among its neighbors and does not keep anything for itself.

2Initially, each node splits its value equally among itself and its neighbors.
The strong connectivity of the graph implies that any given node can send

its value to at least one other node, thus D
+

j ≥ 1, and therefore δ0
j ≥ 1

2
.

Note that the diagonal entries of matrix P are zero and, for

a particular column, the nonzero entries are equal and add

up to one (this implies that P0 is the same matrix as in (7)).

When (11) reaches steady-state, denoted by µ̌0 (we assume

that k0 is large enough so that this occurs after k0 iterations),

the weight matrix that governs node updates is changed to

P1 = P∆1 + (I − ∆1), (13)

where the jth diagonal entry of ∆1 =
diag

(

δ1
1 , δ

1
2 , . . . , δ

1
j , . . . , δ1

n

)

is updated based on the

corresponding entry of ∆0 as follows:

δ1
j =

{

µ̌0

∆πj
δ0
j , if µ̌0

j ≤ ∆πj ,

1 −
∆πj

µ̌0
j

(

1 − δ0
j

)

, if µ̌0
j > ∆πj ,

(14)

where ∆πj := πmax
j − πmin

j . By construction, it is easy to

see that P1 is a primitive column stochastic matrix (at least

as long as 0 < δ1
j ≤ 1, ∀j = 1, 2, . . . , n, and there exists at

least one i for which δ1
i < 1). Once P1 is obtained, the nodes

run µ̌[k+1] = P1µ̌[k], where the initial conditions are set to

µ̌[0] = πmax−πmin until a new steady-state, denoted by µ̌1,

is reached. The matrix ∆2 = diag
(

δ2
1 , δ2

2 , . . . , δ
2
j , . . . , δ2

n

)

is

then used to obtain matrix P2 = P∆2 + (I − ∆2) with δ2
j

updated based on δ1
j and µ̌1

j as in (14), with superscript 1
replaced by 2 and superscript 0 replaced by 1.

This process continues in this fashion, and we can de-

fine an iterative relation for the diagonal matrix ∆r =
diag

(

δr
1 , δ

r
2 , . . . , δ

r
j , . . . , δr

n

)

that defines the weight matrix

Pr = P∆r + (I − ∆r) at the rth super-iteration. If we

denote the jth diagonal entry of ∆r by δr
j , then we have the

following relationship:

δr
j =

µ̌
r−1

j

∆πj
δr−1
j , if µ̌r−1

j ≤ ∆πj ,

1 − ∆πj

µ̌r−1

j

(

1 − δr−1
j

)

, if µ̌r−1
j > ∆πj .

(15)

Theorem 2 establishes that the algorithm described in

(11)—(15) converges to a steady-state weight matrix Pss that

solves the allocation problem. To prove this theorem, we first

need Theorem 1 and Corollary 1, which are stated next.

Theorem 1: Let P0 = Pc be the initial update matrix of

iteration (11) (at the 0th super-iteration), where P0 can be

written in terms of a diagonal matrix ∆0 and a matrix P
as described in (12). Let µ̌0 be the solution to v = P0v
normalized so that

∑n
j=1 µ̌0

j =
∑n

j=1 ∆πj . Let Pr = P∆r+
(I−∆r), where ∆r is a diagonal matrix recursively obtained

as described in (15), and let v = µ̌r be the solution to v =
Prv normalized so that

∑n
j=1 µ̌r

j =
∑n

j=1 ∆πj . Then, the

following hold: i) If µ̌r
j > ∆πj for some r ≥ 0, then µ̌r+1

j <

µ̌r
j and δr+1

j > δr
j ≥ 1/2; and ii) If µ̌r

j ≤ ∆πj for some

r ≥ 0, then µ̌r+l
j ≤ ∆πj , ∀l > 0.

Proof: By induction. First, we consider the base case

r = 0 by analyzing what happens at the end of the 0th super-

iteration. We partition the set I = {1, 2, . . . , n} that indexes

the nodes into two disjoint sets as follows: I = A0

⋃

B0,

where µ̌0
j > ∆πj , ∀j ∈ A0, and µ̌0

j ≤ ∆πj , ∀j ∈ B0. We will

establish that after the weight matrix is updated according to

(13), it results in µ̌1
j < µ̌0

j , ∀j ∈ A0, and µ̌1
j ≤ ∆πj , ∀j ∈ B0.

29

Let P0 = Pc = P∆0+(I−∆0) and P1 = P∆1+(I−∆1),
where ∆0 and ∆1 are the diagonal matrices in (12) and (13)

respectively. We can write P1 = P0∆
−1
0 ∆1 +(I −∆−1

0 ∆1),
and it follows from Lemma 1 that µ̌1 = α1∆−1

1 ∆0µ̌
0 for

some α1 > 0 (note that the requirements for Lemma 1 are

satisfied: 0 <
δ1

j

δ0
j

≤ 1 < 1
1−P0(j,j) for j ∈ B0, and 0 <

δ1
j

δ0
j

< 1
δ0

j

= 1
1−(1−δ0

j)
= 1

1−P0(j,j) for j ∈ A0). Since P0

is column stochastic, P1 is also column stochastic and thus
∑n

j=1 µ̌1
j =

∑n
j=1 ∆πj . Since

∑n
j=1 µ̌1

j = α1
∑n

j=1

δ0
j

δ1
j

µ̌0
j ,

it follows that

α1 =

∑n
j=1 ∆πj

∑n
j=1

δ0
j

δ1
j

µ̌0
j

. (16)

Now, we show that α1 is smaller than or equal to one. Recall

from (14) that δ1
j /δ0

j = µ̌0
j/∆πj ≤ 1, ∀j ∈ B0, and (1 −

δ1
j)/(1−δ0

j) = ∆πj/µ̌0
j < 1, ∀j ∈ A0. Then, we can rewrite

the denominator in (16) as follows

n
∑

j=1

δ0
j

δ1
j

µ̌0
j =

∑

j∈B0

∆πj +
∑

j∈A0

δ0
j (1 − δ0

j)

δ1
j (1 − δ1

j)
∆πj . (17)

Since δ0
j ≥ 1/2 and δ1

j > δ0
j , ∀j ∈ A0, it follows that

δ0
j (1−δ0

j)

δ1
j
(1−δ1

j
)

> 1, ∀j ∈ A0, so that

α1 ≤

∑n
j=1 ∆πj

∑

j∈A0
∆πj +

∑

j∈B0
∆πj

= 1, (18)

where the equality is possible only if A0 = ∅. Now, we have:

1) For j ∈ A0, µ̌1
j = α1 δ0

j

δ1
j

µ̌0
j . Since α1 ≤ 1 and

δ0
j

δ1
j

< 1,

it follows that µ̌1
j < µ̌0

j .

2) For j ∈ B0, µ̌1
j = α1 δ0

j

δ1
j

µ̌0
j = α1∆πj . Since α1 ≤ 1, it

follows that µ̌1
j ≤ ∆πj .

The inductive step, omitted for brevity, proceeds in a very

similar fashion to the developments above and it results in

αr+1 =

∑n
j=1 ∆πj

∑n
j=1

δr
j

δ
r+1

j

µ̌r
j

≤ 1. (19)

Corollary 1: Let Pr be the update matrix at the rth super-

iteration of the recursive algorithm described in (11)—(15),

and let v = µ̌r be the steady-state solution of v = Prv
normalized so that

∑n
j=1 µ̌r

j =
∑n

j=1 ∆πj . If µ̌0
j > ∆πj ,

then µ̌r
j either becomes smaller than ∆πj for some finite r

(and subsequently remains below ∆πj) or converges to ∆πj

with worst-case convergence given by

µ̌r+1
j ≤

1

θr+1 + 1
P

n
j=1

∆πj

1−θr+1

1−θ
µ̌0

j

µ̌0
j , (20)

where θj = 1 − ∆πj
P

n
i=1

∆πi
.

The key idea in the proof (which we omit for brevity)

is to see that, for every j ∈ Ar, the denominator of

(19) can be written as
∑n

i=1
δr

i

δ
r+1

i

µ̌r
i =

∑

i∈Br
∆πi +

∑

i∈Ar ,i6=j

δr
i (1−δr

i)

δr+1

i
(1−δr+1

i
)
∆πi +

δr
j

δr+1

j

µ̌r
j . Then, using an ar-

gument similar to the one used in the proof of Theorem 1,

it can be established that

αr+1 ≤

∑n
i=1 ∆πi

∑n
i=1 ∆πi +

δr
j

δ
r+1

j

µ̌r
j − ∆πj

, ∀j ∈ Ar, (21)

which is then used to establish the result in (20).

The next theorem establishes that the algorithm described

in (11)—(15) converges to a solution where all the nodes

reach a set of weights that solves the allocation problem.

Theorem 2: Let Pr = P∆r + (I − ∆r) be the update

matrix at the rth super-iteration of the recursive algorithm

described in (11)—(15), and let v = πr be the steady-

state solution of v = Prv normalized so that
∑n

j=1 µ̌r
j =

∑n
j=1 ∆πj . Then, the following hold:

1) limr→∞ µ̌r
j = ∆πj , ∀j = 1, 2, . . . , n;

2) 0 < δr
j < 1, ∀r ≥ 0, ∀j = 1, 2, . . . , n;

3) ∆ss = diag(δss
1 , δss

2 , . . . , δss
n), where δss

j =
limr→∞ δr

j , ∀j = 1, 2, . . . , n, exist;

4) δss
i < 1 for some i, and 0 < δss

j ≤ 1, ∀j = 1, 2, . . . , n.

Proof: Due to space constraints, we will only prove

the first three conclusions. Conclusion (1) can be proved as

follows. For every j ∈ A0, we take the limit of (20) as

r → ∞, from where it follows that

lim
r→∞

µ̌r+1
j ≤ lim

r→∞

1

θr+1 + 1
P

n
i=1

∆πi

1−θr+1

1−θ
µ̌0

j

µ̌0
j = ∆πj .

(22)

Now, we know that either (i) (22) holds in the limit for all j ∈
A0 or (ii) at some finite r the value of µ̌r

j becomes smaller

or equal to one (and remains such). Either situation ensures

that limr→∞
∑

i∈A0
µ̌r

i ≤
∑

i∈A0
∆πi. This observation

together with the fact that Pr is column stochastic for every

r = 1, 2, . . . , which ensures that
∑n

j=1 µ̌r
j =

∑n
j=1 ∆πj

for every r = 1, 2, . . . , implies that limr→∞
∑

j∈B0
µ̌r

j ≥
∑

j∈B0
∆πj . However, Theorem 1 established that if µ̌0

j ≤
∆πj , then µ̌r

j ≤ ∆πj , ∀r > 0; thus, limr→∞
∑

j∈B0
µ̌r

j =
∑

j∈B0
∆πj and also limr→∞

∑

j∈A0
µ̌r

j =
∑

j∈A0
∆πj .

The above leads to limr→∞ µ̌r
j = ∆πj , ∀j.

Conclusion (2) is proved by induction. Since 0 < δ0
j <

1, ∀j = 1, 2, . . . , n, and µ̌0
j > 0, ∀j = 1, 2, . . . , n, it follows

from (14) that 0 < δ1
j < 1, ∀j = 1, 2, . . . , n. Assuming that

0 < δr−1
j < 1, ∀j, and since µ̌r−1

j > 0, ∀j = 1, 2, . . . , n, it

follows from (15) that 0 < δr
j < 1, ∀j.

Conclusion (3) is proved as follows. The existence of

δss
j , ∀j, follows from Conclusions (1) and (2), and the update

rule in (15). Since limr→∞ µ̌r
j = ∆πj , ∀j; δr

j 6= 0, ∀j, ∀r ≥
0; and 1 − δr

j 6= 0, ∀j, ∀r ≥ 0, then, for some r = r0 > 0

lim
r→∞

δr0+r+1
j

δr0+r
j

= lim
r→∞

µ̌r0+r
j = ∆πj , ∀j ∈ Br0

,

lim
r→∞

1 − δr0+r
j

1 − δr0+r+1
j

= lim
r→∞

µ̌r0+r
j = ∆πj , ∀j ∈ Ar0

, (23)

from where it follows that limr→∞ δr
j = δss

j for some δss
j

for all j = 1, 2, . . . , n.

30

It is left to show that (10) solves the allocation problem

asymptotically. This follows from the fact that (10) can be

written as πj [k] = πmin
j + µ̂[k]. The evolution of µ̂[k] is

governed by the same transition matrix Pr, r = 0, 1, . . . ,
as the evolution of µ̌[k]. Theorem (2) established that Pr

converges to a column-stochastic primitive matrix such that

its eigenvector associated with the largest modulus eigen-

value is aligned with [∆π1, ∆π2, . . . ,∆πn]′. Since µ̂j [0] =
xj − πmin

j , then
∑n

j=1 µ̂j [0] = ρd −
∑n

j=1 πmin
j , and

since
∑n

j=1 µ̂j [0] =
∑n

j=1 µ̂j [k], ∀k > 0, it follows that

limk→∞ µ̂[k] =
ρd−

Pn
j=1

πmin
j

P

n
j=1

∆πj
[∆π1, ∆π2, . . . ,∆πn]′. Then,

it is easy to check that (1) holds.

C. Algorithm 3

This algorithm is similar to the one described above but

each “super-iteration” only involves one update, i.e., it is

now a regular iteration. In this algorithm, and following the

notation of (2), each node j will update its request as

πj [k] = πmin
j + [1 0]µj[k], (24)

and will adjust the weights over which it has control (i.e,

plj [k] for all l such that j ∈ Nl) based on its own µ̌j [k] and

the µ̌i[k] of its neighbors (i.e., i ∈ Nj). We focus on the

iterative procedure by which the weights are updated, which

is solely governed by the evolution of µ̌[k].
Initially, for k = 0, each node j chooses the weights on

its out-going links so that it distributes its value µ̌j [0] =
πmax

j − πmin
j equally among itself and its neighbors. This

results in each node updating its value to µ̌j [k] as in (7),

which can be rewritten in matrix form as

µ̌[1] = P [0]µ̌[0], µ̌[0] = πmax − πmin. (25)

The matrix P [0] = Pc can be rewritten as

P [0] = P∆[0] + (I − ∆[0]), (26)

where ∆[0] is a diagonal matrix with nonzero entries δj [0] =
D+

j

1+D+

j

, j = 1, 2, . . . , n, and P is the weight matrix where

each node distributes its value equally among its neighbors

without keeping anything for itself.

After the first round of exchanges, k = 1, each node

j will update the weights that it uses to distribute its

value among itself and the nodes that j sends information

to. The matrix associated to the new weights will be of

the form P [1] = P∆[1] + (I − ∆[1]), where ∆[1] =
diag

(

δ1[1], δ2[1], . . . , δj [1], . . . , δn[1]
)

is a diagonal matrix.

Define ρj[0] =

P

i∈Nj∪{j} pji[0]∆πi

∆πj
, with ∆πi = πmax

i −

πmin
i , ∀i ∈ Nj∪{j}. Then, the δj [1]’s are chosen as follows:

δj [1] =

{

δj [0]ρj[0], if ρj [0] ≤ 1,
1 − 1

ρj [0]

(

1 − δj [0]
)

, if ρj [0] > 1.
(27)

By construction, P [1] is a primitive column stochastic matrix

(refer to the reasoning in the proof of Lemma 1). This process

continues and, for any k ≥ 0, the nodes will update their

value according to

µ̌[k + 1] = P [k]µ̌[k], (28)

where P [k] = P∆[k] + (I − ∆[k]), and ∆[k] =
diag

(

δ1[k], δ2[k], . . . , δj[k], . . . , δn[k]
)

with

δj [k] =

{

δj [k − 1]ρj[k − 1], if ρj [k − 1] ≤ 1,
1 − 1

ρj [k−1]

(

1 − δj [k − 1]
)

, if ρj [k − 1] > 1,

(29)

and ρj [k − 1] =

P

i∈Nj∪{j} pji[k−1]∆πi

∆πj
.

The idea behind the weight update described in (29) is

to drive the entries of the weight matrix to a steady-state

matrix Pss so that, in the limit as k goes to infinity, the

right eigenvector u associated with the (unique) eigenvalue

with largest modulus at λ1 = 1 is such that u = γ(πmax −
πmin) ≡ γ∆π, for some γ > 0. Then, taking into account

the fact that the sequence P [0], P [1], ..., consists of column

stochastic (and primitive) matrices that converge to a steady

state Pss, the steady-state solution of

µ̂[k + 1] = P [k]µ̂[k], µ̂[0] = x − πmin, (30)

is that is such that

µ̂ss
j =

ρd −
∑n

j=1 πmin
j

∑n
j=1 ∆πi

∆πj . (31)

Then, from (24), it is clear that (1) holds.

Note that ρj [k − 1] =
∑

i∈Nj∪{j} pji[k − 1]∆πi can be

replaced by
∑n

i=1 pji[k − 1]∆πi (since pji[0] = 0 for i /∈
Nj ∪{j}). It was written in this fashion in (29) to emphasize

the fact that the update of node j is based purely on locally

available information.

The result in (31) follows from Theorem 3 stated below,

where we prove that indeed the weight matrix P [k] reaches

a limiting matrix Pss that is column stochastic and primitive,

and whose eigenvector associated with the largest modulus

eigenvalue is aligned with [∆π1, ∆π2, . . . ,∆πn]′. To prove

this theorem, we first need the following two lemmas.

Lemma 3: Let P [k − 1] and P [k] be the update matrices

in (28) at steps k−1 and k respectively, and assume that the

underlying connectivity graph associated with P [k− 1] (and

thus P [k]) is strongly connected. Then, the following hold:

1) If
∑

i pji[k−1]∆πi ≤ ∆πj , then
∑

i pji[k−1]∆πi ≤
∑

i pji[k] ∆πi ≤ ∆πj ;

2) If
∑

i pji[k−1]∆πi > ∆πj , then
∑

i pji[k−1]∆πi >
∑

i pji[k]∆πi > ∆πj .

Proof: If
∑

i pji[k − 1]∆πi ≤ ∆πj , then δj [k] =

δj [k − 1]
P

i
pji[k−1]∆πi

∆πj
, from where it follows that

pjj [k] = 1 − (1 − pjj [k − 1])
P

i
pji[k−1]∆πi

∆πj
. Since δi[k −

1] = δi[k], ∀i 6= j, it follows that pji[k − 1] =
pji[k], ∀i 6= j. Then, since

∑

i pji[k − 1]∆πi − ∆πj ≤
0, it can be shown that

∑

i pji[k]∆πi = pjj [k]∆πj +
∑

i∈Nj
pji[k]∆πi satisfies

∑

i pji[k]∆πi = ∆πj + pjj [k −
1] (

∑

i pji[k − 1]∆πi − ∆πj) ≤ ∆πj . Also, since pji[k −
1] = pji[k], ∀i 6= j and pjj [k] ≥ pjj [k − 1], we have
∑

i pji[k − 1]∆πi ≤
∑

i pji[k]∆πi.

A similar argument, which we omit, can be used to show

that
∑

i pji[k − 1]∆πi >
∑

i pji[k]∆πi.

Define ε[k] =
∑n

l=1 εl[k] where εl[k] = |
∑

i pli[k]∆πi −
∆πl|. Note that both εl[·] and ε[·] are nonnegative.

31

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

π
j
[k

],
j

=
1
,
2
,
3
,
4
,
5

π1[k] π2[k] π3[k] π4[k] π5[k]

(a)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

π
r j
,

j
=

1
,
2
,
3
,
4
,
5

πr
1 πr

2 πr
3 πr

4 πr
5

(b)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

π
j
[k

],
j

=
1
,
2
,
3
,
4
,
5

π1[k] π2[k] π3[k] π4[k] π5[k]

(c)

Fig. 1. Algorithms 1, 2, and 3 progress.

Lemma 4: Let P [k − 1] and P [k] be the update matrices

in (28) at steps k − 1 and k respectively, and assume that

the underlying connectivity graph associated with P [k − 1]
(and thus P [k]) is strongly connected. Then, it follows that

ε[k] ≤ ε[k − 1].

Proof: Assume that
∑

i pji[k − 1]∆πi ≤ ∆πj ; it

follows from Lemma 3 that
∑

i pji[k]∆πi ≤ ∆πj ; and

from (29) that pjj [k] ≥ pjj [k − 1]. Then, εj [k] = ∆πj −
∑

i pji[k]∆πi = ∆πj −pjj [k]∆πj +
∑

i∈Nj
pji[k−1]∆πi ≤

∆πj − pjj [k − 1]∆πj +
∑

i∈Nj
pji[k − 1]∆πi = εj [k − 1].

If we let pjj [k] = pjj [k − 1] + ∆pjj [k] for some positive

∆pjj [k], it follows that εj [k] − εj [k − 1] = −∆pjj [k]∆πj

and also that plj [k] = plj [k − 1] − 1
D+

j

∆pjj [k] for all l

such that plj [k − 1] 6= 0; which can be used to establish

that |εl[k] − εl[k − 1]| ≤ 1
D+

j

∆pjj [k]∆πj , ∀l such that l ∈

Nj , l 6= j. Thus, the worst case occurs when node j can

only send information to nodes l 6= j that also satisfy
∑

i∈Nl∪{l} pli[k − 1]∆πi ≤ ∆πl, which means that εl[k] −

εl[k − 1] = 1
D+

j

∆pjj [k]∆πj and thus, in the worst case,

ε[k]−ε[k−1] =
∑n

l=1 εl[k]−
∑n

l=1 εl[k−1] = 0. Otherwise

ε[k] − ε[k − 1] < 0. A similar argument can be made when
∑

i pji[k − 1]∆πi[k] > ∆πj .

Theorem 3: Let P [k] be the update matrix at the kth

step of the recursive algorithm described in (25)—(29).

Then, limk→∞ P [k] exists and it is a column-stochastic and

primitive matrix Pss = P∆ss + (I − ∆ss), where ∆ss =
diag(δss

1 , δss
2 , . . . , δss

n) with δss
j = limk→∞ δk

j satisfying

0 < δss
j ≤ 1, ∀j = 1, 2, . . . , n, and δss

i < 1 for at least

one i ∈ {1, 2, . . . , n}.

The key for the proof (which is omitted for brevity) is

to show that ε[k] =
∑n

j=1 |
∑

i∈Nj∪{j} pji[k]∆πi − ∆πj |
decreases monotonically with k. To see this, it is necessary

to show that ε[k]−ε[k−1] < 0 unless ε[k−1] = 0 in which

case ε[k] = ε[k − 1] = 0. As in the proof of Theorem 1,

1 2

3 4

5

(a)

P =

2

6

6

6

4

0 0 0 1 0

.5 0 0 0 0

.5 .5 0 0 .5

0 0 0 0 .5

0 .5 1 0 0

3

7

7

7

5

(b)

Fig. 2. Small directed graph used for illustration of the three algorithms
and its corresponding P .

we define the sets Ak and Bk as a partition of the index set

I = {1, 2, . . . , n} (i.e., I = Ak

⋃

Bk and I = Ak

⋂

Bk =
∅), where

∑

i∈Nj∪{j} pji[k]∆πi > ∆πj , ∀j ∈ Ak, and
∑

i∈Nj∪{j} pji[k]∆πi ≤ ∆πj , ∀j ∈ Bk. Unlike that proof,

however, it can be verified that it is not necessarily true that

Ak ⊆ Ak−1. It is easy to show that Algorithm 3 solves

the distributed allocation problem asymptotically using an

argument similar to the one used in Algorithm 2.

IV. EXAMPLE

Consider the directed graph shown in Fig. 2(a) with its

corresponding P in Fig. 2(b). Assume that the minimum

and maximum capacity values for the nodes are given by

πmin = [.1 .3 .4 .1 .1]′ and πmax = [.2 .5 .7 .3 .3]′. Also

assume that the total resource requested by the aggregator is

ρd = 1.5 and that the aggregator can only talk to nodes 1
and 2 so that x = [.75 .75 0 0 0]′.

For Algorithm 1, the evolution of the values πj [k], j =
1, 2, 3, 4, 5, in (5) are given in Fig. 1(a); as expected, the

limiting values are πss = [.15 .4 .55 .2 .2]′ according to

(9). The convergence in the case of Algorithms 2 and 3 is

shown in Figs. 1(b) and 1(c), respectively. For Algorithm 2,

one super-iteration is set to 100 iterations but we only plot

the values at the end of each super-iteration.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have proposed several distributed algo-

rithms that enable decentralized coordination and control of

demand response resources and distributed energy resources.

A direction for future work is to extend the distributed

algorithms beyond finding a feasible solution (i.e., include

some optimization criteria in the problem) and to make them

robust to faulty or malicious nodes/links.

REFERENCES

[1] J. Tsitsiklis, “Problems in decentralized decision making and computa-
tion,” Ph.D. dissertation, MIT, Cambridge, MA, 1984.

[2] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proc. of the IEEE, vol. 95, no. 1, pp.
215–233, Jan. 2007.

[3] R. Olfati-Saber and R. M. Murray, “Agreement problems in networks
with directed graphs and switching topology,” in Proc. of American

Control Conference, vol. 4, 2003, pp. 4123–4132.
[4] B. Gharesifard and J. Cortés, “Distributed strategies for generating

weight-balanced and doubly stochastic digraphs,” 2010. [Online].
Available: http://arxiv.org/abs/0911.0232

[5] A. D. Domı́nguez-Garcı́a and C. N. Hadjicostis, “Coordination and con-
trol of distributed energy resources for provision of ancillary services,”
in Proc. IEEE SmartGridComm, 2010, pp. 537–542.

[6] R. Horn and C. Johnson, Matrix Analysis. New York, NY: Cambridge
University Press, 1985.

32

