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Abstract— We consider infinite dimensional Port-
Hamiltonian systems in an evolutionary formulation.
Based on this system representation conditions for Casimir
densities (functionals) will be derived where in this context the
variational derivative plays an extraordinary role. Furthermore
the coupling of finite and infinite dimensional systems will
be analyzed in the spirit of the control by interconnection
problem. Our Hamiltonian representation differs significantly
from the well-established one using Stokes-Dirac structures
that are based on skew-adjoint differential operators and the
use of energy variables. We mainly base our considerations on
a bundle structure with regard to dependent and independent
coordinates as well as on differential-geometric objects induced
by that structure.

I. INTRODUCTION

Port controlled Hamiltonian systems with Dissipation

(PCHD-Systems) enjoy great popularity in the control and

modeling community. In many applications the physics be-

hind the equations becomes apparent in a remarkable way

by the use of this system structure, see for example [1].

A key benefit of this system class lies in the possibility

to couple several systems via (energy) ports [1] which is

advantageous for modeling of networks. Concerning control

issues the control by interconnection method is based on

such couplings. The study of these systems is not limited to

the finite dimensional case and regarding infinite dimensional

systems an approach based on Stokes-Dirac structures (also

known from the lumped parameter scenario) was proposed

by many authors, see for instance [2], [3], [4], [5] and

references therein.

Our approach for field theories in a Hamiltonian setting is

based on a bundle structure with respect to independent and

dependent coordinates (not focusing on the properties of the

underlying Stokes-Dirac structures), such that the variational

derivative is interpreted differently compared to [2], [3],

[4], [5], i.e. the Hamiltonian density explicitly depends on

derivative coordinates. See also [6] as well as [7], [8] where

the ideas presented in [6] were adapted to control purposes.

Therefore our system class is not necessarily based on the use

of skew-adjoint differential operators and the use of energy

variables.

In this contribution we focus on the derivation of Casimir

functionals for distributed parameter systems in an evolu-
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tionary Hamiltonian formulation and it will be demonstrated

that the variational derivative plays an important role for

the system representation and the extraction of the Casimir

functionals. Furthermore the coupling of finite and infinite

dimensional systems will be analyzed and Casimir function-

als/functions will be derived for the coupled systems, where

we restrict our considerations to one dimensional spatial

domains for the partial differential equations.

Inspired by the work of [4], [5], [9], [10] where similar

investigations have been performed using the method of

Stokes-Dirac structures, we analyze the concepts of intercon-

nection and Casimir functionals based on a system represen-

tation as in [6] which we generalized for our purposes, see [8]

such that control inputs (in the domain and/or the boundary)

and nontrivial boundary conditions important in concrete

physical/engineering applications appear. We believe that the

formulation not based on energy variables is advantageously

in some aspects. The choice of the dependent variables is

essentially different in the two approaches (Stokes-Dirac

structure [4] versus evolutionary Hamiltonian as in [8]). In

mechanical applications for example we use the displacement

as a coordinate and not the strain, see [9], and this is of

course beneficial when position control is the objective,

i.e. it is not necessary to consider the partial differential

equation as a kind of transmission system between two finite

dimensional ones. This has the consequence that for example

in mechanics the interconnection tensor is not necessarily

a differential operator in our setting, and the Hamiltonian

density depends on derivative coordinates which has the

implication that the variational derivative does not degenerate

to a partial one.

This paper is organized as follows. In Section II some

notation is presented and in the third section we review the

finite dimensional case to introduce some basic concepts

as well as a coordinate free system representation. The

fourth section then deals with the infinite dimensional case

where the evolutionary Hamiltonian picture is introduced and

the conditions for the Casimir functionals are derived. The

interconnection of finite and infinite dimensional systems as

well as the control by interconnection method are discussed

in the fifth section. A specific application, a heavy chain

system is analyzed in the sixth section where also some

simulation studies are presented.

II. NOTATION

We will use differential geometric methods for our con-

siderations and the notation is similar to the one in [11],

where the interested reader can find much more details about
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this geometric machinery. To keep the formulas short and

readable we will use tensor notation and especially Einsteins

convention on sums. We use the standard symbol ⊗ for

the tensor product, ∧ denotes the exterior product (wedge

product), d is the exterior derivative, ⌋ the natural contraction

between tensor fields. By ∂B
α are meant the partial derivatives

with respect to coordinates with the indices α
B and [mαβ ]

corresponds to the matrix representation of the tensor m with

components mαβ . Furthermore C∞(·) denotes the set of the

smooth functions on the corresponding manifold. Moreover

we will not indicate the range of the used indices when they

are clear from the context. Additionally pull back bundles

are not indicated to avoid exaggerated notation.

III. THE FINITE DIMENSIONAL CASE

In this section the well known class of time-invariant Port

Controlled Hamiltonian systems (with dissipation, PCH(D)-

systems) is considered.

A. System Structure

To study the time-invariant case of Hamiltonian control

systems in a geometric fashion we introduce the state mani-

fold X equipped with coordinates (xα). The tangent bundle

T (X ) and the cotangent bundle T ∗(X ), which possess the

induced coordinates (xα, ẋα) and (xα, ẋα) with respect to

the holonomic bases ∂α and dxα can be introduced in a

standard manner. Typical elements of T (X ) (vector fields)

and T ∗(X ) (1-forms) read in local coordinates as w =
ẋα(x)∂α and ω = ẋα(x)dx

α, respectively. To introduce

inputs and outputs we consider the vector bundle U →
X with the coordinates (xα, ui) for U and the basis ei
for the fibres as well as the dual output vector bundle

Y → X possessing the coordinates (xα, yi) and the fibre

basis ei. The Greek indices α, β, γ will correspond to the

components of the coordinates of the state manifold and

induced structures. The Latin indices i, j correspond to the

components of the input and the output variables (fibres of

the dual bundles U → X and Y → X ). Let us consider the

maps J,R : T ∗(X ) → T (X ) which are contravariant tensors

where J (interconnection tensor) is skew-symmetric, and R

(dissipation tensor) is symmetric and positive-semidefinite.

Furthermore we introduce the bundle map G : U → T (X )
and its dual (adjoint) G∗ : T ∗(X ) → Y = U∗. Having

the maps J,R and G at our disposal a time-invariant port

controlled Hamiltonian system with dissipation, see [1], [12]

can be constructed as

ẋ = (J −R)⌋dH + u⌋G
y = G∗⌋dH

(1)

where the function H ∈ C∞(X ) denotes the Hamiltonian.

The local coordinate expression of the system (1) can be

deduced as

ẋα =
(

Jαβ −Rαβ
)

∂βH +Gα
i u

i

yi = Gα
i ∂αH

(2)

where the maps J,R,G have the coordinate representation

J = Jαβ∂α ⊗ ∂β , R = Rαβ∂α ⊗ ∂β , G = Gα
i e

i ⊗ ∂α,

and the tensor representation of the map G∗ equals the one

of G.

Let us consider a vector field v on X (possibly depending

on u), i.e v : X → T (X ), v = vα(x, u)∂α, then the change

of H in the direction of v (Lie-derivative) reads as v(H) =
v⌋dH . If v is chosen such that v = ẋ from (1) then we

obtain

v(H) = −R⌋dH⌋dH + u⌋y (3)

where we write Ḣ = v(H) in this special case. Obviously

the relation (3) shows how the Hamiltonian is affected

along solutions of the system, namely by dissipation and

the collocation of the inputs and outputs.

B. Casimir Functions

A Casimir function for the System (1) is a function C ∈
C∞(X ) such that

Ċ = ẋ⌋dC = (u⌋G)⌋dC (4)

holds independently of the Hamiltonian H . This leads to the

partial differential equation ∂αC(Jαβ − Rαβ) = 0 in the

unknown functions C. If in particular (u⌋G)⌋dC = 0 then

C is a constant of the motion since then Ċ = 0.

This section was a reminder on some well known proper-

ties concerning PCHD systems in the finite dimensional case

and is mainly used to prepare for the generalization to first

order field theories in a geometric fashion.

IV. THE INFINITE DIMENSIONAL CASE

The generalization to the case of partial differential equa-

tions will be performed by adapting the maps and spaces

introduced in section III to cope with field theories1, see

also [7], [8]. Hamiltonian methods for evolutionary equations

have been discussed also in [6] but in contrast to our exposure

the focus is not on control topics (i.e. there are no inputs

present, neither on the domain nor on the boundary) and

the boundary conditions are chosen to be trivial which has

an impact also on the study of Casimir densities, which are

called distinguished functionals in [6].

A. System Structure

Instead of the Hamiltonian H , a function, we now con-

sider a Hamiltonian density H (as well as its integrated

quantity, also denoted by H) defined on a bundle X →
D, (XA, xα) → (XA). The first jet manifold J 1(X ) can be

introduced possessing the coordinates (XA, xα, xα
A), where

the capital Latin indices A,B are used for the base manifold

D (independent coordinates) and xα
A denote derivative coor-

dinates of first order (derivative of the dependent coordinates

with respect to the independent ones). The jet structure also

induces the so-called total derivative

dA = ∂A + xα
A∂α + xα

AB∂
B
α

1Let us again point out that pull backs are omitted throughout this paper in
order to enhance the readability. This means that when evaluating integrals
the jet-prolongation of the corresponding section has to be plugged in.
Furthermore tensors are indicated without the pull backs to corresponding
manifolds.
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acting on elements including first order derivatives and xα
AB

correspond to derivative coordinates of second order living in

J 2(X ), the second jet manifold. Then a Hamiltonian density

of first order (we restrict ourselves to this case) reads as H =
HdX with H ∈ C∞(J 1(X )) where dX denotes the volume

element on the manifold D, i.e. dX = dX1 ∧ . . .∧dXAd

with dim(D) = Ad. Additionally we denote by H =
∫

D
H

the integrated quantity. The maps J,R,G as in (1) now take

the form of

J ,R : T ∗(X ) ∧ (
Ad

∧T ∗(D)) → V(X ) , G : U → V(X )

with the vertical tangent bundle V(X ) → X (tangent

vectors meeting ẊA = 0), where in general these maps are

differential operators, but within this contribution we exclude

this case. A port controlled Hamiltonian system then takes

the form of

ẋ = (J −R)(δH) + u⌋G
y = G∗⌋δH

(5)

with the variational derivative

δH : J 2(X ) → T ∗(X ) ∧ (
Ad

∧ T ∗(D))

and additional boundary conditions (possibly including

boundary inputs, optionally leading to so-called boundary

ports). In coordinates we obtain

δH : (δαH) → (δαH)dxα ∧ dX , δα = ∂α − dA∂
A
α .

The input and the output bundles2 are given as U → X and

Y → X . The local coordinate representation of (5) reads as

ẋα =
(

J αβ −Rαβ
)

δβH+ Gα
i u

i

yi = Gα
i δαH.

Let us consider in analogy to the finite dimensional case

a vector field which is used to measure the change of

the Hamiltonian, i.e. the Hamiltonian density since we are

dealing with field theories. We use a (generalized) vertical

vector field v : X → V(X ) locally given as v = vα∂α
where vα may depend on derivative coordinates, together

with its first jet-prolongation j1(v) which reads as j1(v) =
vα∂α + dA(v

α)∂A
α . Then we obtain the relation

j1(v)(HdX) =
(

vα(∂αH− dA∂
A
αH) + dA(v

α∂A
αH)

)

dX

and applying the Theorem of Stokes we find that
∫

D

j1(v)(HdX) =

∫

D

vα (δαH) dX +

∫

∂D

vα
(

∂A
αH

)

dXA

(6)

with dXA = ∂A⌋dX is met. For many applications the

boundary term can be used for the introduction of boundary

ports3.

Consequently setting v = ẋ using (5) we can analyze

the change of the Hamiltonian density along solutions of

the partial differential equations (assuming their existence).

2It should be noted that the input and the output bundle are dual with
respect to the interior product given as (ujej)⌋(yiei ⊗ dX) = yiu

idX.
3Provided that HdX corresponds to the energy density, a boundary port

according to our definition allows for a non-zero energy flow through the
boundary.

If furthermore the Hamiltonian density reflects the system

energy a power balance relation can be stated using (6). In the

forthcoming we set Ḣ =
∫

D
j1(v)(HdX) where we assume

that the field v generates a semi group and roughly speaking

♦̇ represents the Lie-derivative of the object ♦ with respect

to the group parameter.

Example 1: Let us consider the system of a heavy chain

exposed to gravity (acceleration due to gravity is denoted

by g). We introduce the following bundle structure X →
D, (X,w, p) → X , where X is the coordinate of the one-

dimensional spatial domain, w denotes the deflection and

p the temporal momentum. The first jet manifold J 1(X )
additionally includes the derivative coordinates wX and pX
and the boundary ∂D consists of two points only, namely

X = 0 and X = L where L is the length of the chain.

Approximately, the system can be modeled by the partial

differential equation ρẅ = dX(P (X)wX) which can also

be stated as

ẇ = p
ρ

ṗ = dX(P (X)wX)
(7)

with boundary conditions P (X)wX |∂D = 0 where ρ is

the mass (line)density and the force in the chain reads as

P (X) = gρX . To rewrite this system in a Hamiltonian

fashion we consider the Hamiltonian density H = HdX
corresponding to the energy density with

H =
1

2ρ
p2 +

1

2
P (X)w2

X . (8)

The total energy can be evaluated by H =
∫ L

0
HdX . To

obtain partial differential equations in the form as in (5) we

can set R and G to zero (no damping and no inputs acting

on the domain). A canonical choice for the map

[J αβ ] =

[

0 1
−1 0

]

with x = (w, p) together with the expression

δwH = ∂wH− dX∂X
w H = −dX(P (X)wX) (9)

and

δpH = ∂pH− dX∂X
p H =

p

ρ

gives the desired result ẋ = J (δH). The boundary terms

stem from ∂X
w H

∣

∣

∂D
= P (X)wX |∂D = 0 if no external

forces act on the system.

Remark 1: It is worth mentioning at this stage that as the

Example 1 shows the Hamiltonian in our setting depends

explicitly on the derivative coordinates, in this case wX , and

therefore the variational derivative does not degenerate to a

partial one, see (9). Furthermore the map J is no differential

operator in our setting. These two properties are significantly

different in a description based on Stokes-Dirac structures,

see [3], [4], [5], [9] for an alternative Hamiltonian setting

where in mechanical applications wX is a state variable

and J is clearly a differential operator. In [3] the chain
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system (vibrating string) is formulated based on Stokes-

Dirac structures and the differences to our approach become

apparent, of course the resulting partial differential equations

are the same, but their Hamiltonian representation differs.

B. Casimir Functionals

In the case of partial differential equations we consider

Casimir densities (or functionals) and we restrict ourselves

to the first order case only, i.e. C = CdX with C ∈
C∞(J 1(X )). Using (6) where we replace H by C and setting

v = ẋ the relation (in analogy to (4))
∫

D

j1(ẋ)(CdX) =

∫

D

(u⌋G)⌋δC

is obtained provided
∫

D
(J −R)(δH)⌋δC = 0 is met and an

additional boundary expression vanishes. This leads to the

following two conditions for the Casimir density

δαC(J
αβ −Rαβ) = 0 (10)

(ẋα∂A
α C)

∣

∣

∂D
= 0 (11)

which have to be fulfilled. If in addition
∫

D
(u⌋G)⌋δC = 0

is met, then the density is again a conserved quantity.

Remark 2: It is worth mentioning that a solution of δαC =
0 evidently fulfilling (10) (independently of the precise form

of (J −R)) might be nontrivial, i.e C is not constant, this

should be compared with the finite dimensional case where

dC = 0 only generates a trivial solution.

Let us again consider the simple heavy chain system to

analyze the Casimir densities for this particular (academic)

example.

Example 2: The relations (10) and (11) read as

δwC = 0 , δpC = 0, (ẇ ∂X
w C)

∣

∣

∂D
= 0 , (ṗ ∂X

p C)
∣

∣

∂D
= 0.

If we restrict ourselves to the case where C = C(p, pX) then

we have to fulfill the condition

∂pC = dX∂X
p C (12)

subjected to the boundary expressions

ṗ ∂X
p C

∣

∣

X=0
= 0 , ṗ ∂X

p C
∣

∣

X=L
= 0.

Considering the boundary condition ṗ|X=L = 0, i.e. the

velocity at X = L is constant and wX |X=L = 0 which

means that we have to guarantee ∂X
p C

∣

∣

X=0
= 0 only.

Consequently we choose

C =
1

L
(p+XpX) = dX(

1

L
pX)

which meets (12) as well as the boundary condition

∂X
p C

∣

∣

X=0
= 0 and integrating we obtain C =

∫ L

0
CdX =

p|X=L . The conserved quantity is the momentum at X = L

which is in accordance with the choice ṗ|X=L = 0 at the

boundary.

This simple example was just of academic nature to show

the meaning of the conditions (10) and (11). The concept of

Casimir densities will be fully exploited in the forthcoming

section when the interconnection of systems with the purpose

to design controllers is analyzed.

V. INTERCONNECTION

In this section we discuss the interconnection (in a power

conserving manner) of finite dimensional Hamiltonian sys-

tems with an infinite dimensional one, where we restrict

ourselves to spatial domains which are one dimensional

X = [0, L] as well as to boundary control. The boundary

of the infinite dimensional system is decomposed such that

D∂ = Da ∪ Du is met, where Da denotes the actuated

boundary (X = L) and Du is the unactuated boundary

(X = 0). The coupling will be performed by interconnecting

the systems via energy ports. We will analyze the coupling

of a finite dimensional controller system with the infinite

dimensional system at Da. However, it is worth mentioning

that an additional finite dimensional system connected at Du

(i.e. a system corresponding to a load system, not interacting

via a control input) can be considered in the same spirit, but

due to lack of space this is not the focus of the present

contribution.

The infinite dimensional system is a partial differential

equation in Hamiltonian representation modeled on a bundle

X → D
ẋ = (J −R)(δH) (13)

where the control enters through the actuated boundary Da.

From (6) it becomes obvious that the energy port at the

boundary (if it exists) can be expressed by

ẋα∂X
α H

∣

∣

∂D
= u∂⌋y

∂ . (14)

Here u∂ and y∂ denote collocated inputs and outputs where

the assignment of input or output is not unique, see [8]

for more details. In the sequel a and u will always denote

actuated and unactuated, i.e. a and u are no indices which

are used for summation (in the sense of Einstein’s sum

convention).

A. Finite-Infinite Interconnection

The relation (14) for this configuration reads as

ẋα∂X
α H

∣

∣

Da

= u∂,a⌋y
∂,a , ẋα∂X

α H
∣

∣

Du

= 0. (15)

A power conserving interconnection has to fulfill the relation

uc⌋y
c + u∂,a⌋y

∂,a = 0 (16)

where yc and uc denote the collocated port variables of the

finite dimensional controller system that reads as

ẋc = (Jc −Rc)⌋dHc + uc⌋Gc

yc = G∗
c⌋dHc

(17)

which is modeled on a manifold Xc with local coordinates

(xαc) and is equipped with dual in and output bundles Uc →
Xc and Yc → Xc. The interconnection is chosen according

to (16) as a feedback interconnection in the form

u∂,a = −D∗⌋yc , uc = D⌋y∂,a (18)

with an appropriate map D and its dual D∗. Analyzing (14)

we have to fix the role of the collocated inputs and outputs.

We make the identification

u∂,a⌋B
a = ui

∂,aB
a
αi = ∂X

α H
∣

∣

Da

(19)
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as well as

B̄a⌋y
∂,a = y

∂,a
i B̄αi

a = ẋα|
Da

(20)

with a suitable map meeting Ba⌋B̄a = I (I denotes the

identity tensor) at the actuated part of the boundary Da such

that

ẋα∂X
α H

∣

∣

Da

= u∂,a⌋B
a⌋B̄a⌋y

∂,a = u∂,a⌋y
∂,a

is met.

Now we are able to exploit the benefits of the control by

interconnection technique originally developed for coupling

of finite dimensional systems, see [1] and references therein.

To this end we analyze Casimir functionals for the coupled

systems (13,17) via (15,18) in order to relate the states of

the controller with the plant. We now have to find quantities

of the form CI = Cc +
∫

D
CdX with Cc ∈ C∞(Xc) and

C ∈ J 1(X ). The change of CI along solutions of the

interconnected system (we assume again the existence of a

solution) should vanish, i.e ĊI = 0 since we are in a closed

loop scenario and no further inputs are present which gives

in local coordinates

ĊI = (∂αc
Cc) ẋ

αc

c +

∫

D

ẋα (δαC) dX + ẋα
(

∂X
α C

)∣

∣

∂D
.

Using (13,17,18,20) leads to the conditions

δαC(J
αβ −Rαβ) = 0 (21)

∂αc
Cc(J

αcβc

c −Rαcβc

c ) = 0 (22)

(∂αc
Cc)G

αc

c,iD
ij + B̄βj

a ∂X
β C

∣

∣

Da

= 0 (23)

ẋα ∂X
α C

∣

∣

Du

= 0 (24)

which have to be met, where Dij denote the components of

D. To find solutions of this set of equations (21-24) one can

perform the following strategy for instance.

1) Motivated by the finite dimensional case we make the

ansatz Cα
I = xα

c +
∫

D
CαdX .

2) Choose Jc and Rc of the finite dimensional controller

system in order to satisfy (22).

3) Solve δαC(J
αβ−Rαβ) = 0 subjected to the boundary

conditions (23,24) with the design parameters Gc and

D.

The remarkable fact of this procedure and in special the

choice for Cα
I is the relation of (some of) the controller

states with quantities of the plant to be controlled since

CI is a constant along the solutions of the interconnected

system, i.e. xc = −
∫

D
CdX + c̄ where c̄ depends on the

initial conditions only. The Hamiltonian of the interconnected

system HI = Hc +
∫

D
HdX can be used for stability

investigations provided that it serves as a Lyapunov function

candidate, where in this context the connecting term xc =
−
∫

D
CdX + c̄ plays an extraordinary important role.

B. Concluding Remark

The key observation of the presented strategy is the fact

that a solution to the problem takes the form of a partial

differential equation involving the variational derivative sub-

jected to boundary conditions. Here it is worth noting that

total divergences are annihilated by the variational derivative,

i.e. a solution to δf = 0 can be constructed by f = dX f̄ (one

independent coordinate X) due to the special properties of

the variational derivative δ. Furthermore it is worth mention-

ing that in our setting (where J and R are no differential

operators) the extraction of the conditions concerning the

Casimir functionals/functions needs no further integration by

part in contrast to the system description explicitly using

Stokes-Dirac structures as in [5].

VI. APPLICATION

In this section we demonstrate the proposed method using

the heavy chain system from Example 1 which will be

slightly modified in order to include the possibility of a

boundary control. The focus of the example is to show

how the interconnection procedure as in section V-A works

on a concrete application, namely we couple the heavy

chain system with a controller system acting on the actuated

boundary. The focus is laid on the system representation and

the interconnection procedure, thus stability arguments are

only touched and are not worked out in detail.

A. The heavy chain system

The partial differential equations (see Example 1) read as

in (7) where we consider the boundary conditions of the form

P (X)wX |X=0
= 0 , P (X)wX |X=L = F (25)

where F serves as the control input at the actuated boundary

at X = L. The Hamiltonian density reads as in (8) and

Ḣ = ẇP (X)wX |
L
0
= ẇF |X=L

where we used the boundary conditions (25). The boundary

map Ba can now be constructed from ui
∂,aB

a
αi = ∂X

α H
∣

∣

Da

in the following manner

[Ba
αi] =

[

1
0

]

, [B̄αi
a ] =

[

1 0
]

.

Let us now investigate the control by interconnection prob-

lem where we use a finite dimensional controller system of

the form (17) where we choose dim(Xc) = 2 with xc =

(qc, pc). For CI we make the ansatz CI = qc +
∫ L

0
CdX .

Then the condition (22) can be fulfilled by the choice

[Jαcβc

c ] =

[

0 0
0 0

]

, [Rαcβc

c ] =

[

0 0
0 r

]

, r > 0.

The design Parameters Gc and D will be chosen in a trivial

manner together with the choice dim(Uc) = 1, i.e G1

c,1 =
G2

c,1 = D = 1. This implies

F = u∂,a = −yc , uc = y∂,a = ẇ|X=L

and from (23) and (24) we obtain

1+ ∂X
w C

∣

∣

X=L
= 0 , ẇ ∂X

w C
∣

∣

X=0
+ ṗ ∂X

p C
∣

∣

X=0
= 0. (26)

The equation (21) reads δwC = 0 and δpC = 0 subjected to

the boundary expressions (26) and a solution can be found

as

C = −
1

L
dX(Xw) = −

1

L
(w +XwX)
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such that

CI = qc −
1

L
Xw

∣

∣

∣

∣

X=L

X=0

= qc − w|X=L = c̄ (27)

holds, where c̄ depends on the initial conditions only since

Ċ = 0 is met. The Hamiltonian of the finite dimensional

controller system can be chosen as

Hc =
1

2
k1p

2

c +
1

2
k2(qc − qcd)

2 , k1, k2 > 0

which has a minimum at (qc, pc) = (qcd , 0). Furthermore

qcd = c̄ + wd|X=L (with a constant desired displacement

wd) can be deduced from (27). The total energy of the

interconnected system can be written as

HI =

∫

D

(

1

2ρ
p2 +

1

2
P (X)w2

X

)

dX +Hc

and from

ḢI = u∂,a ẇ|X=L − k2
1
p2cr + k1pcuc + k2(qc − qcd)uc

together with yc = k2(qc−qcd)+k1pc and ẇ|X=L = q̇c = uc

we obtain ḢI = −rk2
1
p2c ≤ 0.

Remark 3: Detailed stability investigations are not in the

scope of the presented contribution. It can be shown that HI

is positive definite where a coordinate change of the type

w̄ = w − wd has to be applied. Therefore HI serves as a

Lyapunov function candidate. Provided the solution of the

closed-loop system is well-posed in the sense of Hadamard,

from ḢI ≤ 0 the stability of the equilibrium can be deduced

where these considerations have to be carried out on suitable

function spaces (with an inner product corresponding to

HI which induces a suitable equivalent norm). For further

detailed information we refer to [13] and references therein.

B. Simulation result

Finally in Figures 1 and 2 we present a simulation result of

the controlled heavy chain system. The control objective is

to stabilize the chain around a desired equilibrium (setpoint)

where the initial condition does not correspond to the desired

setpoint equilibrium.

We consider the simple but demonstrative case where the

physical parameters L, ρ, g are all set to 1 and the parameters

of the controller are chosen as k1 = 200 , k2 = 0.8 , r = 0.7.

Furthermore wd|X=L = 1. The initial conditions for the

plant were chosen as w|t=0
= 0 , p|t=0

= 0, and for the

controller qc|t=0
= pc|t=0

= 0 such that c̄ = 0 follows

immediately.

VII. CONCLUSION

In this paper an alternative Hamiltonian representation for

distributed parameter systems compared to the one based on

Stokes-Dirac structures that are based on skew-adjoint differ-

ential operators and the use of energy variables is discussed.

The control by interconnection method is reinterpreted in

our setting and an example shows the applicability of the

presented ideas. It turns out that the variational derivative

acting on objects defined on jet-spaces is the key tool for

our system representation as well as for the extraction of the

Casimir functionals.
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