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Abstract— A control algorithm for the problem of formation
flying for autonomous underwater vehicles is presented. Using
a restrictive communication scheme and LQ optimal control,
the control algorithm respects the limitations of underwater
communication and on-board computing power. The influence
of restricting communications on the performance of the control
algorithm is illustrated by a simulation.

I. INTRODUCTION

This paper describes a case study for coordination control,
involving several autonomous underwater vehicles (AUVs):
One AUV or surface vehicle should track an external refer-
ence signal, and two AUVs should follow the first vehicle in
formation. This case study is strongly related to the problem
statement of formation flying for AUVs formulated in [7].
The similar problem of coordinated path following control
for AUVs is discussed in e.g. [2], and other approaches to
formation flying using leader-follower structures are found
in e.g. [1], [5].

The purpose of this case study is, on the one hand, to
illustrate the theory of coordination control developed in [6],
[3], [4], and on the other hand, to provide a computationally
efficient control algorithm for the problem of formation
flying for AUVs.

The control problem considered in this paper consists of
three tracking problems, coupled by the formation to be kept,
and subject to fixed bounds on the speed and acceleration
of each vehicle, random waves and currents, and errors and
delays in the communication among the vehicles.

Our approach adopts the linearized version of the model
from [7]. In [7], a more general version of this problem
is formulated, and solved using moving-horizon model pre-
dictive control on a linearized version of the model. While
this approach leads to very good control laws, the on-
line computations necessary for implementing these control
laws exceed the on-board processing power of the AUVs
considered in this setting.

The novelty of our approach lies in restricting the com-
munication among the AUVs to a minimum by imposing
a hierarchical structure on the set of vehicles, and then
using LQ optimal control to solve each tracking problem
separately. The navigation and communication constraints
are taken into account after finding the optimal control laws.
This leads to a control law which can be implemented with
very little computational effort.
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In a simulation study, we compare the performance of our
control law to the centralized case, in which the commu-
nication among the vehicles is not restricted. Our approach
leads to a slightly higher total cost for the overall tracking
problem, while decreasing the total amount of information
to be communicated considerably. Moreover, our approach is
easily extendable to larger groups of AUVs because the total
amount of information communicated among the vehicles
increases linearly with the number of vehicles, while this
increase is exponential in the centralized approach.

II. DESCRIPTION OF THE SETTING

The setting considered here concerns three vehicles, two
of which are AUVs, and one may be either an AUV or a
surface vehicle. The main goal is to have one vehicle track
an externally given reference signal, while the other two
vehicles (the AUVs) follow this vehicle in a fixed formation.
This setting is illustrated in Figure 1.

Fig. 1. Setting

The external reference signal may belong to a fourth
vehicle, or be the solution of another control problem, e.g.
a search mission. In the setting considered here, the vehi-
cle following this signal can observe the current reference
position at all times.

The vehicle following the external reference signal will
be called the coordinating vehicle (VC). VC regularly sends
its position to the other two vehicles (V1 and V2). These
vehicles use this information to follow VC - this is modeled
as a tracking problem for each follower vehicle, with as
reference signal the trajectory of VC , shifted in space by
a fixed amount.

All vehicles are subject to currents and disturbances, and
their velocities and accelerations are bounded in norm. Be-
cause of these restrictions, it may not always be possible for
the vehicles to successfully track their reference trajectories.
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This leads to two possible problems: The follower vehicles
V1 and V2 might fail to stay in formation (in the worst case,
they might get lost), and the vehicles might collide. These
two problems necessitate some form of communication from
V1 and V2 to VC in the case that the control objectives
cannot be met. Since underwater communication is extremely
limited, we opt for a form of event-based communication
from V1 and V2 to VC in exceptional circumstances: At each
time step, each follower vehicle checks whether its distance
to its reference position exceeds a fixed limit. This can be
done internally and without additional communication since
their reference position is communicated by VC anyway. In
the event that a vehicle exceeds the limit, it sends its actual
position to the coordinating vehicle VC , which then takes
measures to avoid collisions, or one vehicle being left behind.

Underwater communication is modeled as being subject
to random delays and packet losses. All messages sent are
time-stamped, which means that at the time a message is
received, the recipient knows when the message was sent.
The corresponding observer can then recompute its current
estimate, starting from the time given in the time stamp.
The clock drift among the different vehicles is bounded for
missions of limited duration, and will be ignored here.

In the setting described here, the coordinating vehicle VC
has to communicate its position regularly, while the other
vehicles V1 and V2 do not. This means that VC needs to use
much more of its resources for communication. One possible
option for ensuring that the resources of all vehicles are used
in a more balanced way is to switch roles among the vehicles
from time to time. In the case that VC is a different type of
vehicle than V1 and V2 (e.g. VC is a ship, or an underwater
vehicle with more energy available), this imbalance in the
communication requirements is actually desirable.

For the purpose of comparing performances, a second
setting will be considered, in which all vehicles can com-
municate with one another at all times. However, the com-
munication is subject to the same delays and packet losses
as described above.

III. MODEL WITH COMMUNICATION CONSTRAINTS

For ease of implementation, all dynamics involved will
be approximated by discrete-time linear dynamical systems,
as derived in [7]. To justify this choice, we note that a
linearizing feedback is commonly applied to the AUVs by a
lower-level controller. The approximation errors are modeled
as disturbances, together with possible currents and other
external disturbances. All disturbances are modeled as being
zero-mean disturbances in the long run.

The following notation will be used:
• VC : coordinating vehicle
• V1, V2: vehicles following VC
• RC : external reference signal to be tracked by VC
• R1, R2: reference signals to be tracked by V1 and V2
• p ∈ R3: position
• s ∈ R3: velocity
• a ∈ R3: acceleration
• w ∈ R3: disturbances

• p̂, ŝ ∈ R3: observer estimates for position and velocity
• ∆1,∆2 ∈ R3: desired relative positions of V1 and V2

with respect to the position of VC
• τ ∈ R : a time constant

For each vehicle, the acceleration is the control input. The
disturbances are modeled as velocities, and affect only the
change in position, not the change in velocity.

These variables and their interconnections, in the case with
communication constraints, are illustrated in Figure 2.

Fig. 2. Modeling scheme

For the external reference system RC , we use an internal
model with the following dynamics:[
pRC

sRC

]
(t+1)=

[
I I
0 τ−1

τ
I

][
pRC

sRC

]
(t)+

[
0
1
τ
I

]
aRC(t)+

[
I
0

]
wRC(t).

The state variables of this internal model are the position
pRC

and velocity sRC
of RC , and the acceleration aRC

is
the control input. The disturbance wRC

is an uncontrollable
input; including wRC

in the dynamics of the reference system
is realistic if RC is an actual vehicle or target to be tracked,
it does not make sense if RC is a virtual system (e.g. the
solution of a control problem).

All vehicles V1, V2 and VC have the following dynamics,
derived in [7]:[

pVj

sVj

]
(t+1)=

[
I I
0 τ−1

τ
I

][
pVj

sVj

]
(t)+

[
0
1
τ
I

]
aVj(t)+

[
I
0

]
wVj(t),

with j = 1, 2, C. Again, the state consists of the position
and velocity of the vehicle (thus the state space is R6), the
acceleration is the control input, and the disturbance is the
uncontrollable input.

At each time step, VC observes the current position

pRC(t)=
[
I 0
][pRC

sRC

]
(t) of the external reference signal. The

reference trajectories R1 and R2 are related to the position
of the coordinating vehicle VC as follows:

pR1(t) = pVC
(t) + ∆1, pR2(t) = pVC

(t) + ∆2.
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The observer dynamics for all three observers are[
p̂Rj

ŝRj

]
(t+1)=

[
I−GpRj

I

−GsRj

τ−1
τ
I

][
p̂Rj

ŝRj

]
(t)+

[
GpRj

GsRj

]
pRj (t),

j = 1, 2, C, with pRj
denoting the observations of the actual

reference positions. The error dynamics are[
perrRj

serrRj

]
(t+1)=

[
I−GpRj

I

−GsRj

τ−1
τ
I

][
perrRj

serrRj

]
(t)+

[
0
1
τ
I

]
aRj(t)+

[
I
0

]
wRj(t),

where aRC
and wRC

are the acceleration and disturbance of
the external reference signal, and aR1

= aR2
= aVC

and
wR1

= wR2
= wVC

because the reference systems of the
follower vehicles have the same dynamics as the coordinating
vehicle. aR1 , aR2 , wR1 and wR2 only play a role in the
observer errors; they are not used on-board by V1 and V2.
Gp

Rj
and Gs

Rj
are appropriate observer gains.

Combining these variables and dynamics, we arrive at the
open-loop system given in Table I. This is an affine system
because the last term, involving ∆1 and ∆2, is constant.

The state variables pV1
, sV1

, p̂R1
, ŝV1

belong to vehicle
V1, the variables pV2 , sV2 , p̂R2 , ŝR2 are the state variables
of vehicle V2, and the state variables pVC

, sVC
, p̂VC

, ŝVC

belong to the coordinating vehicle VC . For each vehicle, the
state space dimension is 12, and the state space of the overall
system has dimension 36.

The internal model used for the external reference signal
is not included in this open-loop system because the state
variables of the external reference signal are not located in
either of the vehicles. The accelerations aV1 , aV2 , aVC

are
the control inputs, the variables wV1

, wV2
, wVC

, pRC
are the

external inputs, and ∆1, ∆2 are fixed parameters.
The open-loop system in Table I is a coordinated affine

system, see [6], [3] and [4]. The coordinating vehicle corre-
sponds to the coordinator of a coordinated system, and the
follower vehicles correspond to the subsystems. Coordinated
systems have the property that the coordinator influences
the subsystems, while the subsystems have no influence on
the coordinator, or on each other. In this case study, this
corresponds to the coordinating vehicle sending its position
to the other vehicles regularly. The event-based feedback
from the other vehicles to the coordinating vehicle does not
comply with the structure of a coordinated system, and hence
the closed-loop system will only correspond to a coordinated
system during the time intervals between two occurrences of
this event-based feedback.

IV. CONTROL

In the formulation of the control problem, we have to
consider the following control objectives:

• For each vehicle we have a tracking problem: for j =
1, 2, C, vehicle Vj should track its reference signal Rj .

• The vehicles should never collide.
Possible solutions of the control problem are constrained
by the fact that in practice, the velocities and accelerations
of all vehicles are bounded in norm. The positions of the
vehicles may also be constrained, e.g. by obstacles or if they

should stay within a certain region. This will not be taken
into account here.

The combined consideration of both control objectives
and the constraint leads to a very difficult control problem.
Finding an optimal control law (if one exists) would involve
on-line computations of a complexity that is not feasible for
the type of vehicles considered here (see [7]). Hence, our
approach is to treat the objectives and constraint one-by-
one; this does not lead to an optimal control law, but to an
admissible control law that performs well, and that can be
implemented with limited on-board computing power.

In the following, we start by solving the tracking problems
for the vehicles, first for the setting with communication
constraints, and then for the setting without communication
constraints. We then augment the optimal control law found
for the tracking problem in such a way that the bounds on
the speed and acceleration are achieved. Finally we consider
the problems of stability and collision: In the case with
communication constraints, we have to utilize the event-
based feedback from V1 and V2 to VC in order to avoid
collisions.

A. The tracking problem, with communication constraints

First we only look at the tracking problem, ignoring the
collision problem and bounds. Each vehicle Vj tries to track
its observed reference position, while avoiding excessive
control efforts. The tracking problem for each vehicle Vj
can be formulated as an LQ optimal control problem (see
e.g. [8]):

min
aVj

∞∑
t=t0

∥∥pVj (t)−p̂Rj (t)
∥∥2

+α
∥∥aVj (t)

∥∥2
, j=1, 2, C.

Here, α ∈ R is a parameter weighing the cost of acceleration
against the cost of deviating from the reference trajectory.

The infinite-horizon formulation is chosen for simplicity,
and all disturbances are ignored for now, since otherwise and
without discounting, the cost would be infinite.

The difference vector
[
pVj−p̂Rj

sVj−ŝRj

]
has dynamics[

pVj−p̂Rj

sVj−ŝRj

]
(t+1)=

[
I I
0 τ−1

τ
I

][
pVj−p̂Rj

sVj−ŝRj

]
(t)

+

[
0
1
τ
I

]
aVj(t)+

[
I
0

]
wVj(t)+

[
GpRj

GsRj

]
(p̂Rj−pRj )(t),

where pRj denote the observations of the actual reference
position. For τ < 1, this system is controllable (see e.g. [8]).

Now the tracking problem for each vehicle can easily be
solved off-line, leading to an optimal feedback

aVj (t) =
[
F p F s

] [pVj−p̂Rj

sVj−ŝRj

]
.

The corresponding closed-loop system for each vehicle is
then[

pVj−p̂Rj

sVj−ŝRj

]
(t+1) =

[
I I

1
τ
F p τ−1

τ
I+ 1

τ
F s

][
pVj−p̂Rj

sVj−ŝRj

]
(t)

+

[
I
0

]
wVj (t)+

[
GpRj

GsRj

]
(p̂Rj−pRj )(t).
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TABLE I
THE OPEN-LOOP SYSTEM

pV1

sV1

p̂R1

ŝR1

pV2

sV2

p̂R2

ŝR2

pVC

sVC

p̂RC

ŝRC


(t+1)=



I I 0 0 0 0 0 0 0 0 0 0
0 τ−1

τ
I 0 0 0 0 0 0 0 0 0 0

0 0 I−GpR1
I 0 0 0 0 GpR1

0 0 0
0 0 −GsR1

τ−1
τ
I 0 0 0 0 GsR1

0 0 0
0 0 0 0 I I 0 0 0 0 0 0
0 0 0 0 0 τ−1

τ
I 0 0 0 0 0 0

0 0 0 0 0 0 I−GpR2
I GpR2

0 0 0
0 0 0 0 0 0 −GsR2

τ−1
τ
I GsR2

0 0 0
0 0 0 0 0 0 0 0 I I 0 0
0 0 0 0 0 0 0 0 0 τ−1

τ
I 0 0

0 0 0 0 0 0 0 0 0 0 I−GpRC
I

0 0 0 0 0 0 0 0 0 0 −GsRC

τ−1
τ
I





pV1

sV1

p̂R1

ŝR1

pV2

sV2

p̂R2

ŝR2

pVC

sVC

p̂RC

ŝRC


(t)

+



0 0 0
1
τ
I 0 0

0 0 0
0 0 0
0 0 0
0 1

τ
I 0

0 0 0
0 0 0
0 0 0
0 0 1

τ
I

0 0 0
0 0 0



 aV1

aV2

aVC

 (t) +



I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0
0 0 0 GpRC

0 0 0 GsRC



 wV1

wV2

wVC

pRC

 (t) +



0 0
0 0

GpR1
0

GsR1
0

0 0
0 0
0 GpR2

0 GsR2

0 0
0 0
0 0
0 0



[
∆1

∆2

]
.

(1)

For the treatment of the constraints in Section IV.C, we need
to rewrite the closed-loop system in terms of the original state
variables:pVj

sVj

p̂Rj

ŝRj

(t+1) =


I I 0 0

1
τ
F p τ−1

τ
I+ 1

τ
F s − 1

τ
F p − 1

τ
F s

0 0 I −GpRj
I

0 0 −GsRj

τ−1
τ
I


pVj

sVj

p̂Rj

ŝRj

(t)

+

I00
0

wVj (t) +


0
0

GpRj

GsVj

 pRj (t).

The matrices characterizing the tracking problem are the
same for all vehicles, and hence the feedback matrices F p

and F s are also the same for all vehicles.
Since the reference trajectories pR1

and pR2
depend on

the closed-loop dynamics of VC , and observer estimates of
these reference trajectories influence the control problems
for V1 and V2, solving the tracking problem for each vehicle
independently does not lead to a centralized optimum: The
sum of the tracking costs for all vehicles can be decreased
further by solving the combined optimization problem for all
vehicles at once. However, for implementing the centralized
optimum, the current states of all vehicles would need
to be communicated. This alternative is used for testing
the performance of our approach, and is described in the
following subsection.

B. The tracking problem, without communication constraints

In this subsection, the same open-loop system for the
motion of the vehicles is used. All communications are
subject to the same uncertainties as in the setting with
communication constraints. However, in this setting we do

not impose any constraints on communication among the
vehicles.

In this setting, each vehicle has observers for the states
of all other vehicles, so in other words each vehicle keeps a
copy of the whole system in memory, with exact values for its
own state, and observers for the states of the other vehicles.
The control feedback for the tracking problem is the same for
all vehicles: They all solve the combined tracking problem

min
aV1

,aV2
,aVC

∞∑
t=t0

∥∥∥∥∥∥
pV1(t)−pVC(t)−∆1

pV2(t)−pVC(t)−∆2

pVC(t)−p̂RC(t)

∥∥∥∥∥∥
2

+α

∥∥∥∥∥∥
aV1(t)
aV2(t)
aVC(t)

∥∥∥∥∥∥
2

.

The solution of this LQ-problem is

aV1

aV2

aVC

=

F11 F12 F13 F14 F15 F16

F21 F22 F23 F24 F25 F26

F31 F32 F33 F34 F35 F36



pV1−pVC−∆1

sV1−sVC

pV2−pVC−∆2

sV2−sVC

pVC−p̂RC

sVC−ŝRC

 ,

where F11, . . . , F36 ∈ R3×3 can be found off-line.
Each vehicle has its own copy of the overall closed-loop

system, with observer estimates for the states of the other
vehicles.

C. The bounds on velocity and acceleration

Since the norm of the acceleration for each vehicle is
penalized in the cost function of the tracking problem, the
accelerations found from the state feedbacks for the two
settings above will usually be small in norm. However,
this does not guarantee that they stay within fixed bounds.
Moreover, the velocities of the vehicles are not bounded as
a result of the state feedbacks found above, and we might
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need a fixed bound on the speed of each vehicle for a realistic
model of the settings.

With upper bounds amax ∈ R and smax ∈ R on the
acceleration and speed of each vehicle, we define λs ∈ R by

λs =
1

‖aVj‖2
(

(1−τ)aTVj
sVj+

+
√

(τ−1)2aTVj
(sVja

T
Vj
−aVj s

T
Vj

)sVj +τ2s2
max‖aVj‖2

)
.

This variable is used for limiting the speed of the vehicle,
and is derived from requiring that the velocity s̄Vj (t + 1)
obtained by applying the corrected input λsaVj

(t) satisfies

‖s̄Vj
(t+ 1)‖2 = ‖τ − 1

τ
sVj

(t) +
1

τ
λsaVj

(t)‖2 = s2max.

A simple (but not necessarily optimal) way of implementing
a fixed upper bound on the acceleration and speed of each
vehicle is to use the following control input:

āVj (t) = min

{
λs,

amax

‖aVj (t)‖ , 1
}
∗ aVj (t),

where aVj
(t) is the optimal control feedback found in the

previous two subsections, depending on the setting. This
control law satisfies the bounds ‖āVj (t)‖ ≤ amax and
‖s̄Vj

(t+ 1)‖ ≤ smax.

D. Stability and the collision constraint

In practice the speed and the acceleration of an AUV are
bounded. This means that, even though both of the closed-
loop systems derived in the previous subsections are output
stable with respect to the output

y(t) =

pV1(t)−pVC (t)−∆1

pV2(t)−pVC (t)−∆2

pVC (t)−p̂RC (t)

 ,
the closed-loop systems together with the constraints ‖a‖ ≤
amax and ‖s‖ ≤ smax might not be output stable.

This is interpreted as follows: If the external reference
signal moves at a speed higher than smax then VC is not able
to track the reference signal, and pVC

− p̂RC
increases. There

is nothing that can be done about this. Another possibility
is that the followers V1 and V2 cannot track their reference
positions, because they are subjected to strong disturbances
and cannot accelerate enough to compensate for that. This
may lead to a follower being left behind, or a collision of
two vehicles. This can be avoided if VC is informed about
the positions of V1 and V2, at least in the case that V1 or V2
are deviating too much from their reference positions. For
this potential problem, we suggest three possible solutions:

• VC receives feedback from V1 and V2 regularly, and
includes these positions into its local tracking problem.
The deviation from the formation will be small, but this
involves more communication than necessary.

• VC receives feedback from V1 or V2 only in the case that
a follower vehicle is too far from its reference position,
i.e. if ‖pVj

− (p̂VC
+∆j)‖ ≥ r for some fixed r > 0. In

this way, the communication from V1 and V2 to VC is
kept minimal. If the safety regions of radius r around

V1 and V2 are chosen far enough from each other then
this approach avoids collision.

• We set the maximum speed of VC well below the actual
maximum speed of V1 and V2. The follower vehicles
have a better chance at tracking their reference signal.
No additional communication is necessary, however VC
cannot fly at its maximum speed, and hence might have
more difficulties tracking the external reference signal.

In this paper we choose the second option: At each time
instant, the follower vehicles check whether their position
deviates from their observed reference position by more than
r. If that is the case, they send their position pVj

to VC .
There are several possibilities for VC to use this infor-

mation in order to help the follower vehicle get back into
formation. One option, which turned out to be successful in
simulations, is to have the VC track the signal

p̂RC +
(p̂V1−∆1−pVC )I1+(p̂V2−∆2−pVC )I2

W

instead of the signal p̂RC
, where Ij = 1 if VC received pVj

from Vj during this time step, and Ij = 0 otherwise. The
second term is a weighted average of the deviations of the
vehicle positions from their reference positions, with weight
parameter W > 0. This average deviation has to be computed
by VC . At most times, VC does not know the positions of the
follower vehicles because the follower vehicles are within a
radius r of their reference positions. In this case, the tracking
signal is p̂RC

.
The collision problem is automatically solved by our

approach if the distance between the uncertainty regions
Dr(pVj

) for the two follower vehicles is large enough -
this can be made more precise by taking into account the
maximum speed and acceleration.

E. The control algorithm

To summarize the control algorithm described in the
previous subsections: For the case with communication con-
straints, we have

aVj =
[
F p F s

] [pVj−p̂Rj

sVj−ŝRj

]
, j = 1, 2,

aVC =
[
F p F s

] [pVj−p̂Rj−
(p̂V1
−∆1−pVC

)I1+(p̂V2
−∆2−pVC

)I2
W

sVj−ŝRj

]
.

For the case without communication constraints, we found

aV1

aV2

aVC

=

F11 F12 F13 F14 F15 F16

F21 F22 F23 F24 F25 F26

F31 F32 F33 F34 F35 F36



pV1−pVC−∆1

sV1−sVC

pV2−pVC−∆2

sV2−sVC

pVC−p̂RC

sVC−ŝRC

 ,
with observer values where actual values are not available.

For both cases, the control feedback to be implemented is
then given by

āVj (t) = min

{
λs,

amax

‖aVj (t)‖ , 1
}
∗ aVj (t), j = 1, 2, C.

As discussed in the previous subsections, this control law
meets the control objectives and satisfies the constraint. Since
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the feedback and observer gains can be computed offline, the
computational burden on the AUVs is very low.

V. SIMULATION RESULTS

We test the performance of the control law and communi-
cation scheme described above using MATLAB simulations.
Simulation 1 implements the control law with communi-
cation constraints, on the linearized version of the model
and with noise. Simulation 2 implements the system without
communication constraints.

A. Settings and parameters

Our simulations ran over 1000 time steps, each of length
1s. For the external reference trajectory we chose a circular
path, starting at a distance of 40m from the vehicles. For
the vehicles, we used smax = 3m/s, amax = 0.3m/s2 and
τ = 5. The disturbances were chosen to be Gaussian with
mean 0 and σ = 0.3, and we used uncertainty radius r =
7m around the follower vehicles. Messages were modeled to
arrive with a probability of 0.9, and with an average delay
of 2.4s. The weights for the tracking problems were chosen
to be α = 10 and W = 7.

B. Performance and comparison

Both simulations show that the control objectives and
constraints are met. Figure 3 illustrates this for Simulation
1: While the distances of the vehicles to their observed
reference positions quickly drop below 10m, the distances
between the three vehicles stay between 20m and 40m at all
times. Feedback from V1 and V2 occured at 110 time steps.

Fig. 3. Simulation results

For comparing performances, we evaluate the cost function
from the tracking problems (note that the cost function is the
same in both cases). Based on one representative run, we
found that the total costs are:

• Simulation 1: 1.37 ∗ 105,
• Simulation 2: 1.23 ∗ 105.

This means that our control law with communication con-
straints leads to an increase by around 11%, compared to the
control law with unconstrained communication.

We can take into account communication costs by speci-
fying a fixed cost CC per message broadcast by the coordi-
nating vehicle VC (a message is an element of R3 or R2),

and a fixed cost CF per message broadcast by one of the
follower vehicles V1 and V2. Now the total communication
costs are:

• Simulation 1: 1000CC + 110CF ,
• Simulation 2: 2000CC + 2000CF .

The communication costs for Simulation 1 depend strongly
on the disturbances, and on the radius r of the uncertainty
regions.

VI. CONCLUDING REMARKS

In this paper, we described a control algorithm and a
communication scheme for the problem of formation flying
for AUVs. This approach is implementable with low on-
board computing power, and it requires very little commu-
nication among the vehicles. In a simulation, we compared
the performances of this approach and a similar approach
with unlimited communication. While the total cost increased
slightly with our communication scheme, the total amount of
communication decreased considerably.
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