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Abstract— This paper considers the containment control
problems for both continuous-time and discrete-time multi-
agent systems with general linear dynamics under directed
communication topologies. Distributed reduced-order observer-
based containment controllers relying on the relative outputs
of neighboring agents are constructed for both continuous-time
and discrete-time cases, under which the states of the followers
will asymptotically converge to the convex hull formed by those
of the leaders if for each follower there exists at least one leader
that has a directed path to that follower. Sufficient conditions
on the existence of these containment controllers are given.

I. INTRODUCTION

Consensus control of a group of agents has received

compelling attentions from various scientific communities,

for its potential applications in spacecraft formation flying,

sensor networks, cooperative surveillance, and so forth [1],

[2]. The main idea of consensus is to develop distributed

control policies that enable the agents to reach an agreement

on a state of interest. Consensus algorithms are studied in [3],

[4], [5], [6] for a group of single-, double-, and high-order

integrators with fixed and switching communication topolo-

gies. Different static and dynamic consensus protocols are

designed in [7], [8], [9], [10] to reach consensus for multi-

agent systems with general linear dynamics. Distributed H∞

consensus and control problems are investigated in [11], [12]

for networks of agents subject to external disturbances.

The above-mentioned references mainly focus on con-

sensus for a group of agents without any leader. However,

in some practical applications, there might exist one or

even multiple leaders in the agent network. Tracking control

problem for multi-agent consensus with an active leader is

considered in [13] by using a distributed neighbor-based

estimator. Distributed tracking algorithms are proposed, re-

spectively, in [14] and [15] for a network of continuous-time

and discrete-time agents to track a time-varying leader. In the

presence of multiple leaders, [16] considers the containment
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control problem, by proposing a hybrid control law to drive

the followers into the convex hull spanned by the leaders.

Distributed containment control problems are studied in [17],

[18] for a group of autonomous first- and second-order

agents. The authors in [19], [20] study the containment

control problem for a collection of rigid bodies with multiple

stationary leaders while [20] discusses the case of dynamic

leaders with finite-time convergence.

This paper considers the containment control problems for

both continuous-time and discrete-time multi-agent systems

with general linear dynamics under directed communication

topologies, by extending our previous work [21] where static

and full-order dynamic containment controllers are designed.

Unlike the full-order controllers in [21], distributed reduced-

order observer-based containment controllers relying on the

relative outputs of neighboring agents are proposed for both

the continuous-time and discrete-time cases, which is moti-

vated by the consensus protocols in [9]. In the continuous-

time case, a multi-step algorithm is presented to construct

a reduced-order containment controller, under which the

states of the followers will asymptotically converge to the

convex hull formed by those of the leaders, if for each

follower there exists at least one leader that has a directed

path to that follower. It is shown that a sufficient condition

on the existence of such a controller is that each agent

is stabilizable and detectable. In the discrete-time case, in

light of the modified algebraic Riccati equation, an algorithm

is given to design a containment controller that solves the

containment control problem. Sufficient conditions on the

existence of such a discrete-time controller are also given.

Different from the continuous-time case, in the discrete-

time case, the eigenvalues of the stochastic matrix of the

communication graph have to satisfy a constraint related to

the unstable eigenvalues of the state matrix A, when A has

a least one eigenvalue outside the unit circle. In contrast to

[16], [17], [18] where the agent dynamics are restricted to be

single or double integrators and to [19], [20] which considers

second-order Euler-Lagrange systems, the results obtained

in the current paper are applicable to multi-agent systems

with general linear dynamics. Compared to the dynamic

controllers in [21], the proposed containment controllers here

are reduced-order and hence have lower dimensions.

The rest of this paper is organized as follows. Some

useful results of the graph theory are reviewed in Section

II. The containment control problems for continuous-time

and discrete-time multi-agent systems are considered, re-

spectively, in Sections III and IV. Simulation examples are

presented for illustration in Section V. Conclusions are drawn
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in Section VI.

II. NOTATIONS AND GRAPH THEORY

Let R
n×n and C

n×n be the set of n × n real matrices

and complex matrices, respectively. The superscript T means

transpose for real matrices and H means conjugate transpose

for complex matrices. IN represents the identity matrix of

dimension N . Matrices, if not explicitly stated, are assumed

to have compatible dimensions. Re(ζ) denotes the real part

of ζ ∈ C. A ⊗ B denotes the Kronecker product of the

matrices A and B. A matrix is Hurwitz (in the continuous-

time case) if all of its eigenvalues have negative real parts,

while is Schur stable (in the discrete-time case) if all of

its eigenvalues have magnitude less than 1. For a set X =
{x1, · · · , xn} in V ⊆ R

p, its convex hull co(X) is defined

as co(X) = {
∑n

i=1 αixi|xi ∈ V, αi ≥ 0,
∑n

i=1 αi = 1}.

A directed graph G is a pair (V, E), where V =
{v1, · · · , vN} is a nonempty finite set of nodes and E ⊆
V × V is a set of edges, in which an edge is represented

by an ordered pair of distinct nodes. For an edge (vi, vj),
node vi is called the parent node, node vj the child node,

and vi is a neighbor of vj . A graph with the property that

(vi, vj) ∈ E implies (vj , vi) ∈ E is said to be undirected.

A path from node vi1 to node vil
is a sequence of ordered

edges of the form (vik
, vik+1

), k = 1, · · · , l − 1. A directed

graph contains a directed spanning tree if there exists a node

called the root, which has no parent node, such that the node

has a directed path to every other node in the graph.

The adjacency matrix A = [aij ] ∈ R
N×N associated

with the directed graph G is defined by aii = 0, aij = 1
if (j, i) ∈ E and aij = 0 otherwise. The Laplacian matrix

L = [Lij ] ∈ R
N×N is defined as Lii =

∑

j 6=i aij and

Lij = −aij , i 6= j. Let D = [dij ] ∈ R
N×N be a

row-stochastic matrix associated with G with the additional

assumption that dii > 0, dij > 0 if (j, i) ∈ E and dij = 0
otherwise.

III. CONTAINMENT CONTROL OF CONTINUOUS-TIME

LINEAR MULTI-AGENT SYSTEMS

Consider a group of N identical agents with general

continuous-time linear dynamics, described by

ẋi = Axi + Bui,

yi = Cxi, i = 1, · · · , N,
(1)

where xi ∈ R
n, ui ∈ R

p, and yi ∈ R
q are, respectively, the

state, the control input, and the output of the i-th agent, and

A, B, C, are constant matrices with compatible dimensions,

where without loss of generality C is assumed to have full

row rank.

A variety of static and dynamic consensus protocols were

proposed to reach consensus for the agents with dynamics

given by (1), e.g., in [7], [8], [9], [10]. However, these

references only considered the case with at most one leader

in the group. In the current paper, we consider the case

with multiple leaders. Suppose that there are M (M < N )

followers and N −M leaders. An agent is called a leader if

the agent has no neighbor. An agent is called a follower

if the agent has at least one neighbor. Without loss of

generality, we assume that the agents indexed by 1, · · · ,M ,

are followers, while the agents indexed by M + 1, · · · , N ,

are leaders whose control inputs are set to be zero. We

use R , {M + 1, · · · , N} and F , {1, · · · ,M} to

denote, respectively, the leader set and the follower set. The

communication topology among the N agents is represented

by a directed graph G. Note that here the leaders do not

receive any information.

Assumption 1: Suppose that for each follower, there exists

at least one leader that has a directed path to that follower.

It is assumed that each agent has access to only its own

absolute output and the relative outputs with respect to its

neighbors. We let ui = 0, i ∈ R, and propose the following

distributed reduced-order observer-based containment con-

troller for each follower:

v̇i = Fvi + Gyi + TBui,

ui = cKQ1

∑

j∈F∪R

aij(yi − yj)

+ cKQ2

∑

j∈F∪R

aij(vi − vj), i ∈ F ,

(2)

where vi ∈ R
n−q, i ∈ F , are the states of the controllers

corresponding to the followers, vj ∈ R
n−q, j ∈ R, are the

states of the following auxiliary systems:

v̇j = Fvj + Gyj , j ∈ R, (3)

c > 0 is the coupling strength, aij is the (i, j)-th entry of

the adjacency matrix A associated with a directed graph G,

F ∈ R
(n−q)×(n−q) is Hurwitz and has no eigenvalues in

common with those of A, G ∈ R
(n−q)×q, T ∈ R

(n−q)×n is

the unique solution to the following Sylvester equation:

TA − FT = GC, (4)

which further satisfies that

[

C

T

]

is nonsingular, Q1 ∈ R
n×q

and Q2 ∈ R
n×(n−q) are given by

[

Q1 Q2

]

=

[

C

T

]−1

, and

K ∈ R
p×n is the feedback gain matrix.

Denote by L the Laplacian matrix associated with G.

Because the leaders have no neighbors, L can be partitioned

as

L =

[

L1 L2

0(N−M)×M 0(N−M)×(N−M)

]

, (5)

where L1 ∈ R
M×M and L2 ∈ R

M×(N−M).

Lemma 1 ([20]): Under Assumption 1, all the eigenvalues

of L1 has positive real parts, each entry of −L−1
1 L2 is

nonnegative, and each row of −L−1
1 L2 has a sum equal to

one.

Next, an algorithm is presented to select the control

parameters in (2).

Algorithm 1: Under Assumption 1, a containment con-

troller (2) can be constructed as follows:

1) Choose a Hurwitz matrix F having no eigenvalues in

common with those of A. Select G such that (F, G) is

stabilizable.
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2) Solve (4) to get a solution T , which satisfies that

[

C

T

]

is nonsingular. Then, compute matrices Q1 and Q2 by
[

Q1 Q2

]

=

[

C

T

]−1

.

3) Solve the following linear matrix inequality (LMI):

AP + PAT − 2BBT < 0, (6)

to get one solution P > 0. Then, choose the matrix

K = −BT P−1.

4) Select the coupling strength c ≥ 1
min

i=1,··· ,M
{Re(λi)}

, where

λi, i = 1, · · · ,M , are the eigenvalues of L1.

Remark 1: As pointed out in Remark 3.2 in [9], under the

condition that (A,C) is detectable, the probability that steps

1) and 2) hold is 1. Furthermore, a necessary and sufficient

condition on the existence of a P > 0 to the LMI (6) is that

(A,B) is stabilizable [7]. Therefore, a sufficient condition

for Algorithm 1 to successfully construct a controller (2) is

that (A,B, C) is stabilizable and detectable.

Theorem 1: Suppose that the directed communication

graph G satisfies Assumption 1 and (A,B, C) is stabilizable

and detectable. Then, the states of the followers under the

controller (2) constructed by Algorithm 1 will asymptotically

converge to the convex hull formed by those of the leaders,

i.e., the containment control problem is solved. Specifically,

limt→∞(xf (t)−̟(t)) = 0 and limt→∞(vf (t)−GC̟(t)) =
0, where xf = [xT

1 , · · · , xT
M ]T , vf = [vT

1 , · · · , vT
M ]T , and

̟(t) = (−L−1
1 L2 ⊗ eAt)







xM+1(0)
...

xN (0)






. (7)

Proof: Let zi = [xT
i , vT

i ]T , zf = [zT
1 , · · · , zT

M ]T ,

and zl = [zT
M+1, · · · , zT

N ]T . Then, the closed-loop network

dynamics resulting from (1), (2), and (3) can be written as

żf = (IM ⊗ S + cL1 ⊗H) zf + c(L2 ⊗H)zl,

żl = (IN−M ⊗ S) zl,
(8)

where

S =

[

A 0
GC F

]

, H =

[

BKQ1C BKQ2

TBKQ1C TBKQ2

]

.

Let ξi =
∑

j∈F∪R aij(zi − zj), i ∈ F , and ξ =

[ξT
1 , · · · , ξT

M ]T . Then, we have

ξ = (L1 ⊗ I2n−q)zf + (L2 ⊗ I2n−q)zl. (9)

Considering the special structure of L as in (5), we can obtain

from (8) and (9) that ξ satisfies [21]

ξ̇ = (L1 ⊗ I)żf + (L2 ⊗ I)żl

= (L1 ⊗ I)((IM ⊗ S)zf + c(L1 ⊗H)zf

+ c(L2 ⊗H)zl) + (L2 ⊗ I)(IN−M ⊗ S)zl

= (L1 ⊗ S + cL2
1 ⊗H)((L−1

1 ⊗ I)ξ

− (L−1
1 L2 ⊗ I)zl) + (cL1L2 ⊗H + L2 ⊗ S)zl

= (IM ⊗ S + cL1 ⊗H)ξ.

(10)

Under Assumption 1, it follows from Lemma 1 that all the

eigenvalues of L1 have positive real parts. Let U ∈ C
M×M

be such a unitary matrix that U−1L1U = Λ, where Λ is

an upper-triangular matrix with λi, i = 1, · · · ,M , as its

diagonal entries. Let ξ̃ , [ξ̃T
1 , · · · , ξ̃T

N ]T = (U−1 ⊗ I)ξ.

Then, it follows from (10) that

˙̃
ξ = (IM ⊗ S + cΛ ⊗H)ξ̃. (11)

By noting that Λ is upper-triangular, it is clear that (11) is

asymptotically stable if and only if the following M systems

˙̃
ξi = (S + cλiH)ξ̃i, i = 1, · · · ,M, (12)

are simultaneously asymptotically stable. Multiplying the left

and right sides of S + cλiH by T =

[

I 0
−I I

]

and T−1,

respectively, we get

T (S + cλiH)T−1 =

[

A + cλiBK cλiBKQ2

0 F

]

. (13)

By steps 3) and 4) in Algorithm 1, it follows that there exists

a P > 0 such that

(A + cλiBK)P + P (A + cλiBK)H

= AP + PAT − 2cRe(λi)BBT

≤ AP + PAT − 2BBT < 0, i = 1, · · · ,M.

That is, A+ cλiBK, i = 1, · · · ,M , are Hurwitz. Therefore,

using (11), (12), and (13), it follows that (10) is asymp-

totically stable. Then, it follows from (9) that ‖zf (t) +
(L−1

1 L2 ⊗ I2n−q)zl(t)‖ → 0, as t → ∞. By further noting

zl(t) = (IN−M ⊗ eSt)zl(0), it is not difficult to get that

limt→∞(xf (t)−̟(t)) = 0 and limt→∞(vf (t)−GC̟(t)) =
0. By Lemma 1, we know from (7) that the states of the

followers asymptotically converge to the convex hull formed

by those of the leaders.

Remark 2: Contrary to the previous results on contain-

ment control in [16], [17], [18], [19], [20], where the agent

dynamics are restricted to be single or double integrators

in [16], [17], [18] and to be second-order Euler-Lagrange

systems in [19], [20], Theorem 1 is applicable to multi-

agent systems with general linear dynamics. Compared to the

dynamic controllers in [21], the proposed containment con-

troller (2) is reduced-order and hence has a lower dimension.

For the special case with only one leader, Theorem 1 implies

that the states of the followers will asymptotically approach

the state of the leader. In this case, the containment controller

(2) will recover the reduced-order consensus protocol (2) in

[9].

IV. CONTAINMENT CONTROL OF DISCRETE-TIME

LINEAR MULTI-AGENT SYSTEMS

This section extends to discuss the discrete-time counter-

part of the last section. Consider a group of N identical

agents with general discrete-time linear dynamics, described

by
x+

i = Axi + Bui,

yi = Cxi, i = 1, · · · , N,
(14)

where xi = xi(k) ∈ R
n, x+

i = xi(k + 1), ui ∈ R
p, and

yi ∈ R
q are, respectively, the state at the current time instant,
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the state at the next time instant, the control input, the output

of the i-th agent. It is assumed that B is of full column rank

and C has full row rank.

Similar to the last section, we assume that the agents

indexed by 1, · · · ,M , are followers, while the agents indexed

by M+1, · · · , N , are leaders. The leader set and the follower

set are denoted, respectively, by R = {M + 1, · · · , N} and

F = {1, · · · ,M}. The communication graph G among the

N agents is directed and satisfies Assumption 1.

We again let ui = 0, i ∈ R. Similar to the continuous-

time case, we propose the following distributed reduced-

order containment controller for each follower as

v̂+
i = Fvi + Gyi + TBui,

ui = KQ1

∑

j∈F∪R

aij(yi − yj)

+ KQ2

∑

j∈F∪R

aij(v̂i − v̂j), i ∈ F ,

(15)

where v̂i ∈ R
n−q, i ∈ F , are the states of the controllers

corresponding to the followers, v̂j ∈ R
n−q, j ∈ R, are the

states of the following systems:

v̂+
j = F v̂j + Gyj , j ∈ R, (16)

F ∈ R
(n−q)×(n−q) is Schur stable and has no eigenvalues in

common with those of A, G ∈ R
(n−q)×q, T ∈ R

(n−q)×n is

the unique solution to (4), satisfying that

[

C

T

]

is nonsingular,

[

Q1 Q2

]

=

[

C

T

]−1

, K ∈ R
p×n is the feedback gain

matrix, and dij is the (i, j)-th entry of the row-stochastic

matrix D associated with the graph G.

Because the last N − M agents are leaders that have no

neighbors, D can be partitioned as

D =

[

D1 D2

0(N−M)×M IN−M

]

, (17)

where D1 ∈ R
M×M and D2 ∈ R

M×(N−M).

Lemma 2 ([21]): Under Assumption 1, all the eigenvalues

of D1 lie in the open unit disk, each entry of (IM−D1)
−1D2

is nonnegative, and each row of (IM −D1)
−1D2 has a sum

equal to one.

Before moving forward, we introduce the following mod-

ified algebraic Riccati equation (MARE) [22]:

P = AT PA − δAT PB(BT PB)−1BT PA + Q, (18)

where P > 0, Q > 0, and δ > 0 ∈ R. For δ = 1, the MARE

(18) is reduced to the commonly-used discrete-time Riccati

equation.

The following lemma shows the existence of solutions for

the MARE.

Lemma 3 ([22]): Let (A,B) be stablizable. Then, the

following hold.

a) There exists a critical value δc ∈ [0, 1) such that the

MARE (18) has a unique positive-definite solution P for

any δ > δc. Moreover, δc = 0 if A has no eigenvalues

with magnitude larger than 1. For the case where A

has a least one eigenvalue with magnitude larger than

1, δc = 1 − 1
Πi|λu

i
(A)|2 if B is of rank one, and δc =

1− 1
maxi |λu

i
(A)|2 if B is invertible, where λu

i (A) are the

unstable eigenvalues of A.

b) If the MARE (18) has a unique positive-definite solution

P , then P = limk→∞ Pk for any initial condition P0 >

0, where Pk satisfies

P (k + 1) = AT P (k)A − δAT P (k)B

× (BT P (k)B)−1BT P (k)A + Q.
Next, an algorithm for determining the control parameters

in (15) is presented.

Algorithm 2: Under Assumption 1, a containment con-

troller (15) can be constructed as follows:

1) Select a Schur stable matrix F having no eigenvalues

in common with those of A, and G such that (F, G) is

stablizable.

2) Solve (4) to get a solution T , satisfying that

[

C

T

]

is

nonsingular. Then, compute the matrices Q1 and Q2 by
[

Q1 Q2

]

=

[

C

T

]−1

.

3) Choose K = −(BT PB)−1BT PA, where P > 0 is the

unique solution to the following MARE:

P = AT PA − (1 − max
i=1,··· ,M

|λ̂i|
2)AT PB

× (BT PB)−1BT PA + Q,
(19)

with Q > 0 and λ̂i, i = 1, · · · ,M , being the eigenval-

ues of D1.

Remark 3: According to Lemma 3 and Remark 1, for the

case where A has eigenvalues outside the unit circle, a suf-

ficient condition for the existence of the consensus protocol

by using Algorithm 2 is that (A,B, C) is stabilizable and

detectable, and max
i=1,··· ,M

|λ̂i|
2 < 1 − δc, where δc is defined

in Lemma 3. For the case where A has no eigenvalues with

magnitude larger than 1, the sufficient condition is reduced

to that (A,B, C) is stabilizable and detectable.

Theorem 2: Assume that the directed communication

graph G satisfies Assumption 1. Let (A,B, C) be stabi-

lizable and detectable. Then, the controller given by Al-

gorithm 2 solves the containment control problem for the

agents in (15). Specifically, limk→∞ (xf (k) − ψ(k)) =
0 and limk→∞ (v̂f (k) − GCψ(k)) = 0, where xf =
[xT

1 , · · · , xT
M ]T , v̂f = [v̂T

1 , · · · , v̂T
M ]T , and

ψ(k) =
(

(IM −D1)
−1D2 ⊗ Ak

)







xM+1(0)
...

xN (0)






.

Proof: Let ẑi = [xT
i , v̂T

i ]T , ẑf = [ẑT
1 , · · · , ẑT

M ]T , and

ẑl = [ẑT
M+1, · · · , ẑT

N ]T . Then, we can obtain from (14), (15),

and (16) that the collective network dynamics can be written

as

ẑ+
f = (IM ⊗ S + (IM −D1) ⊗H) ẑf − (D2 ⊗H)ẑl,

ẑ+
l = (IN−M ⊗ S)ẑl,

(20)
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where S and H are defined in (8). Let ζi =
∑

j∈F∪R dij(ẑi−

ẑj), i ∈ F , and ζ = [ζT
1 , · · · , ζT

M ]T . Then, we have

ζ = ((IM −D1) ⊗ I2n−q) ẑf − (D2 ⊗ I2n−q)ẑl. (21)

By following similar steps to those in the proof of Theorem

1, we can obtain from (20) and (21) that ζ satisfies the

following dynamics:

ζ+ = (IM ⊗ S + (IM −D1) ⊗H) ζ. (22)

Under Assumption 1, it follows from Lemma 2 that all the

eigenvalues of IM − D1 have positive real parts. Let Û ∈
C

M×M be such a unitary matrix that Û−1(IM − D1)Û =
Λ̂, where Λ̂ is an upper-triangular matrix with 1 − λ̂i,

i = 1, · · · ,M , on the diagonal. Let ζ̃ , [ζ̃T
1 , · · · , ζ̃T

N ]T =
(Û−1 ⊗ I)ζ. Then, (22) can be rewritten as

ζ̃+ = (IM ⊗ S + Λ̂ ⊗H)ζ̃, (23)

Clearly, (11) is asymptotically stable if and if the following

M systems:

ζ̃+
i = (S + (1 − λ̂i)H)ζ̃i, i = 1, · · · ,M, (24)

are simultaneously asymptotically stable. In light of step 3)

in Algorithm 2, we can obtain [21]

(A + (1 − λ̂i)BK)HP (A + (1 − λ̂i)BK) − P

= AT PA − P + (−2Re(1 − λ̂i) + |1 − λ̂i|
2)AT PB

× (BT PB)−1BT PA

= AT PA − P + (|λ̂i|
2 − 1)AT PB(BT PB)−1BT PA

≤ AT PA − P − (1 − max
i=1,··· ,M

|λ̂i|
2)AT PB(BT PB)−1

× BT PA

= −Q < 0.
(25)

Then, (25) implies that A + (1 − λ̂i)BK, i = 1, · · · ,M ,

are Schur stable. Therefore, considering (23), (24), (25)

and (13), we obtain that (22) is asymptotically sta-

ble, which, by (21), implies that ‖zf (k) − ((IM −
D1)

−1D2 ⊗ I2n−q)zl(k)‖ → 0, as k → ∞. Then, it

is easy to get that limk→∞ (xf (k) − ψ(k)) = 0 and

limk→∞ (v̂f (k) − GCψ(k)) = 0. In virtue of Lemma 2, the

states of the followers asymptotically converge to the convex

hull formed by those of the leaders.

V. SIMULATION EXAMPLES

In this section, a simulation example is provided to vali-

date the effectiveness of the theoretical results.

Consider a network of harmonic oscillators described by

(1), with

xi =

[

xi1

xi2

]

, A =

[

0 1
−1 0

]

, B =

[

0
1

]

, C =
[

1 0
]

.

A first-order containment controller in the form of (2) will

be designed.

Take F = −2 and G = −1. Using the function

lyap in Matlab to solve the Sylvester equation (4) gives

1 6 7

2 5 8

3 4 9

Fig. 1. The communication topology.

T =
[

−0.4 0.2
]

, which obviously satisfies that

[

C

T

]

is

nonsingular. Then, the matrices Q1 and Q2 can be obtained

as Q1 =

[

1
2

]

and Q2 =

[

0
5

]

. Solving the LMI (6) by using

the LMI toolbox of Matlab gives the feedback gain matrix

in (2) as K = −
[

0.1251 0.5732
]

. For illustration, let the

communication graph G be given by Fig. 1, where nodes

7, 8, 9 are three leaders and the others are followers. It can

be verified that G satisfies Assumption 1. Correspondingly,

the matrix L1 in (5) is

L1 =

















3 0 0 −1 −1 −1
−1 1 0 0 0 0
−1 −1 2 0 0 0
−1 0 0 2 0 0
0 0 0 −1 2 0
0 0 0 0 −1 2

















,

whose eigenvalues are 0.8213, 1, 2, 2.3329±0.6708i, 3.5129.

By Algorithm 1, we choose the coupling strength c ≥
1.2176. The state trajectories of the nine agents under the

controller (2) designed as above and c = 2 are depicted in

Fig. 2, from which it can be observed that the containment

problem is indeed solved.
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Fig. 2. The state trajectories of the agents (1) under (2). The solid and
dashdotted lines denote, respectively, the trajectories of the leaders and the
followers.
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VI. CONCLUSIONS

In this paper, the containment control problems have

been considered for both continuous-time and discrete-time

multi-agent systems with general linear dynamics under di-

rected communication topologies. Distributed reduced-order

observer-based containment controllers relying on the rela-

tive outputs of neighboring agents have been constructed for

both continuous-time and discrete-time cases, under which

the states of the followers can asymptotically converge to

the convex hull formed by those of the leaders if for each

follower there exists at least one leader that has a directed

path to that follower. Sufficient conditions for the existence

of distributed reduced-order containment controllers have

been given.
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