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Abstract— In this paper, we provide an algorithm
for the design of a coupling controller for a nonline-
ar input-affine system. The resulting controller ren-
ders the maximal locally controlled invariant output-
nulling submanifold locally attractive for the con-
trolled system. The connections to the constrained
dynamics algorithm and the triangular decoupling
problem are presented, and necessary and sufficient
conditions for the success of the new algorithm are
derived.

I. Introduction

In the design of multivariable control systems, much
effort has been put in the investigation of decoupling
control in the past. Crucial for the development was the
work of Falb and Wolovich [1] presenting a solution for
some classes of linear systems. Especially the appearance
of unstable, invariant zeros restricts the possibilities of
the design. Solutions avoiding this restriction by achie-
ving only partial decoupling can be found in [10] and [5].
The results achieved in the decoupling of linear systems
have been extended to the nonlinear case employing
differential geometric concepts [3]. The requirement that
the system has relative degree and stable zero dynamics
is very limiting for reaching a stable decoupled system.

In contrast, achieving decoupling is not always the
objective in controller design. In many applications the
specific coupling of some states or outputs is necessary,
such as controlling the engines for steel rolling mills,
paper machines, automotive test benches, and a very
contemporary task, synchronizing the engines of a wheel
individually actuated electric vehicle. Although the de-
sign of coupling controllers is very useful in many cases,
few attention is paid to the coupling problem compared
to the decoupling problem. For linear time-invariant sys-
tems, a solution based on the Complete Modal Synthesis
is given in [4] which was extended to dynamic output
feedback in [6].

Obviously, nonlinear coupling can also be achieved
via decoupling the system and setting the corresponding
inputs to zero. But the restrictions are too demanding
for solving the coupling problem only. With differential
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geometric concepts for linear systems [11] also nonlinear
problems can be solved. In [7] a geometric approach is
given for the triangular decoupling problem for linear
systems which was extended to the nonlinear case in [8].
Again in this context, coupling can be achieved by setting
some of the inputs to zero. Indeed, the requirements
for triangular decoupling are less restrictive than for
complete decoupling. Although necessary and sufficient
conditions for the solvability of the triangular decoupling
problem are stated in [8], no constructive method for
designing the control law is given.

If the coupling conditions are described by the outputs
of a nonlinear system, the remaining dynamics of the
coupled system live on a locally controlled invariant
output-nulling submanifold of the state manifold only.
The maximal locally controlled invariant output-nulling
submanifold can be computed via the constrained dy-
namics algorithm described in [9]. Although a suitable
control law is derived during the algorithm, the generated
submanifold will not be an attractive submanifold in
general.

In this contribution, we want to draw the connection
of the constrained dynamics algorithm to the triangular
decoupling problem to create a coupling controller which
produces the same submanifold as the constrained dyna-
mics algorithm and additionally renders this submanifold
locally attractive. We will show that the success of our
approach coincides with the solvability of the triangular
decoupling problem, and we will give a constructive
algorithm deriving the control law.

This paper is organized as follows. In section II we will
introduce the problem to be solved and define some basic
nomenclature. The design of the proposed control law is
carried out in section III, and the main results are stated
in section IV. We exemplify our approach with a model
of three heated rooms in section V and finally terminate
this paper with the conclusion in section VI.

II. Problem Statement and Preliminaries

We will consider nonlinear systems of the form

ẋ = f(x) +

p
∑

l=1

gl(x)u
l = f(x) + g(x)u (1)

y = h(x),

where x ∈ M describes the state variables and u ∈ Rp

the inputs. The manifold M is assumed to be smooth,
TxM denotes the tangent space at x, and TM =
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x∈M TxM denotes the tangent bundle ofM. f(x) and
gl(x) are n × 1-dimensional smooth vector fields on M.
The map h : M → Rq with q < p defines the coupling
conditions. Therefore a system (1) is said to be coupled
if the conditions

0 = h(x) (2)

are fulfilled. We will also depict y as the output of the
system. The control law

u = α(x) + β(x)v (3)

is described by a p× 1 dimensional vector function α(x)
and a p×m dimensional matrix function β(x). We want
to design the control law, such that the controlled system
locally around x0 with h(x0) = 0 fulfills the coupling
conditions asymptotically and independently of the re-
ference input v ∈ Rm. As v should be used to control
further control variables the remaining dynamics of the
coupled system (1) together with (2) should be as large
as possible. Therefore, we are seeking for the maximal
locally controlled invariant output-nulling submanifold.

Before we can proceed, we need some definitions and
lemmas.

Definition 1: A submanifold N = {x ∈ M | γ(x) = 0}
of M is called locally attractive for the system (1) in
the neighborhood U of x0 with γ(x0) = 0 if for every
x(t0) ∈ U , γ(x(t)) = 0 holds for t→∞.

Definition 2: (see [8]) An involutive distribution D on
M is locally controlled invariant for the system (1) if
locally there exists a feedback of the form (3) withm = p,
such that the modified dynamics ẋ = f̄(x)+

∑p

i=1
ḡi(x)v

i

with f̄(x) = f(x) + g(x)α(x) and ḡ(x) = g(x)β(x) leave
D invariant, i.e.

[

f̄ , D
]

⊂ D

[ḡi, D] ⊂ D, ∀ 1 ≤ i ≤ p.

D is additionally a regular local controllability dis-
tribution if it is also an involutive closure of
{

adk
f̄
ḡi | k ∈ N, i ∈ I

}

for a certain subset I ⊂

{1, . . . , p}.
Lemma 2.1: Let N = {x ∈M | γ(x) = 0} be a sub-

manifold of M. Assume that the rank of the s-
dimensional mapping γ(x) is equal to s in a neighborhood
of x0. Suppose there exists a diffeomorphism

(

ξT1 , ξ
T
2

)

=
Φ(x)T =

(

γ(x)T ,Ψ(x)T
)

around x0 with ξ1 = γ(x) and
ξ2 = Ψ(x), and the system (1) transformed with Φ leads
to the system

(

ξ̇1
ξ̇2

)

=

(

Aξ1
f̂2(ξ1, ξ2) +

∑p

l=1
ĝ2l(ξ1, ξ2)ul

)

(4)

= f̂(ξ) +

p
∑

l=1

ĝl(ξ)u
l

around ξ0 = Φ(x0). If all eigenvalues of the s×s matrix A
are in C−, N is a locally attractive invariant submanifold
around x0 for system (1).

Proof: Because of the special structure of (4), ξ̇1 is
independent of ξ2. As t→∞, ξ1 = 0 holds, and therefore

γ(x) = 0. As
[

f̂(ξ), TξN
]

⊂ TξN and [ĝl(ξ), TξN ] ⊂

TξN for all ξ ∈ N and 1 ≤ l ≤ p, N is a locally attractive
and invariant submanifold for system (1) around x0.

The aim of this contribution is finding a maximal
locally controlled invariant output-nulling submanifold
and a control law that renders this submanifold locally
attractive for the controlled system. The approach is
related to the constrained dynamics algorithm in [9]. The
constrained dynamics algorithm computes the maximal
locally controlled invariant output-nulling submanifold
that fulfills the coupling conditions (2) and an appro-
priate control law. But this manifold will generally not
be attractive. As the control law has some degrees of
freedom, we will use them, if possible, to make the
manifold locally attractive for the controlled system.

III. Constrained Dynamics Algorithm with

Stability

Step 0

SetM0 =M, i = 0, p0 = p, p1 = p−1, . . ., pq = p−q.
Denote the system (1) by Σ0, and set z0 = h(x). The
elements of z0 are denoted by z10 , . . . , z

q
0 .

Step 1

Increase i by 1 and set γ1 =
(

z10 , . . . , z
1
i−1

)T
. Assume

that the rank of γ1 is constant around x0 and

rank(γ1) = i. (5)

If Lglz
1
i−1 = 0 ∀ 1 ≤ l ≤ p0 holds, set z1i = Lfz

1
i−1.

Step 2

Repeat step 1 until ∃ l, 1 ≤ l ≤ p0, such that Lglz
1
i−1 6=

0. Set δ1 = i and M1 = {x ∈M0 | γ1 = 0}. Choose
parameters ν1

j , such that the roots of the polynomial

P 1(s) = 1 +

δ1
∑

j=1

ν1
j · (s)

j (6)

are all in C−. It is possible to find a control law u =
α1(x) + β1(x)u1, with the p0-dimensional vector α1(x),
the p0 × p1 matrix β1(x), and u1 ∈ Rp1 , such that

z10 + ν1
1z

1
1 + · · ·+ ν1

δ1−1z
1
δ1−1

+ν1
δ1

(

Lfz
1
δ1−1 +

ν0
∑

l=1

Lglz
1
δ1−1α

l
1

)

= 0

and

Lglz
1
i−1β

l
1(x) = 0 ∀ 1 ≤ l ≤ p0

hold on M1 in a neighborhood of x0. Denote the sys-
tem (1) controlled by u = α1(x) + β1(x)u1 by Σ1. In the
following step we proceed with the second output, and
therefore set k = 2.
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Step 3

Let ẋ = f̃(x)+
∑pk−1

l=1
g̃l(x)u

l
k−1

with uk−1 ∈ Rpk−1 be
the description of the system Σk−1 and set i = 0.

Step 4

Increase i by 1 and set γk =
(

zk0 , . . . , z
k
i−1

)T
. Assume

that the rank of γk is constant around x0 and

rank
(

γT1 , . . . , γ
T
k

)T
= i+

k−1
∑

j=1

δj . (7)

If Lg̃lz
k
i−1 = 0, ∀ 1 ≤ l ≤ pk−1 holds, set zki = Lf̃z

k
i−1.

Step 5

Repeat step 4 until ∃ l, 1 ≤ l ≤ pk−1, such that
Lg̃lz

k
i−1 6= 0. Set δk = i andMk = {x ∈ Mk−1 | γk = 0}.

Choose parameters νkj , such that the roots of the poly-
nomial

P k(s) = 1 +

δk
∑

j=1

νkj · (s)
j (8)

are all in C−. It is possible to find a control law uk−1 =
αk(x)+βk(x)uk, with the pk−1-dimensional vector αk(x),
the pk−1 × pk matrix βk(x), and uk ∈ Rpk , such that

zk0 + νk1 z
k
1 + · · ·+ νkδk−1z

k
δk−1

+νkδk

(

Lf̃z
k
δk−1 +

pk−1
∑

l=1

Lg̃lz
k
δk−1α

l
k

)

= 0

and

Lg̃lz
k
δk−1β

l
k(x) = 0 ∀ 1 ≤ l ≤ pk−1

hold onMk in a neighborhood of x0. Denote the system
Σk−1 controlled with uk−1 = αk(x) + βk(x)uk by Σk.

Step 6

Increase k by 1 and repeat steps 3 – 6 until k = q.

IV. Main Results

If the constant rank assumptions at step 1 and 4 are
satisfied, x0 is a regular point for this algorithm.

If (5) or (7) are not fulfilled in the k-th step for any
i, the k-th coupling condition is not controllable by any
of the remaining inputs. As in general, zk0 = 0 is not an
asymptotical stable equilibrium, the coupling conditions
can not be fulfilled asymptotically stable with a static
feedback by this approach. In this case the algorithm is
not successful.

If the algorithm is successful, it leads to the manifold
Mq and the control law

u = α1 + β1 (α2 + β2 (. . . (αq + βqv) . . .)) , (9)

with the reference input v = uq ∈ R
p−q.

The presented algorithm is very much related to the
constrained dynamics algorithm in [9]. The following
theorem shows the similarity of the results.

Theorem 4.1: If the constrained dynamics algorithm
with stability is successful, Mq is the maximal locally
controlled invariant output-nulling submanifold around
x0.

Before proofing this theorem, we need some additional
results.

Lemma 4.1: The manifoldMq is invariant against any
permutation of the coupling conditions.

Proof: Assume that two sequent coupling conditions
hk(x) and hk̃(x), k̃ = k + 1, are permuted. Therefore
Mk−1 does not depend on the permutation. Let Σk−1

be ẋ = f̄(x) + ḡ(x)uk−1 with uk−1 ∈ Rpk−1 .
As long as Lḡz

k
i = 0, zki+1 = Lf̄z

k
i holds, and as long as

Lḡz
k̃
ĩ

= 0, zk̃
ĩ+1

= Lf̄z
k̃
ĩ

holds regardless of a permutation.

Now assume that Lḡz
k
i 6= 0 and Lḡz

k̃
ĩ
6= 0 and denote by

B the 2× pk−1 matrix

B =

(

Lḡz
k
i

Lḡz
k̃
ĩ

)

.

There are two possibilities:

1) rankB = 2,
2) rankB = 1.

If the first possibility holds, the same control law can
be used to fulfill zki+1 = 0 and zk̃

ĩ+1
= 0 on Mk−1

independent of the permutation. Therefore Σk+1 is also
independent of it. This proves the invariance ofMk+1.

If the second possibility holds, there exists a function
K(x) 6= 0, such that Lḡz

k
i = K(x)Lḡz

k̃
ĩ
. Note that the

permutation of the coupling conditions is important for
the choice of the control law.

As the default sorting is used, the control law gua-
rantees that zki+1 = 0 on Mk−1. Therefore Lḡz

k
i uk−1 =

−Lf̄z
k
i holds onMk−1, which leads to K(x)Lḡz

k̃
ĩ
uk−1 =

−Lf̄z
k
i . Thus, the new constraint is

zk̃
ĩ+1

= Lf̄z
k̃
ĩ
−

1

K(x)
Lf̄z

k
i .

If the permuted sorting is used, the control law gua-
rantees that zk̃

ĩ+1
= 0. Therefore Lḡz

k̃
ĩ
uk−1 = −Lf̄z

k̃
ĩ

holds, which leads to Lḡz
k
i uk−1 = −K(x)Lf̄z

k̃
ĩ

onMk−1.
Hence, the new constraint is

zki+1 = Lf̄z
k
i −K(x)Lf̄z

k̃
ĩ
.

Since K(x)zk̃
ĩ+1

= −zki+1 onMk−1, the sorting has no
influence on the manifold Mk+1, but the control laws
are different on Mk−1. Though Lf̄z

k
i − K(x)Lf̄z

k̃
ĩ

= 0
on Mk+1, the control laws are the same on Mk+1, and
therefore Σk+1 is also invariant.

As in both possibilities Σk+1 and Mk+1 are indepen-
dent of the permutation, Mq is also invariant against a
permutation of sequent coupling conditions. A permu-
tation of any two coupling conditions can be reached by
sequent permutations, henceMq is invariant against any
permutation of coupling conditions.

Now we are ready to proof theorem 4.1.

7749



Proof: (of theorem 4.1) Nĳmeĳer and van der Schaft
[9] have shown that the maximal locally controlled in-
variant output-nulling submanifold N ∗ around x0 is
independent of the particular choice of the control law
in the constrained dynamics algorithm. Permuting the
coupling conditions such that δ1 ≤ δ2 ≤ · · · ≤ δq holds
the introduced algorithm coincides with the constrained
dynamics algorithm choosing a particular control law.
With lemma 4.1 it follows that Mq = N ∗.

Now we want to draw the connection to the triangular
decoupling problem presented in [8]. Find, if possible, re-
gular local controllability distributions R1, . . . , Rq, such
that

R1 ⊂ TM

Ri ⊂
i−1
⋂

j=1

kerhj∗, ∀ 2 < i ≤ q

Ri + kerhi∗ = TM,

where hi∗ denotes the pushforward of hi. R∗i is the
supremal regular local controllability distribution in
⋂i−1

j=1
kerhj∗.

Proposition 4.1: The presented algorithm terminates
successfully if and only if the triangular decoupling pro-
blem (see [8]) is locally solvable for the system (1), which
is equivalent to the requirement

R∗i + kerhi∗ = TM, ∀ 1 ≤ i ≤ q (10)

around x0.

Proof: Sufficiency of (10):

As shown in [8], if (10) holds, there are local coordina-
tes w1, . . . , wq+1, each wi possibly being a vector, such
that

R∗q = span

{

∂

∂w1

}

R∗q−1 = span

{

∂

∂w1
,
∂

∂w2

}

...

R∗1 = span

{

∂

∂w1
, . . . ,

∂

∂wq

}

and

z10 = h1(wq , wq+1)

z20 = h2(wq−1, wq, wq+1)

...

z
q
0 = hq(w1, . . . , wq+1)

holds, and there is a control law of the form (3) with p̃ =
p and a partitioning of the new inputs v into q disjoint

subsets Ij , such that the controlled system has the form










ẇ1

...
ẇq

ẇq+1











=











f̄1(w1, . . . , wq+1)
...

f̄ q(wq, wq+1)

f̄ q+1(wq+1)











+

+
∑

j∈I1











ḡ1j (w
1, . . . , wq+1)

...
ḡ
q
j (w

q, wq+1)

0











vj + · · ·+

+
∑

j∈Iq\Iq−1











ḡ1j (w
1, . . . , wq+1)

0
...
0











vj .

Together with the output controllability [8], (5) and (7)
are fulfilled.

Necessity of (10):
Consider the control law u = α1(x)+β1(x)v, v ∈ R

p−1

in the first step of the algorithm. Choose a p-dimensional
function β̃1(x), such that

(

β̃1, β1

)

is a nonsingular p× p
matrix around x0. Modify the control law to u = α1(x)+
β̃1(x)ṽ1 +β1(x)v. Then the input ṽ1 has influence on the
first output and possibly on some of the following.

Consider the control law u = α2(x) + β2(x)v, v ∈
Rp−2 in the second step of the algorithm. Choose a
(p − 1)-dimensional function β̃2(x) such that

(

β̃2, β2

)

is a nonsingular (p − 1) × (p − 1) matrix around x0.
Modify the control law to u = α2(x) + β̃2(x)ṽ2 + β2(x)v.
Then the input ṽ2 has influence on the second output
and possibly on some of the following, but not on the
first output. Proceeding this way leads to the input ṽi
that has influence on the i-th output and possibly the
following, but not on the previous. This exactly describes
a triangular decoupled system defined in [8]. Therefore,
if the algorithm succeeds, system (1) can be triangular
decoupled and equivalently (10) holds.

Theorem 4.2: The submanifoldMq is locally attracti-
ve around x0 for the system (1) controlled by (9).

Proof: Let ξ1 = γ1, . . . , ξq = γq together with
ξq+1 ∈ R

r, r = n−
∑q
i=1
δi be local coordinates for the

controlled system around x0. The system has the form










ξ̇1
...

ξ̇q
ξ̇q+1











=











A1ξ1
...
Aqξq

f̃(ξ1, . . . , ξq+1) + g̃(ξ1, . . . , ξq+1)v











.

As the roots of the polynomial P k(s) (see (8)) coincide
with the eigenvalues of the matrix Ak, with lemma 2.1
Mq is a locally attractive submanifold for the controlled
system around x0.

Remark 4.2: If a systems fails to have relative degree,
hence no static decoupling is possible, a static coupling
controller can still be derived if (10) holds. This will be
exemplified in the following example.
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Fig. 1. Three heated rooms

V. Example

We consider three heated rooms depicted in Fig. 1.
The first room can be heated directly by the input u1,
the heat transfer into the room. The other two rooms are
heated via two boilers with the inputs u2 and u3 respec-
tively. The temperature of each room is described by x1,
x2, and x3 respectively, the temperature of each boiler by
x4 and x5. The heat emission of each room is considered
as a nonlinear function of the room temperature. With

x =
(

x1, . . . , x5
)T

the nonlinear system has the form

ẋ =













−c0(x1 − T0)− c1(x1 − T0)2

−c0(x2 − T0)− c1(x2 − T0)2 + c2(x4 − x2)
−c0(x3 − T0)− c1(x3 − T0)2 + c2(x5 − x3)

−c2(x4 − x2)
−c2(x5 − x3)













+













1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

















u1

u2

u3



 , (11)

where c0, c1, and c2 are parameters for the heat transmis-
sion, and T0 is the temperature outside of the rooms. We
will choose our parameters so that the time is measured
in hours and xi is measured in kelvin. The state manifold
isM = R5, and the coupling conditions are

y = h(x) =

(

x1 − x2

x1 − x3

)

= 0, (12)

i.e. the temperature of the three rooms should be equal.
As there are three inputs, an additional control variable
yc = x3 is introduced. With the extended output ye =
(

yT , yc
)T

, it is easy to verify that system (11) has no
well defined relative degree and therefore can not be
decoupled with a static state feedback. But we will design
a control law fulfilling the coupling conditions (12) and
additionally manipulating the dynamics of yc arbitrarily.

In the first step of the constrained dynamics algorithm
with stability, z10 is set to h1(x). As Lg1

z10 = 1 holds,
δ1 = 1, and M1 =

{

x ∈ R5 | x1 − x2 = 0
}

. The first

control law fulfills z10 + ν1
1 (Lfz

1
0 +

∑3

l=1
Lglz

1
0α
l
1) = 0,

Lglz
1
0β
l
1 = 0 ,∀ 1 ≤ l ≤ 3. Set f̃(x) = f(x) + g(x)α1(x)

and g̃(x) = g(x)β1(x).
In the third step with k = 2, z20 is set to h2(x). As
Lg̃lz

2
0 = 0 for l = 1, 2, z21 = Lf̃z

1
0 . Since Lg̃lz

2
1 6= 0 for

l = 1, 2 and rank
(

z10 , z
2
0 , z

2
1

)

= 3, the second control law

has to fulfill z20 + ν2
1z

2
1 + ν2

2(Lf̃z
2
1 +

∑2

l=1
Lg̃lz

2
1α
l
2) = 0,

Lg̃lz
2
1β
l
2 = 0 for l = 1, 2. As k = q = 2, the algo-

rithm terminates. The restrictions lead to the manifold
M2 =

{

x ∈M1 | z20 = 0, z21 = 0
}

identical to the ma-
nifold which can be found by the constrained dynamics
algorithm. Hence M2 is the maximal locally controlled
invariant output-nulling submanifold for the system (11)
with the outputs y = h(x).

The system Σ2, controlled by u = α1 + β1 (α2 + β2w),

can be transformed with ξ = Φ(x) =
(

z10 , z
2
0 , z

2
1 , x

3, x5
)T

and the parameters ν1
1 = 1, ν2

1 = 7

3
, and ν2

2 = 1

3
to

ξ̇ =













−ξ1

ξ3

−3ξ2 − 3.5ξ3

c0
(

T0 − ξ4
)

− c1
(

T0 − ξ4
)2

+ c2
(

ξ5 − ξ4
)

w + c2(ξ4 − ξ5)













.

(13)

The manifold M2, described in the new coordinates ξ,
leads to

M2 =
{

ξ ∈ R
5 | ξ1 = ξ2 = ξ3 = 0

}

.

With lemma 2.1 this manifold is a locally attractive
invariant submanifold for the system (13).

As the system (11) is strongly accessible, R∗1 = TM
[8]. The supremal controlled invariant distribution in
kerh1

∗ is

D = span



































0 0
0 0
0 c2
0 0
1 −c2



































.

As D is also a regular controllability distribution, R∗2 =
D holds, and therefore R∗2 + kerh2

∗ = TM. Hence the
triangular decoupling problem is solvable, what is equal
to the success of the presented algorithm.

Obviously, it is possible to manipulate the remaining
dynamics onM2. We assumed the temperature x3 to be
the control variable yc. For the system Σ2 with the input
w and the output yc an input-to-output linearization [2]
is possible as the relative degree is two. We choose the
transfer function

G(s) =
0.25

s2 + s+ 0.25

for the input-to-output behavior of the controlled system
with reference input vc. The parameters are chosen as
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Fig. 2. Simulation of the controlled system

c0 = 0.1, c1 = 0.01, c2 = 1, and T0 = 283. The
simulation of the controlled system is shown in Fig. 2.
At the beginning, x(0) = (290, 291, 294, 305, 317)

T
and

vc = 293 are chosen. As depicted in Fig. 2, the coupling
outputs tend to zero within less than 5 hours with the
specified linear behavior. After 15 hours, the reference
input is changed to 295. The room temperature of the
three rooms follows this step with the same dynamics as
G(s). Note that the coupling outputs are not affected by
vc.

VI. Conclusion

We presented a constructive algorithm for deriving
the maximal locally controlled invariant output-nulling
submanifold and a static state feedback that renders this
submanifold locally attractive for the controlled system.
It was shown that the assumptions of our approach are
fulfilled iff the triangular decoupling problem is solvable.
Therefore necessary and sufficient conditions for the
success of the new algorithm could be given.
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