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Abstract—In this paper, we provide an algorithm
for the design of a coupling controller for a nonline-
ar input-affine system. The resulting controller ren-
ders the maximal locally controlled invariant output-
nulling submanifold locally attractive for the con-
trolled system. The connections to the constrained
dynamics algorithm and the triangular decoupling
problem are presented, and necessary and sufficient
conditions for the success of the new algorithm are
derived.

I. INTRODUCTION

In the design of multivariable control systems, much
effort has been put in the investigation of decoupling
control in the past. Crucial for the development was the
work of Falb and Wolovich [1] presenting a solution for
some classes of linear systems. Especially the appearance
of unstable, invariant zeros restricts the possibilities of
the design. Solutions avoiding this restriction by achie-
ving only partial decoupling can be found in [10] and [5].
The results achieved in the decoupling of linear systems
have been extended to the nonlinear case employing
differential geometric concepts [3]. The requirement that
the system has relative degree and stable zero dynamics
is very limiting for reaching a stable decoupled system.

In contrast, achieving decoupling is not always the
objective in controller design. In many applications the
specific coupling of some states or outputs is necessary,
such as controlling the engines for steel rolling mills,
paper machines, automotive test benches, and a very
contemporary task, synchronizing the engines of a wheel
individually actuated electric vehicle. Although the de-
sign of coupling controllers is very useful in many cases,
few attention is paid to the coupling problem compared
to the decoupling problem. For linear time-invariant sys-
tems, a solution based on the Complete Modal Synthesis
is given in [4] which was extended to dynamic output
feedback in [6].

Obviously, nonlinear coupling can also be achieved
via decoupling the system and setting the corresponding
inputs to zero. But the restrictions are too demanding
for solving the coupling problem only. With differential
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geometric concepts for linear systems [11] also nonlinear
problems can be solved. In [7] a geometric approach is
given for the triangular decoupling problem for linear
systems which was extended to the nonlinear case in [8].
Again in this context, coupling can be achieved by setting
some of the inputs to zero. Indeed, the requirements
for triangular decoupling are less restrictive than for
complete decoupling. Although necessary and sufficient
conditions for the solvability of the triangular decoupling
problem are stated in [8], no constructive method for
designing the control law is given.

If the coupling conditions are described by the outputs
of a nonlinear system, the remaining dynamics of the
coupled system live on a locally controlled invariant
output-nulling submanifold of the state manifold only.
The maximal locally controlled invariant output-nulling
submanifold can be computed via the constrained dy-
namics algorithm described in [9]. Although a suitable
control law is derived during the algorithm, the generated
submanifold will not be an attractive submanifold in
general.

In this contribution, we want to draw the connection
of the constrained dynamics algorithm to the triangular
decoupling problem to create a coupling controller which
produces the same submanifold as the constrained dyna-
mics algorithm and additionally renders this submanifold
locally attractive. We will show that the success of our
approach coincides with the solvability of the triangular
decoupling problem, and we will give a constructive
algorithm deriving the control law.

This paper is organized as follows. In section IT we will
introduce the problem to be solved and define some basic
nomenclature. The design of the proposed control law is
carried out in section III, and the main results are stated
in section IV. We exemplify our approach with a model
of three heated rooms in section V and finally terminate
this paper with the conclusion in section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES

We will consider nonlinear systems of the form

i= f@)+ Y g = f@) +g@u (1)
=1

y = h(x),

where z € M describes the state variables and u € RP
the inputs. The manifold M is assumed to be smooth,
T.M denotes the tangent space at z, and TM =
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Uzea TeM denotes the tangent bundle of M. f(z) and
gi(z) are n x 1-dimensional smooth vector fields on M.
The map h : M — R? with ¢ < p defines the coupling
conditions. Therefore a system (1) is said to be coupled
if the conditions

0= hx) (2)

are fulfilled. We will also depict y as the output of the
system. The control law

u = o) + Ba)o (3)

is described by a p x 1 dimensional vector function «(z)
and a p x m dimensional matrix function 8(x). We want
to design the control law, such that the controlled system
locally around zg with h(xzo) = 0 fulfills the coupling
conditions asymptotically and independently of the re-
ference input v € R™. As v should be used to control
further control variables the remaining dynamics of the
coupled system (1) together with (2) should be as large
as possible. Therefore, we are seeking for the maximal
locally controlled invariant output-nulling submanifold.

Before we can proceed, we need some definitions and
lemmas.

Definition 1: A submanifold N' = {z € M | y(z) =0}
of M is called locally attractive for the system (1) in
the neighborhood U of xg with v(xg) = 0 if for every
x(to) € U, y(z(t)) = 0 holds for t — occ.

Definition 2: (see [8]) An involutive distribution D on
M is locally controlled invariant for the system (1) if
locally there exists a feedback of the form (3) with m = p,
such that the modified dynamics & = f(z)+>_5_, gi(z)v’
with f(z) = f(2) + g(z)a(r) and g(z) = g(x)5(z) leave

D invariant, i.e.

[f,D] cD
[, D] Cc D, Y1<i<p.

D is additionally a regular local controllability dis-
tribution if it 1is _also an involutive closure of
{adl}gi | ke Nie I} for a certain subset I C
{1,...,p}

Lemma 2.1: Let N' = {z € M | y(z) =0} be a sub-
manifold of M. Assume that the rank of the s-
dimensional mapping y(z) is equal to s in a neighborhood
of xg. Suppose there exists a diffeomorphism (ng, 2 ) =
()" = (v(x)", ¥(x)") around z with & = y(z) and
& = ¥(z), and the system (1) transformed with ® leads
to the system

( 2 ) N ( f2<sl,52>+§f§f1 g€, &) ) (4)

= &)+ aE)u

NE

l

Il
-

around & = ®(xp). If all eigenvalues of the s x s matrix A
are in C~, \V is a locally attractive invariant submanifold
around z( for system (1).

Proof: Because of the special structure of (4), & is
independent of &5. Ast — oo, & = 0 holds, and therefore
y(z) = 0. As ij/‘(f),Tg}\/} C TeN and [§1(6), TeN] C
TeN forall§ € Nand 1 <1 < p, N is a locally attractive
and invariant submanifold for system (1) around zo. ®

The aim of this contribution is finding a maximal
locally controlled invariant output-nulling submanifold
and a control law that renders this submanifold locally
attractive for the controlled system. The approach is
related to the constrained dynamics algorithm in [9]. The
constrained dynamics algorithm computes the maximal
locally controlled invariant output-nulling submanifold
that fulfills the coupling conditions (2) and an appro-
priate control law. But this manifold will generally not
be attractive. As the control law has some degrees of
freedom, we will use them, if possible, to make the
manifold locally attractive for the controlled system.

III. CONSTRAINED DYNAMICS ALGORITHM WITH
STABILITY

Step 0

Set Mg=M,i=0,po=p,p1 =p—1,...,pg =p—q.

Denote the system (1) by X, and set zg = h(x). The

elements of zy are denoted by z{, ..., 2{.

Step 1

. T
Increase i by 1 and set v1 = (z§,...,2{_,) . Assume

that the rank of v, is constant around zy and
rank(y;) = 4. (5)
If Lyzt {1 =0V 1<1<pgholds, set 2} = Lz} ;.

Step 2

Repeat step 1 until 37,1 < 1 < po, such that Lg,z} | #
0. Set 1 = i and My = {& € Mo |~y =0}. Choose

parameters V}, such that the roots of the polynomial

01
Pl(s) =1+ Z vl (s (6)

are all in C~. It is possible to find a control law u =
a1 (z) + Bi(x)uy, with the po-dimensional vector oy (),
the pg x p1 matrix 1 (z), and u; € RP*, such that

1 1.1 1 1
Zg tvia Vs 125
vo
1 1 1 1\ _
+vs, | Lyzs, -1+ Zngzélq% =0
=1

and
Loz 1fi(@) =0 Y1<I<npo

hold on M;j in a neighborhood of zy. Denote the sys-
tem (1) controlled by v = aq(z) + S1(z)u; by 1. In the
following step we proceed with the second output, and
therefore set k = 2.
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Step 3
Let @ = f(z)+ 7% Gi(x)ul_ | with up—; € RP*1 be
the description of the system ¥;_; and set ¢ = 0.

Step 4
k

Increase 7 by 1 and set v = (zg, cee zifl)T. Assume
that the rank of 7 is constant around xy and

k—1
rank(’le,...,va)T:i—FZ(Sj. (7)
j=1

If Ly2F | =0, V1 <1< p_1 holds, set 2F = szf_l.

Step 5

Repeat step 4 until 31, 1 < [ < pg_1, such that
LgzF | #0.Set 6 =iand My = {x € My_1 | v = 0}.
Choose parameters 1/]’?, such that the roots of the poly-
nomial

Ok
Pr(s) =1+ vk (s) (8)
j=1

are all in C~. It is possible to find a control law u;_1 =
ag(x)+ P (x)ug, with the py_1-dimensional vector oy (),
the pr—1 X pr matrix f(x), and uy € RP*, such that

ko kk k k
Zg t vz ot Us 125, 1

Pk—1
k k k 1
+Us, (sz6k—1 + Z ngzék—l%> =0
=1

and
Lz 25 _1Bi(x) =0 V1<I<pp

hold on My, in a neighborhood of xg. Denote the system
Yk—1 controlled with ug_1 = ag(x) + Bi(x)ur by Zj.

Step 6
Increase k by 1 and repeat steps 3 — 6 until k = q.

IV. MAIN RESULTS

If the constant rank assumptions at step 1 and 4 are
satisfied, x¢ is a regular point for this algorithm.

If (5) or (7) are not fulfilled in the k-th step for any
i, the k-th coupling condition is not controllable by any
of the remaining inputs. As in general, 2§ = 0 is not an
asymptotical stable equilibrium, the coupling conditions
can not be fulfilled asymptotically stable with a static
feedback by this approach. In this case the algorithm is
not successful.

If the algorithm is successful, it leads to the manifold
M, and the control law

u=ar+pfi(az+B2(...(ag+Bgv)...)),  (9)

with the reference input v = u, € RP79.

The presented algorithm is very much related to the
constrained dynamics algorithm in [9]. The following
theorem shows the similarity of the results.

Theorem 4.1: If the constrained dynamics algorithm
with stability is successful, M, is the maximal locally
controlled invariant output-nulling submanifold around
xXo-

Before proofing this theorem, we need some additional
results.

Lemma 4.1: The manifold M, is invariant against any
permutation of the coupling conditions.

Proof: Assume that two sequent coupling conditions
h*(z) and h*(z), k = k 4 1, are permuted. Therefore
M1 does not depend on the permutation. Let 31
be @ = f(z) + g(x)up_1 with up_; € RP+-1,

Aslong as LzzF =0, 28, | = L];zzlc holds, and as long as
ngf =0, Z€{€+1 = Lf*z%C holds regardless of a permutation.
Now assume that L;z¥ # 0 and ngf # 0 and denote by
B the 2 X pr_1 matrix

There are two possibilities:

1) rankB =2,

2) rankB = 1.
If the first possibility holds, the same control law can
be used to fulfill 2F; = 0 and zzk ;= 0 on Mgy

independent of the permutation. Therefore ¥ is also
independent of it. This proves the invariance of My 1.

If the second possibility holds, there exists a function
K(z) # 0, such that LjzF = K(x)ngf. Note that the
permutation of the coupling conditions is important for
the choice of the control law.

As the default sorting is used, the control law gua-
rantees that 2 ; = 0 on Mj_1. Therefore LgzFuj_1 =
—szf holds on Mj,_1, which leads to K(:E)ngfuk_l =
—L fzf Thus, the new constraint is

i i 1
E o _ g .k _k
o = L - g b
If the permuted sorting is used, the control law gua-
rantees that zﬁl = 0. Therefore ngfuk,l = —L];,zéC

holds, which leads to ngfuk,l = —K(a:)L]zzéC on Mj_1.
Hence, the new constraint is
2f = Lf-zzlC — K(x)Lf-zf.

Since K(a:)zﬁl = —zF | on Mj_1, the sorting has no
influence on the manifold M.y, but the control laws
are different on Mj_;. Though szf - K(a:)Lj-»z%C =0
on Mj.1, the control laws are the same on My, and
therefore 341 is also invariant.

As in both possibilities Y11 and My are indepen-
dent of the permutation, M, is also invariant against a
permutation of sequent coupling conditions. A permu-
tation of any two coupling conditions can be reached by
sequent permutations, hence M, is invariant against any
permutation of coupling conditions. ]

Now we are ready to proof theorem 4.1.
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Proof: (of theorem 4.1) Nijmeijer and van der Schaft
[9] have shown that the maximal locally controlled in-
variant output-nulling submanifold N* around zg is
independent of the particular choice of the control law
in the constrained dynamics algorithm. Permuting the
coupling conditions such that §; < §, < --- < §4 holds
the introduced algorithm coincides with the constrained
dynamics algorithm choosing a particular control law.
With lemma 4.1 it follows that M, = N'*. |
Now we want to draw the connection to the triangular
decoupling problem presented in [8]. Find, if possible, re-
gular local controllability distributions Ry,..., Ry, such
that

Ry CTM
1—1

Ry C [\kerh], V2<i<gq
j=1

R; +kerhl = TM,

where h denotes the pushforward of hi. R} is the
supremal regular local controllability distribution in

i—1 j
N =1 ker hZ.

Proposition 4.1: The presented algorithm terminates
successfully if and only if the triangular decoupling pro-
blem (see [8]) is locally solvable for the system (1), which
is equivalent to the requirement

Rf +kerhl =TM, V1<i<gq (10)

around xg.
Proof: Sufficiency of (10):

As shown in [8], if (10) holds, there are local coordina-
1

tes w',..., w9t each w' possibly being a vector, such
that
0
R = —_—
span { B }
N 0 0
Rq-1 =span {% %}
N 0 0

Rl =Span{w,...,%}

and

25 = hH(w?, with)
2 = R, w )
23 = hi(w', ... with)

holds, and there is a control law of the form (3) with p =
p and a partitioning of the new inputs v into ¢ disjoint

subsets I;, such that the controlled system has the form

! Pt wrth)
. — B . 4+
we f‘_l(wq,wq"‘l)
watl fq+1(wq+1)
jel g} (w?, with)
0
“1(n1 +1
> . vﬂ
JE€I\Iq—1 )
0

Together with the output controllability [8], (5) and (7)
are fulfilled.

Necessity of (10):

Consider the control law u = a1 (z)+ 31 (z)v, v € RP~1
in the first step of the algorithm. Choose a p-dimensional
function 3, (x), such that (Bl, 61) is a nonsingular p X p
matrix around xo. Modify the control law to u = aq (z) +
1 (x)01 + B1(x)v. Then the input ©; has influence on the
first output and possibly on some of the following.

Consider the control law u = as(z) + B2(z)v, v €
RP~2 in the second step of the algorithm. Choose a
(p — 1)-dimensional function [Fy(z) such that (32,62)
is a nonsingular (p — 1) x (p — 1) matrix around xo.
Modify the control law to u = ag () + fa(2) 2 4 F2(z)v.
Then the input ¥ has influence on the second output
and possibly on some of the following, but not on the
first output. Proceeding this way leads to the input ¥;
that has influence on the i-th output and possibly the
following, but not on the previous. This exactly describes
a triangular decoupled system defined in [8]. Therefore,
if the algorithm succeeds, system (1) can be triangular
decoupled and equivalently (10) holds. [ ]

Theorem 4.2: The submanifold M, is locally attracti-
ve around zq for the system (1) controlled by (9).

Proof: Let & = v1,...,& = 74 together with
Eqr1 €R", r=n—3% & be local coordinates for the
controlled system around xy. The system has the form

& A&y
a1 A&,
Eqt1 fl€y o &gr1) + 961, g1

As the roots of the polynomial P*(s) (see (8)) coincide
with the eigenvalues of the matrix Ay, with lemma 2.1
M, is a locally attractive submanifold for the controlled
system around zg. [ ]

Remark 4.2: If a systems fails to have relative degree,
hence no static decoupling is possible, a static coupling
controller can still be derived if (10) holds. This will be
exemplified in the following example.
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Fig. 1. Three heated rooms

V. EXAMPLE

We consider three heated rooms depicted in Fig. 1.
The first room can be heated directly by the input u',
the heat transfer into the room. The other two rooms are
heated via two boilers with the inputs u? and u> respec-
tively. The temperature of each room is described by z?,
22, and 23 respectively, the temperature of each boiler by
z* and x°. The heat emission of each room is considered
as a nonlinear function of the room temperature. With

T = (acl, . ,x5)T the nonlinear system has the form
—co(xt —Tp) — 1 (xt — Tp)?
—co(2? — Tp) — c1(2? — Tp)? + co(z* — 2?)
&= | —co(a®—Ty) —c1(x® —Tp)? + co(2® — 23)
—co(zt — 2?)
—ca(25 — 23)
1 0 0
0 0 O ut
+] 00 0 w? |, (11)
01 0 u’
0 0 1

where ¢, c1, and ¢y are parameters for the heat transmis-
sion, and Tp is the temperature outside of the rooms. We
will choose our parameters so that the time is measured
in hours and z* is measured in kelvin. The state manifold
is M = R?, and the coupling conditions are

y=ito) = (0% ) =0

T —x (12)

i.e. the temperature of the three rooms should be equal.
As there are three inputs, an additional control variable
Yo = 2 is introduced. With the extended output y, =
(yT,yc)T, it is easy to verify that system (11) has no
well defined relative degree and therefore can not be
decoupled with a static state feedback. But we will design
a control law fulfilling the coupling conditions (12) and
additionally manipulating the dynamics of y. arbitrarily.

In the first step of the constrained dynamics algorithm
with stability, 2§ is set to h'(z). As Ly 24 = 1 holds,
6 = 1, and M; = {CE eR® | ol —a? =O}. The first
control law fulfills zj + v{ (Lyzy + Z?:l Ly, ziad) = 0,
Ly,ziBl =0 Y1 <1 <3.Set f(z) = f(x) + g(z)asi(z)
and §(z) = g(z)p1 ().

In the third step with k& = 2, 22 is set to h%(z). As
Lgzs =0forl =1,2, 2} = szé. Since Lg,2? # 0 for
l = 1,2 and rank (24, 23, 2) = 3, the second control law
has to fulfill 23 + 1323 + v3 (L2 + Y Ly 23ab) =0,
Lg 23085 = 0 for | = 1,2. As k = ¢ = 2, the algo-
rithm terminates. The restrictions lead to the manifold
My = {z € My |22 =0, 2§ =0} identical to the ma-
nifold which can be found by the constrained dynamics
algorithm. Hence My is the maximal locally controlled
invariant output-nulling submanifold for the system (11)
with the outputs y = h(x).

The system Yo, controlled by u = ag + 81 (a2 + Saw),
can be transformed with £ = ®(z) = (2, 23, 27, 2, :175)T
and the parameters v{ = 1, v = %, and v3 = % to

_51
53
_3¢2 _ 3,568
co(To—€*) —ar (To — 54)2 +e (88 —¢Y)
w + ca(€* = €°)
(13)

The manifold My, described in the new coordinates &,
leads to

My ={6eR® € =€ =¢ =0}

With lemma 2.1 this manifold is a locally attractive
invariant submanifold for the system (13).

As the system (11) is strongly accessible, Rf = TM
[8]. The supremal controlled invariant distribution in
ker hl is

D = span

o O OO
(an)

>—~
|
o
V)

As D is also a regular controllability distribution, R =
D holds, and therefore R} + ker h? = T M. Hence the
triangular decoupling problem is solvable, what is equal
to the success of the presented algorithm.

Obviously, it is possible to manipulate the remaining
dynamics on Ms. We assumed the temperature 23 to be
the control variable y.. For the system Y5 with the input
w and the output y. an input-to-output linearization [2]
is possible as the relative degree is two. We choose the
transfer function

0.25
s2+s5+0.25

for the input-to-output behavior of the controlled system
with reference input v.. The parameters are chosen as

G(s) =
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Fig. 2. Simulation of the controlled system

co = 0.1, ¢ = 001, co = 1, and Ty = 283. The
simulation of the controlled system is shown in Fig. 2.
At the beginning, z(0) = (290,291,294,305,317)T and
ve = 293 are chosen. As depicted in Fig. 2, the coupling
outputs tend to zero within less than 5 hours with the
specified linear behavior. After 15 hours, the reference
input is changed to 295. The room temperature of the
three rooms follows this step with the same dynamics as
G(s). Note that the coupling outputs are not affected by
Ve.

VI. CONCLUSION

We presented a constructive algorithm for deriving
the maximal locally controlled invariant output-nulling
submanifold and a static state feedback that renders this
submanifold locally attractive for the controlled system.
It was shown that the assumptions of our approach are
fulfilled iff the triangular decoupling problem is solvable.
Therefore necessary and sufficient conditions for the
success of the new algorithm could be given.
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