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Abstract— In bio-inspired robotics, use of a Central Pattern
Generator (CPG) to coordinate actuation is fairly common.
The gait achieved depends on a number of CPG parameters,
which can be adjusted to control the robot’s motion. This
paper presents an output feedback motion control framework,
addressing issues encountered when dealing with this type of
control problem, including partial state measurements and
system uncertainty. Efficacy of the presented approach is
illustrated by results of numerical simulations in the case of
a swimming robot.

I. INTRODUCTION

Use of unmanned vehicles has been steadily increasing
over the past decade, due in large parts to their aptitude in
fulfilling missions proving possibly too dull, dirty, or dan-
gerous for humans to pursue. While all aspects of unmanned
systems’ technology have seen considerable improvements as
a result, aspects relating to their agility and autonomy have
received special attention. Indeed, utility of such platforms
is oftentimes in direct correlation with their capacity to
evolve in cluttered and possibly hazardous environments, for
extended periods of time.

The most direct manner in which one may enhance agility
and autonomy of a vehicle is by improving its actuation
system. In pursuing such a goal, designers have found that
they could turn to nature to find elegant solutions, leading
for example to the design of flapping flying robots ([1]),
swimming robots ([2], [3]), as well as legged ground robots
([4], [5]). A common characteristic of these systems is that
movement is generated through coordination of a number
of actuated degrees of freedom, in order to, for instance,
generate propelling body and/or appendage oscillations for
swimming robots ([3]), or walking gaits for legged robots
([6]). Such coordination can be achieved using a number
of different approaches. For example, one can rely on a
Central Pattern Generator (CPG, [7–10]), which uses coupled
nonlinear oscillators to ensure coordination between actuated
degrees of freedom. CPGs enjoy a growing popularity, and
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have been successfully applied to a wide variety of systems
([6], [11–14]).

However, while use of a CPG allows to generate move-
ment, it does not necessarily provide precise control over
the vehicle’s motion. For example, if the CPG-based limb
coordination and resulting gait for a legged robotic system
are such that the robot is set in motion, the pattern generator
does not play the role of motion controller. In particular,
while movement is produced, what precise movement is cre-
ated is a byproduct of a number of CPG-specific parameters
characterizing the particular gait followed. Thus, direction
and speed of motion will depend on some CPG parameters
and, while adjustment of these parameters allows to steer
the vehicle in real time (that is, allows to perform motion
control), that is not a role performed by the CPG itself.

In the literature, the manner in which these parameters
are adjusted to achieve motion control is not always clear.
When acknowledged, the issue is oftentimes only addressed
in vague, qualitative terms ([14]), using ad hoc, heuristic
(bio-inspired) solutions ([15]), or by resorting to somewhat
simplistic control techniques ([16]). However, for the class
of systems considered, this control problem is non-trivial.
Indeed, a system model for the type of robotic platform
under consideration is typically nonlinear, can prove fairly
complicated, and feature significant levels of uncertainty.
While the addition of a CPG does not increase uncertainty,
it does extend the system’s relative degree ([17]) in most
instances. Furthermore, it is rarely practical (if even possible)
to include sensors measuring (or allowing to reconstruct) all
state variables for a given mobile robotic platform. Hence,
control design has to account for the fact that only partial
state measurements are available, which constitutes another
complicating factor.

To address system uncertainty in the control design for
nonlinear systems, one can resort to adaptive control tech-
niques (see [18–21]). Classical direct and indirect adaptive
control techniques are commonly used to account for linearly
parameterized system uncertainty ([18–20]). If, however, the
uncertainty is structural (that is, beyond what could be
framed as linearly parametric), which is likely to be the case
for the type of robots investigated in the following, then one
typically turns to Neural Network-based (NN-based) adaptive
control techniques ([21]). While NN-based techniques allow
to handle greater system uncertainty, they suffer from the
drawback that, when replacing in the control design the
system model with the output of a neural network, one
effectively discards most available system knowledge.

Yet, while the systems we are interested in are bound to
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feature some level of uncertainty, there still remains system
knowledge available, which should prove valuable to control
design. In particular, the manner in which CPG parameters
affect motion is often qualitatively known. For illustration,
consider the example of an anguilliform swimming robot
such as that described in [3]. Its swimming gait is charac-
terized by a number of CPG parameters, such as frequency
of body undulation, noted ν, and average body curvature
α. While characterizing a precise model of the system may
prove difficult, simulation results, experiments and common
sense indicate that “the faster it wiggles, the faster it moves,”
meaning that greater values of body undulation frequency ν
lead to faster displacement, and “the more it bends, the more
it turns,” that is, non-zero values of average body curvature
α result in non-zero angular velocity in yaw.

To exploit such qualitative knowledge of the system’s
input/output behavior, while simultaneously addressing is-
sues stemming from system uncertainty and partial state
measurements, we propose the use of an output predictor-
based control technique, such as that presented in [22], [23].
More specifically, available system knowledge is used in the
construction of an output predictor, whose structure is not
constrained to be Luenberger-like ([18], [24]), meaning that
the output predictor’s form is not limited to strictly replicat-
ing that of an actual model of the system (plus correction
term). This flexibility allows to accommodate and exploit
various types of system information, including qualitative
and very general insights (“α positive means it goes right”),
or if need be, more specific and quantitative model informa-
tion. Through the use of nonlinear control techniques, one is
able to design such a predictor so that it provides stability and
convergence guarantees. More specifically, we construct it so
that, accepting the same control input as the actual system’s,
it is guaranteed to predict the (measured) system output with
arbitrary accuracy. As a result, the prediction error, which
acts as a measure of prediction quality, is ultimately bounded
([25], [26]), with arbitrarily small ultimate bound.

Once such an output predictor is created, solving the
control problem becomes straightforward. Indeed, while the
output predictor shares (by design) a number of characteris-
tics with the actual system, the predictor has the advantage
of being a precisely known virtual system, integrated locally.
Because of these features, designing a control input so as
to achieve convergence of the predictor’s output to a given
desired trajectory is a rather simple proposition. Depending
on the used predictor structure, different control techniques
may be used to derive an appropriate control action. In
the following, we use a simple nonlinear control law, guar-
anteeing convergence of the predictor’s output to a given
desired trajectory. Combining this tracking result with the
fact that, by design, the predictor’s output is guaranteed to
remain arbitrarily close to the actual system’s, we are able
to guarantee bounded-error tracking of the desired trajectory
by the actual system’s output.

This paper is structured as follows. Section II describes
in greater detail the control strategy pursued. Application
of this strategy to a class of swimming robots is presented

in Section III, including results of numerical simulations.
Section IV concludes this paper.

II. CONTROL FRAMEWORK

Consider the following general class of systems,

ẋ(t) = f(x(t), u(t), t), x(0) = x0, t > 0, (1)
y(t) = h(x(t), t), (2)

where x(t) ∈ Rn, t > 0, f(x, u, t) is locally Lipschitz in x
and piecewise continuous in t, the control input u(t) ∈ Rm

belongs to the set U of admissible control inputs, such that
for all u(t) ∈ U , equation (1) has a single solution forward
in time ([26]), and the system output y(t) ∈ Rp.

The general type of systems which we are interested in,
that is, unmanned vehicles augmented with a CPG, can be
described by a model of the form of (1)–(2). In particular,
their state vector x(t), t > 0, includes a number of state
variables characterizing position, attitude and velocity of a
given point of the robot (typically either that of its center
of gravity or of an extremity, end limb or head), state
variables characterizing body configuration, such as angle
and angular velocity of joints, and additional state variables
relating to limb motion coordination, such as CPG oscillator
states, for instance. The overall system can prove quite large
and difficult to deal with in a classical model-based control
design procedure.

In the following, we will use the approach laid out in
[22], [23] to design a control law for this type of systems.
While the approach is fairly general and able to solve the
motion control problem for a wide variety of systems, we
will, for ease of exposition, limit considerations to a subset
of all systems described by (1)–(2). In particular, we will
consider a class of systems fitting our targeted application
(swimming robot AmphiBotIII, [3]). More specifically, we
will investigate systems which are minimum phase, affine in
command, and have an external (that is, actuated) dynamics
of the form

ẋe1(t) = xe2(t), xe1(0) = xe10, t > 0, (3)
ẋe2(t) = fe(xe(t), xi(t), t) + ge(xe(t), xi(t), t)u(t),

xe2(0) = xe20, (4)
y(t) = xe1(t), (5)

where xe(t) ,
[
xTe1(t) xTe2(t)

]T ∈ R2m, t > 0,
represents the state of the system’s external dynamics, while
xi(t) ∈ Rn−2m is that of the internal dynamics ([17]). In
addition, we assume that (3)–(5) is controllable, and that the
system output y(t) is sufficiently smooth.

The control objective is to design the control input u(t),
t > 0, so that the system output y(t) follows a desired
pattern, for instance, tracking of a desired output trajectory
yd(t). To address this problem, we begin by constructing an
output predictor, which aims to capture the input/output dy-
namical behavior of (3)–(5). The following theorem provides
the tools to design one such predictor. In latter stages, we
will take advantage of this result to facilitate design of a
control law for (3)–(5).
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Theorem 2.1: Consider the external dynamics given by
(3)–(5), along with the following output predictor,

˙̂x1(t) = v(t), x̂1(0) = xe10, t > 0, (6)
v̇(t) = φ(t) + η(x̂1(t), v(t), t) + γ(y(t), v(t), t)u(t),

v(0) = 0m, (7)

where x̂1(t) ∈ Rm, t > 0, is a prediction of the actual, mea-
sured output y(t), γ(y, v, t) ∈ Rm×m is chosen nonsingular
for all y, v ∈ Rm, t > 0, and η(·) ∈ Rm is a continuous
function of its arguments, included to accommodate known
system dynamics, if available. In addition,

φ(t) , −2ζωnẏf(t) + ω2
n(y(t)− uf(t)− yf(t))− β1uf(t)

−β2u̇f(t)− Ā1p

(
Ā1pe1p(t) + e2p(t)

)
−A2pe2p(t)

+P−1
2p P1pe1p(t) + Ā1pĀ

T
1pP2pe2p(t)/2, t > 0, (8)

with A1p, A2p ∈ Rm×m chosen Hurwitz, Ā1p , A1p −
P1p/2, filter constants β1, β2, ζ, ωn > 0, prediction errors
e1p(t), e2p(t), t > 0, defined as follows,

e1p(t) , y(t)− x̂1(t), t > 0, (9)
e2p(t) , ẏf(t) + u̇f(t)− (A1p − P1p/2)e1p(t)− v(t), (10)

with matrices P1p, P2p ∈ Rm×m obtained from the Lya-
punov equations

AT
1pP1p+P1pA1p=−Q1p, A

T
2pP2p+P2pA2p=−Q2p, (11)

where Q1p, Q2p > 0. Finally, the filtered input and output
variables uf(t), yf(t), t > 0, in (8) are obtained from

üf(t)=−β1uf(t)− β2u̇f(t) + γ(y(t), v(t), t)u(t)

+η(x̂1(t), v(t), t), u̇f(0) = uf(0) = 0m, t > 0, (12)
ÿf(t)=−2ζωnẏf(t) + ω2

n(y(t)− uf(t)− yf(t)),

ẏf(0) = 0m, yf(0) = xe10.(13)

The solution v(t), t > 0, to (7) guarantees uniform
ultimate boundedness of (9)–(10).

Proof: The time derivative of the prediction error
e1p(t), t > 0, is given by

ė1p(t) = ẏ(t)− v(t), t > 0. (14)

Note that, y(t), t > 0, being sufficiently smooth, one can
design filter parameters β1, β2, ζ, ωn, such that ẏf(t) =
ẏ(t)− u̇f(t)− ε(t), with bounded higher-frequency filtering
residue ε(t). In particular, we design our filters so that there
exists ϵ ∈ R such that ∥ε(t)∥ 6

√
ϵ/2. Decomposing the

system input derivative in (14) into its filtered counterpart
and (bounded) high-frequency residue, we obtain

ė1p(t) = ẏf(t) + u̇f(t)− v(t) + ε(t)

= (A1p − P1p/2)e1p(t) + e2p(t) + ε(t), t>0. (15)

At this stage of the proceedings, it is important to highlight
the fact that, while we do not include the higher-frequency
residual term ε(t), t > 0, within the control law design
(among other reasons, to improve smoothness of control
action), we account for its influence on system stability, as
required by a rigorous stability analysis.

Next, consider the time derivative of e2p(t), t > 0, which
is of the form

ė2p(t) = ÿf(t) + üf(t)− Ā1pė1p(t)− v̇(t)

= −2ζωnẏf(t) + ω2
n(y(t)− uf(t)− yf(t))− β1uf(t)

−β2u̇f(t) + γ(y(t), v(t), t)u(t) + η(x̂1(t), v(t), t)

−Ā1p

(
Ā1pe1p(t) + e2p(t)

)
− γ(y(t), v(t), t)u(t)

−φ(t)− η(x̂1(t), v(t), t)− Ā1pε(t)

= −2ζωnẏf(t) + ω2
n(y(t)− uf(t)− yf(t))− β1uf(t)

−β2u̇f(t)− Ā1p

(
Ā1pe1p(t) + e2p(t)

)
− Ā1pε(t)

−φ(t), t > 0. (16)

Substituting (8) into (16), we obtain

ė2p(t) = −P−1
2p P1pe1p(t) + (A2p − Ā1pĀ

T
1pP2p/2)e2p(t)

−Ā1pε(t), t > 0. (17)

We then consider the following Lyapunov function candi-
date,

V (e1p, e2p) = eT1pP1pe1p + eT2pP2pe2p. (18)

The time derivative of (18) along the trajectories of (15) and
(16) is given by

V̇ (t) = −eT1p(t)Q1pe1p(t)− eT2p(t)Q2pe2p(t)

−eT1p(t)P 2
1pe1p(t)− eT2p(t)P2pĀ1pĀ

T
1pP2pe2p(t)

+2eT1p(t)P1pε(t)− 2eT2p(t)P2pĀ1pε(t), t > 0. (19)

Using the completion of the square rule, we obtain

2eT1pP1pε = −(P1pe1p − ε)T(P1pe1p − ε) + εTε

+eT1pP
2
1pe1p, (20)

−2eT2pP2pĀ1pε = −(ĀT
1pP2pe2p + ε)T(ĀT

1pP2pe2p + ε)

+eT2pP2pĀ1pĀ
T
1pP2pe2p + εTε. (21)

Substituting (20)–(21) into (19) yields

V̇ (t)6−eT1p(t)Q1pe1p(t)− eT2p(t)Q2pe2p(t) + ϵ, t>0.(22)

It follows that V̇ (t), t > 0, remains strictly negative outside
of {(e1p, e2p) : eT1pQ1pe1p + eT2pQ2pe2p 6 ϵ}, which allows
to conclude ultimate boundedness of (e1p(t), e2p(t)) ([26]).

In addition, the ultimate bound is χ ,
min(eT1pP1pe1p + eT2pP2pe2p), subject to the constraint
eT1pQ1pe1p + eT2pQ2pe2p = ϵ. To better characterize χ,
define

N ,
[
Q−1

1p P1p 0m×m

0m×m Q−1
2p P2p

]
. (23)

Using Lagrange multipliers, we obtain χ = ϵλmax(N),
where λmax(N) denotes the maximum eigenvalue of N .

What we achieve in using Theorem 2.1 is constructing a
new system (6)–(7), distinct from the original system (3)–(5),
but sharing a number of key features with it. In particular,
both systems accept the same input u(t), t > 0, and their
output are ultimately arbitrarily close to one another. In
addition, one should note that we have constructed the output
predictor (6)–(7) in such a way that it is controllable, and
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Fig. 1. Left: AmphibotIII in an eight-module configuration; right: schemat-
ics of three-module swimming configuration.

designing a control law so that x̂1(t), t > 0, tracks a given
desired output yd(t) is straightforward. More specifically,
consider the following control law,

u(t)=γ−1(y(t), v(t), t)(−φ(t)− η(x̂1(t), v(t), t) + ÿd(t)

−k1et(t)− k2ėt(t)), t>0, (24)

where et(t) , x̂1(t) − yd(t), t > 0, and k1, k2 ∈ R are
chosen so that

A ,
[

0 1
−k1 −k2

]
, (25)

is Hurwitz. Substituting (24) into (7), it directly follows that
et(t), t > 0, converges exponentially to the origin.

Combining prediction and tracking results, we obtain that
e1p(t) + et(t) = y(t) − yd(t) converges to a neighborhood
of the origin, meaning that the system output y(t) converges
to a neighborhood of the specified desired trajectory yd(t).
The advantage of designing the control law for the output
predictor, rather than for the actual system, is significant.
More specifically, while the system’s dynamics (3)–(5) may
be complicated, feature a number of unmeasured and unob-
servable state variables, and most likely be uncertain, that
is not the case for the output predictor (6)–(7). Indeed, the
predictor is not required to reproduce the system’s general
complexity to approximate its output. Furthermore, because
the predictor is constructed by the control designer, its
dynamics are precisely known (given by (7) and (8)), and
its structure can be designed so as to facilitate derivation of
a control law. In addition, it is a virtual, numerical system,
integrated locally, whose state variables are readily available
for feedback, thus elegantly circumventing the issue of output
feedback.

Remark 2.1: Note that we do not provide a closed form
for η(·) in (7). This function is included for flexibility, to
allow the control designer to take advantage of available sys-
tem information (trying to emulate fe(·) in (4) for example).
If little or no exploitable system information is available, one
may select η(x̂1(t), v(t), t) ≡ 0, t > 0.

III. APPLICATION TO SWIMMING ROBOT

To illustrate efficacy of the approach, we apply it to
address the motion control problem for a specific swimming
robot, AmphibotIII (left in Figure 1, [3]). Amphibot is a
modular robot, constituted of a number of identical modules,
linked together with actuated revolute joints, as described in
Figure 1. In the configuration considered hereafter, the robot
is constituted of a head module (in red in Figure 1, right), two
body modules (in green), and a rectangular, caudal rubber
fin. While the application of output predictor-based control
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Fig. 2. Prediction of carrier signal, measured motion direction ψv(t)
(solid), estimation ψ̂c(t) of carrier signal (dashed)

to classical unmanned vehicles is rather straightforward (see
[23]), that is not necessarily the case for this specific type
of swimming robot.

In particular, the problem to be addressed is the design of
a control law, updating appropriate CPG parameters in real
time, to ensure that the robot is moving in a desired manner.
Yet, isolating an output variable satisfactorily characterizing
the system’s motion is not straightforward. In other words,
evaluating whether or not the robot is moving in a desired
manner is not immediate. Indeed, due to the manner in which
the system propels itself (through oscillation of body angles
q1(t) and q2(t), t > 0, shown in Figure 1), all measurable
outputs show an oscillating component, whose frequency is
identical to that of body undulations. For instance, velocity
of the system’s center of mass is oscillating both in amplitude
and direction. As a result, it can prove difficult to distinguish
the contribution to a given output signal of body undulation-
induced oscillations from that of the system’s actual net
movement. To illustrate this point, consider the measured
displacement velocity direction ψv(t) shown in Figure 2
(solid). This angle can in practice be calculated based on
a linear combination of the head module’s yaw, and body
angles q1(t), q2(t), t > 0. The maneuver shown in Figure
2 corresponds to a right-hand-side turn. In the transition
from steady forward motion to right-hand-side turn, after
10 seconds, it is not immediately clear whether the robot
is actually turning or whether the decrease in ψv(t) is due
to body oscillations. Accordingly, and to better assess robot
movements, it would be desirable to estimate the underlying
carrier signal about which output variables oscillate, as it
provides a better measure of the platform’s net movement.

As previously mentioned, in practice one may reconstruct
with accuracy the direction ψv(t), t > 0, of the center of
mass’ velocity vector using a linear combination of the yaw
ψ(t), t > 0 (as described in Figure 1, measure obtained from
an electronic compass), and body angles qi(t), i = 1, 2,
(measured by encoders on the motor axes). In the following,
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in order to better characterize the system’s movement, instead
of designing an output predictor to construct an estimate
of ψv(t), we decompose this output signal into carrier
and oscillating components, ψv(t) = ψc(t) + ψo(t), and
reconstruct an estimate of the underlying carrier signal ψc(t),
using measures of ψv(t).

To that end, it is necessary to estimate the oscillating
component ψo(t), t > 0. Luckily, the frequency of ψo(t) is
known and is the same as that of the CPG. In addition, for a
given CPG amplitude, amplitude of ψo(t) remains constant
and can be fairly easily estimated. Hence, to estimate the
oscillating component of the output, one needs only to
estimate its phase, which can be achieved using a number
of different techniques, such as extremum matching (that is,
detecting signal extrema and adjusting the estimated signal’s
phase accordingly).

A. Design of Output Predictor
Ultimately, it is possible to construct an estimate ψ̂o(t),

t > 0, of the oscillating component ψo(t) so that there exists
ε1, t1 ∈ R+ such that ∥ψo(t) − ψ̂o(t)∥ 6 ε1, t > t1. We
are then able to take advantage of that estimate to construct
a predictor for ψc(t) using Theorem 2.1. The first step in
doing so consists in assessing what available knowledge
regarding the system’s dynamics is available, and exploiting
that knowledge to construct appropriate η(·) and γ(·) func-
tions. In our case, simulation and experimental results show
that for a given body curvature α(t), one obtains a given
turning speed ψ̇c(t). See for instance the simulation results
reported in Figure 2, where body curvature α(t) is kept at
25◦ for 10s 6 t 6 20s. As a result, we observe a somewhat
steady turning speed. Meaning that ψ̇c(t) ≃ gα(t), for some
g ∈ R. In addition, we observe in some circumstances a
delay between a change in α(t) and the resulting change in
turning speed ψ̇c(t). We conclude that it may be possible to
approximate the input/output relationship between α(t) and
ψc(t) by having gα(t) acting on ψ̇c(t) through, for instance,
a first order low-pass filter, with some time constant τ ∈ R.
Or, more specifically, ψ̈c(t) ≃ τ(gα(t)− ψ̇c(t)), t > 0.

Note that the above analysis is essentially qualitative.
More specifically, we have no strict equality or closed form
model but only general trends, and we do not necessarily
have values to attach to g and τ . Yet, we are able to exploit
this knowledge in our design, by adjusting the form of η(·)
and γ(·) in (7) accordingly. In particular, we construct the
following output predictor,
¨̂
ψc(t) = φ(t)− τ

˙̂
ψc(t) + τgα(t),

˙̂
ψc(0) = 0,

ψ̂c(0) = y(0)− ψ̂o(0), t > 0, (26)

ŷ(t) = ψ̂c(t) + ψ̂o(t), (27)

where ψ̂c(t) is an estimate of the carrier signal ψc(t), g, τ ∈
R, α(t) is the control input and represents average body
curvature,

φ(t) = −2ζωnẏf(t) + ω2
n(ψv(t)− ψ̂o(t)− uf(t)− yf(t))

−uf(t)− u̇f(t)− ā1
(
ā1e1p(t) + e2p(t)

)
− a2e2p(t)

+e1p(t) + ā21e2p(t)/2, t > 0, (28)
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where a1, a2 < 0, ā1 = a1 − 1/2, yf(t) is obtained from

ÿf(t)=−2ζωnẏf(t) + ω2
n(ψv(t)− ψ̂o(t)− uf(t)− yf(t)),

ẏf(0) = 0m, yf(0) = y(0)− ψ̂o(0), (29)

uf(t) is obtained from (12) with β1 = β2 = 1, and

e1p(t) , ψv(t)− ŷ(t), t > 0, (30)

e2p(t) , ẏf(t) + u̇f(t)− ā1e1p(t)− ˙̂
ψc(t). (31)

Using Theorem 2.1, we can show that the prediction errors
(30)–(31) are ultimately bounded, and thus there exists
ε2, t2 > 0 such that ∥y(t)− ŷ(t)∥ 6 ε2, t > t2.

B. Simulation Results and Tracking Performance

The dynamical model used to simulate the system’s behav-
ior relies on two different results. In particular, the robot’s
dynamics are modeled using the recursive algorithms in [27],
which are based on Newton-Euler’s equations. In addition,
the hydrodynamic forces and interactions between robot
and surrounding fluid are represented using the analytical
hydrodynamic model for three dimensional self-propelled
fish swimming introduced in [28]. A detailed presentation
of the model is beyond the scope of the present paper.

The CPG algorithm used to generate motion is detailed
within [3]. The parameters used are the following, a body
undulation frequency ν = 1 Hz, amplitude A = 35◦,
phase difference between neighbors ∆ϕ = 11π/40 radians,
amplitude convergence gain a = 100, and coupling gain
ω = 10. In addition, we used the following values for the
predictor, g = −1.15, τ = 12.5, ζ =

√
2, ωn = 4, a1 = −10,

a2 = −0.1.
Results of numerical simulations show that (26)–(27)

allows to reconstruct a close estimate of the carrier signal
ψc(t), t > 0, as seen in Figure 2. The output predictor (26)–
(27) captures the essential input/output features of the actual
system, and, as discussed in a previous section, use of this
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predictor makes the design of a control law for the system
straightforward. In particular, using (24), we select

α(t) =
˙̂
ψc(t)/g + (ψ̈d(t)− k1et(t)− k2ėt(t)− φ(t))/τg,

t > 0, (32)

where ψd(t) defines a chosen desired direction of motion
whose trajectory is commensurate with the actuation sys-
tem’s capacities, et(t) = ψ̂c(t) − ψd(t), and k1, k2 ∈ R

are chosen so that (25) is Hurwitz. The control law (32)
guarantees exponential convergence of the tracking error
et(t) to the origin ([26]), and hence of ψ̂c(t) to ψd(t).

Results of numerical simulation illustrate the algorithm’s
tracking performance. In particular, Figure 3 shows tracking
of a given ψd(t) (solid, low-pass filtered series of steps
at ±30◦, alternating every 5s). The control gains used are
k1 = 4.5, k2 = 1. Combining this tracking result with
the output prediction result previously achieved allows to
guarantee convergence of the actual, unmeasured carrier
signal ψc(t) to an ϵ-neighborhood of the desired direction
ψd(t) and positive invariance of this neighborhood ([25]);
that is, there exists t3 > 0 so that ψc(t) ∈ D, t > t3, where
D , {x(t) ∈ R : ∥ψd(t)− x(t)∥ 6 ε1 + ε2, t > 0}.

IV. CONCLUSION

The presented control framework solves the output feed-
back motion control problem for a class of uncertain un-
manned vehicles. The approach makes use of an output
predictor to address issues stemming from system uncertainty
and partial state measurements. The algorithm was applied
to control movement of a swimming robot, and results of
numerical simulations illustrate the achieved control per-
formance. Implementation on the actual robot is currently
underway, and experimental results are expected to confirm
the proposed control law’s efficacy. In addition, the proposed
control algorithm will in the future be extended to address
the position trajectory tracking problem. In particular, and
assuming that position of the system may be measured (in
a laboratory using cameras, on the field using an acoustic
positioning system), we will exploit the fact that we are able
to accurately control the speed direction to treat the system
as a unicycle, thus facilitating control design.
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[19] M. Krstić, I. Kanellakopoullos, and P. Kokotović, Nonlinear and
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