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Abstract— We study algorithms for computing optimal load
shedding schedules in the event of a cascading power system
failure. The algorithms compute an affine control at the onset of
the cascade; the control is applied during the cascade as a func-
tion of observed state parameters such as line overloads. In the
case of line outages that follow a deterministic rule, we obtain an
efficient (polynomial time) algorithm for computing an optimal
control. For the case of stochastic line outages we describe
a stochastic gradients algorithm. We present computational
experiments with a parallel implementation of our algorithms,
tested on a snapshot of the U.S. Eastern Interconnect.

I. INTRODUCTION

A. Underlying approach

In a cascading failure of a power transmission system, an
initial event that disables a possibly small subset of the grid
conspires with the laws of physics to set off a sequence of
additional outages that, in the worst case, accelerates until
a large subset of the network is inoperative, resulting in a
significant loss of served power.

The mechanics of the process can be summarized as
follows: each time a component of the system becomes
outaged, a new set of power flows takes hold in the remaining
network, following the laws of physics and automatic control
actions. Should the new flows, for example, exceed the rating
of a given line, then that line will likely become outaged in
the near future. In an adverse scenario this gives rise to a
vicious cycle which constitutes the cascade.

The complexity of the process is due to interaction be-
tween the physics of power flows, as described by an appro-
priate system of equations, and discrete (i.e., discontinuous)
changes in the topology of the network as components are
removed from operation. This interaction gives rise to non-
monotonic behavior, both from the perspective of control
actions (more of a good thing is not necessarily better)
and with respect to the severity of the initial event. Non-
monotonicity, from a mathematical perspective, is equivalent
to non-convexity, and thus, complexity. Additionally, there
is poorly understood noise inherent in the operation of the
system; for example a thermally stressed line is more likely
to ’trip’ due to many factors that are difficult to model in a
precise manner.

We consider algorithms that shed load (demand) as a
function of observations taken in real time, with the goal
of arresting the cascade with a minimum of demand lost. In
principle, one could think of algorithms in this mold that are
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available prior to the cascade; i.e. algorithms independent of
the nature of the cascade. However, there is an exponential
amount of variability in the structure of the initial event
that sets-off the cascade, and in our simulations it is clear
that the nature of the cascade can depend strongly on the
initial event. Instead, we focus on control algorithms that
are computed soon after the onset of the cascade, and which
therefore benefit from the knowledge available at that point.
We assume an initially slow-moving cascade so that at the
start of the process there is sufficient time (e.g., minutes) to
compute an appropriate control algorithm; once computed,
the control will be applied as the cascade unfolds.

In devising a load-shedding schedule to respond to a
potential cascade, one must decide when, where and by how
much demand is to be shed. Our method can be viewed
as a data-driven approach for computing such actions –it is
data-driven because it relies on the knowledge of the initial
event. At the same time, the efficiency of the algorithms
makes it potentially feasible to investigate common patterns
of desirable control actions that could be directly applied in
the event of a contingency.

B. Models for power flows, cascades and controls.

The behavior of power grids is commonly modeled using
systems of nonlinear, nonconvex equations that describe the
physics of AC power flows [3]. Under normal operating
conditions, a reasonably close solution to the system can
be produced; then Newton-Raphson methods will converge
to a useful solution in few iterations.

Under extreme operating conditions, Newton-Raphson
may fail to converge. Additionally, even though Newton-
Raphson is relatively fast, it may be too slow when a large
volume of power flow computations is required. For these
and other reasons one often relies on the linearized or DC,
power flow approximation, which is solved far more quickly
and proves accurate under good operating conditions.

In the linearized approximation we are given a directed
graph G with n nodes and m arcs (corresponding, respec-
tively, to buses and lines). In addition
• For each arc j we are given two positive quantities: its

flow limit uj and its reactance xj .
• We are given a supply-demand vector β ∈ Rn with the

following interpretation. For a node i, if βi > 0 then i
is a generator (a source node) while if βi < 0 then i
is a load (a demand node) and in that case −βi is the
demand at i. The condition

∑
i βi = 0 is assumed to

hold. For a generator node i, we indicate by the constant
s̃i the maximum supply of i. We denote by G denote
the set of generators and by D the set of demand nodes.
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The linearized power flow problem specifies a variable fij
associated with each arc j (active power flow) and a variable
φi associated with each bus i (phase angle). The problem
consists in finding a solution to the system of equations:

Nf = β, NTφ−Xf = 0, (1)

where N denotes the node-arc incidence matrix of G [1] and
X = diag{xij}.

Remark 1.1: It can easily be shown that system (1) is
feasible if and only if

∑
i∈K βi = 0 for each component

(“island”) K of G, and in that case the solution is unique in
the f variables.

Template 1.2, based on [5], [6], [7], is our cascade model.
It focuses on line faults, however the template and our
algorithms below are easily modified to accommodate wider
types of faults.

Template 1.2: GENERIC CASCADE TEMPLATE
Input: a power grid with graph G (post-initiating
event). Set G1 = G.
For r = 1, 2, . . . Do

(comment: round r of the cascade)
1. Set fr = vector of power flows in Gr.
2. Set Or = set of lines of Gr that become outaged

in round r.
3. Set Gr+1 = Gr −Or. Adjust loads and

generation in Gr.

The adjustment in Step 3 handles the case of islanding,
where the line outages create isolated components of the
network. A newly created island might have an excess of
generation over demand – in such a case we assume that the
excess is removed by reducing the output of all generators
in that island in equal amounts. The case of excess demand
is handled similarly.

Step 2 requires a specific line outage model. For each line
j, let 0 ≤ αj ≤ 1 be a fixed parameter, and for each line j
and each round r define f̃rj by

f̃rj = αj |frj | + (1− αj)f̃r−1
j , (2)

with f̃0
j set to the absolute value of the flow on j prior to the

incident that starts the cascade. The f̃rj are moving averages
of the (absolute value) of the flow on line j; parameter αj
serves to encode “memory” (for example, so as to model
thermal effects). When αj = 1 for all j the system is
memoryless. We use the deterministic outage rule

line j becomes outaged if f̃rj > uj . (3)

This rule can lead to non-smooth behavior; later we will de-
scribe a (smoother) randomized rule. To incorporate control
we modify Template 1.2 as follows:

II. ADAPTIVE CONTROL

Template 2.1: CASCADE CONTROL

Input: a power grid with graph G, and integers
1 ≤ rmin < R. Set G1 = G.

Step 0. Compute control algorithm.

For r = 1, 2, . . . , R− 1, Do
(comment: controlled round r of the cascade)
1. Set fr = vector of power flows in Gr.
2. Obtain grid measurements.
3. If r ≥ rmin, apply control.
4. Set gr = vector of resulting power flows in Gr.
5. Set Or = set of lines of Gr that become

outaged in round r.
6. Set Gr+1 = Gr −Or. Adjust loads and

generation in Gr.

Termination (round R). If any island of GR

has line overloads, proportionally shed demand in
that island until all line overloads are eliminated.
Thus, for any island K of GR, set ΨR

K
.=

min
{

1 , maxj∈K{|fRj |/uj}
}

. If ΨR
K > 1, then any

bus v of K resets its demand to dRv /Ψ
R
K .

The termination condition is specified to ensure that the
cascade is stopped at the end of the planning horizon. With
rmin > 1 we model delays in implementation of the control.

Next we describe the general form of our control. We
use an affine law, described by a triple of values (crv, b

r
v, s

r
v)

(computed in Step 0 of Template 2.1) for each round r and
load bus v. At round r, let drv denote the current demand at
v, and let κrv be the maximum line overload in the island
currently containing v (these are the quantities observed in
Step 2). Then, in Step 3, bus v resets its demand to:

min{1, [brv + srv(c
r
v − κrv)]+} drv, if κrv > crv (4)

drv, otherwise. (5)

In equation (4), [x]+ denotes max{x, 0}. To understand this
rule, consider the case where, for all v, brv = crv = 1 and srv >
0. Then if κrv > 1 we shed demand at v by a multiplicative
factor proportional to the excess overload κrv − 1, while if
κrv ≤ 1 we do not shed demand at v.

In this paper we consider the computation of a control of
type (4)-(5) to be applied as in Template 2.1, with the objec-
tive of maximizing the demand being served at termination of
the cascade. We assume an initially slow moving cascade so
that there is enough time to perform the computation in Step
0 (which, as we discuss below, requires minutes of wall-clock
time in an appropriate implementation). We also assume that
the κrv can be observed in Step 2. In our discussions and
implementations, we will also assume that the number of
rounds, R, is relatively small. This is done so as to produce
controls with simple structure which do not require frequent
application.
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By construction, the control parameters depend on the
cascade round and on the location within the grid; our
approach can therefore be viewed as a distributed control.
Nevertheless, as we will see below, in important special cases
the optimal control has global “structure”.

See [2] for a different approach to control.

III. THE OPTIMAL SCALING PROBLEM

Consider the special case of our control algorithm where
(i) We use island-wise control. That is to say, for each

round r for each island K of Gr, and for each bus
v ∈ K, (crv, b

r
v, s

r
v) equals a fixed triple (crK , b

r
K , s

r
K).

(ii) We use the memoryless version of line outage rule (3),
i.e. line j becomes outaged in round r if frj > uj .

Rule (i) is of interest because of the resulting simplicity
of the control. In fact, without loss of generality we may
assume that for each round r there is a constant sr with
srJ = sr for every island J of Gr. This is relevant because the
“s” parameter in our controls are clearly of key importance
since they define the system response to increasingly large
overloads; the sequence s1, s2, . . . , sR−1 reflects the timing
of significant control. At the same time, the load shedding
formula (4) specifies different scaling multipliers for different
islands, according to the magnitudes of their respective
maximum line overloads (and thus, the relative severity of
the cascade in each different island).

We call this special case of the control computation the
optimal scaling problem. Note that if 1 ≤ r < R and K is
a component of Gr under an island-wise control, then (at
round r) we will scale all demands in K by the common
multiplier 0 ≤ λrK ≤ 1 defined by

λrK
.= min{1, [brK + srK(crK − κrK)]+}. (6)

Conversely, given a value 0 ≤ λrK ≤ 1 and κrK it is
simple to find a triple (crK , b

r
K , s

r
K) satisfying (6). Thus the

optimal control problem is equivalently stated in terms of
the parameters λrK . At this point a remark is necessary.

Remark 3.1: Even though in principle the number of is-
lands at any round can be exponentially large, when defining
a particular control only a O(Rn) islands need be considered.
This follows because at the start of round 1 the islands are
given; and the control parameters λ1

K need only be stated for
those islands. After applying the control the resulting set of
islands will be unique (because of our deterministic outage
rule). Thus the set of islands in round 2 will be unique. The
result follows by induction.

In what follows we prove:

Theorem 3.2: The optimal scaling problem can be solved
in time O

(
mR

(R−1) !

)
.

Remark 3.3: As before, m indicates the number of lines.
As argued above we would not use a large value for R;
furthermore in practical testing of the algorithm the worst-
case complexity bound in Theorem 3.2 is not attained and
the algorithm proves very efficient even on large-scale grids.
We suspect that a tighter bound may be possible.

In preparation for the proof of this result, we make some
observations.

Notation 3.4: Let G be a graph, and let µ be a supply-
demand vector on G. We denote by f̂(G,µ) the unique,
feasible flow vector on G when µ is the supply-demand
vector (see Remark 1.1).
In what follows we assume that we have a given supply-
demand vector β. Let R be the number of rounds for the
cascade. Our problem is to compute a control that maximizes
the total demand satisfied after R rounds, assuming that at
the start of round 1, β is the supply-demand vector. We will
solve this as a special case of a family of problems.

Definition 3.5: For t ≥ 0 real, denote by Θ(R)
G (t|β) the

final total demand resulting from applying an optimal control
in an R-round cascade on graph G, where the initial supply-
demand vector is tβ. We refer to this parameter as the yield.

Remark 3.6: Let α be a supply-demand vector on graph
G. Let t ≥ 0. Then (refer to notation 3.4) f̂(G, tα) =
tf̂(G,α).

Lemma 3.7: Let µ be a supply-demand vector. Suppose G
is connected. Then Θ(1)

G (t|µ) is a nondecreasing piecewise-
linear function of t with two pieces, the second one of which
has zero slope.

Proof. Note that since R = 1, only the termination step
in algorithm (2.1) will be executed. Further, writing f̂ =
f̂(G1, α), when running (2.1) starting with the initial supply-
demand vector tµ, we will have f1 = tf̂ in Step 1, and
writing ψ = maxj |f̂j |/uj , we have that maxj |f1

j |/uj =
tψ. Denoting by D̃ the sum of demands implied by µ we
have as per our cascade termination criterion that the final
total demand at the end of R = 1 rounds will equal

tD̃, if t ≤ 1/ψ, and (7)
t

tψ
D̃ =

1
ψ
D̃, otherwise. (8)

Now we turn to the general case with R > 1. We assume,
without loss of generality, that G1 is connected. Let f̂ =
f̂(G1, β).

Definition 3.8: A critical point is a real γ > 0, such that
for some line j, γf̂j = uj .

Recall that we assume uj > 0 for all j; thus let 0 < γ1 <
γ2 < . . . < γp be the set of all distinct critical points. Here
0 ≤ p ≤ m. Write γ0 = 0 and γp+1 = +∞.

Definition 3.9: For 1 ≤ i ≤ p let
F i = {j ∈ A : γi|f̂j | = uj}.

Now assume that the initial supply-demand vector is tβ with
t > 0 and let 0 < λ1 ≤ 1 be the optimal multiplier used to
scale demands in round 1. Write

q = q(t) = argmax{h : γh < t}. (9)

Thus, t ≤ γq+1, and so λ1t ≤ γq+1. We stress that these
relationships remain valid in the boundary cases q = 0 and
q = p.

Notation 3.10: Let index i be such that λ1t ∈ (γi−1, γi].
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Note that in Step 3 of round 1 of algorithm (2.1) we will scale
all demands by λ1, and since we assume G1 is connected,
in Step 4 we will also scale all supplies by λ1. Thus, for any
h ≤ i−1, and any line j ∈ Fh, we have that after Step 4 the
absolute value of the flow on j is λ1 t |f̂j | > γh |f̂j | = uj ,
and consequently j becomes outaged in round 1. On the other
hand, for any line j /∈ ∪h≤i−1F

h, the absolute value of the
flow on j immediately after Step 4 is λ1 t |f̂j | ≤ γi |f̂j | ≤ uj ,
and so j does not become outaged in round 1. In summary,
the set of outaged lines is ∪h≤i−1F

h; in other words, we
obtain the same network G2 = G1 − ∪i−1

h=1F
h for every t

with λ1t ∈ (γi−1, γi].

Notation 3.11: For an index j, write K(j) = set of com-
ponents of G1 − ∪jh=1F

h.

Let H ∈ K(i − 1). Then, prior to Step 6 of round 1, the
supply-demand vector for H is precisely the restriction of
λ1tβ to the buses of H , and when we adjust supplies and
demands in Step 6, we will proceed as follows

• if
∑
s∈D∩H(−λ1tβs) >

∑
s∈G∩H(λ1tβs) then for

each demand bus s ∈ D ∩H we will reset its demand
to −rλ1tβs, where

r =
∑
s∈G∩H(λ1tβs)∑
s∈D∩H(−λ1tβs)

= −
∑
s∈G∩H(βs)∑
s∈D∩H(βs)

,

and we will leave all supplies in H unchanged.
• likewise, if

∑
s∈D∩H(−tλ1βs) <

∑
s∈G∩H(λ1tβs)

then the supply at each bus s ∈ G ∩ H will be reset
to rλ1tβs, where

r = −
∑
s∈D∩H(βs)∑
s∈G∩H(βs)

,

but we will leave all demands in H unchanged.

Note that in either case, in round 2 component H will have
a supply-demand vector of the form λ1tβH , where βH is
a supply-demand vector which is independent of t. Thus an
optimal control on H , on rounds 2, . . . , R, will yield a final
total demand

Θ(R−1)
H (λ1t|β̂H), (10)

which, inductively, is a nondecreasing function of λ1t, and
therefore is largest when λ1 = min

{
1, γi

t

}
.

Case 1. Suppose i ≤ q. As noted above, by definition (9)
of q we have that γi ≤ γq < t. Thus, the expression in (10)
is maximized when λ1 = γi

t , and we obtain final (R-round)
demand equal to

Ti
.=

∑
H∈K(i−1)

Θ(R−1)
H (γi|β̂H), (11)

which is independent of t.
Case 2. Suppose instead that q < i, and so i = q + 1 by
definition of q and λ1 ≤ 1. Thus (10) is maximized by setting
λ1 = 1. Writing

SH(t) .= Θ(R−1)
H (t|β̂H),

The final demand equals
∑
H∈K(q) SH(t).

In summary,

Θ(R)
G (t|β̂) = max

 ∑
H∈K(q)

SH(t) , max
1≤i≤q

Ti

 .(12)

As a corollary, we can prove our key result.

Theorem 3.12: (i) Θ(R)
G (t|β̂) is nondecreasing, piecewise-

linear, with at most

mR−1

(R− 1)!
+ O

(
mmax{1,R−2}

)
breakpoints.

Proof. (i) If ta < tb clearly Θ(R)
G (ta|β̂) ≤ Θ(R)

G (tb|β̂), since
under the supply-demand vector tbβ̂ we can shed demand
to replicate the optimal control strategy for taβ̂. So ΘR is
nondecreasing.

We analyze the number of breakpoints using induction on
R, starting from Lemma 3.7. Assume first that R = 2. Note
that ∪ph=1F

h is the set of all lines (here recall that p is
the number of distinct critical values). Consider the effect
of removing from the network, each line in F 1, followed
by each line from F 2, and so on, until removing all lines.
In this process we will first produce all members of K(1),
and then all members of K(2), and so on until we obtain all
members of K(p), which are the individual buses.

Prior to its removal, each line j has both ends in the same
component K; the removal either creates two new compo-
nents (if j is a bridge of K) or creates a new component
(which differs from K in that line j is not included). Thus
the removal process can be represented as a binary tree
whose vertices correspond to ∪ph=1K(h) and whose leaves
correspond to the n buses of G1. Since in a binary tree the
number of degree three vertices is less than the number of
leaves we conclude that | ∪ph=1 K(h)| ≤ m+ 2n = O(m).

Furthermore, let H be a component in ∪ph=1K(h). Define
h = min{j : H ∈ K(j)} and h′ = max{j : H ∈ K(j)}.
Note that H will appear in the first term of (12) precisely
when γh < t ≤ γh′ ; moreover the structure of Θ(1)

established in Lemma 3.7 shows that Θ(1)
H will contribute

at most one breakpoint to Θ(R)
G in this range for t. The

maximum in (12) shows that for each q, one additional new
breakpoint is created. Thus, in total, Θ(R)

G has at most O(m)
breakpoints and the result is verified for R = 2.

In what follows we assume that R ≥ 3. Suppose q = 0
and thus i = 1. Since λ1t < γ1, it follows that no
lines are outaged in round 1, i.e. G2 = G1 = G, and
in subsequent rounds no line will be overloaded. Thus, in
this case, Θ(R)

G (t|β̂) = tD̃ and there are no breakpoints.
For q > 0 we proceed using (12). For each H ∈ K(q),
inductively, Θ(R−1)

H has at most

mR−2
H

(R− 2)!
+ cm

max{1,R−3}
H
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breakpoints, where mH denotes the number of lines in H
and c ≥ 0 is a constant. So (12) implies that subject to
i = q + 1, the number of breakpoints in ΘR

G is at most

1 +
∑

H∈K(q)

[
mR−2
H

(R− 2)!
+ cm

max{1,R−3}
H

]

≤ 1 +
(m − q)R−2

(R− 2)!
+ c (m − q )max{1,R−3}

since
(
∪qh=1F

h
)
∩ H = ∅ for each H ∈ K(q). Summing

this expression over all 1 ≤ q ≤ p, we obtain that the total
number of breakpoints is at most

p +
p∑
q=1

[
(m − q)R−2

(R− 2)!
+ c (m − q)max{1,R−3}

]

≤ (m − 1)R−1

(R− 1)!
+ O((m− 1)R−2)

+ m + c

m∑
q=1

(m − q)max{1,R−3}
. (13)

For R = 3 the last three terms in (13) are O(m) and we are
done as desired. For R > 3, the last term in (13) equals

c
(m − 1)R−2

R− 2
+ O(mR−3), (14)

and again we conclude as desired for c large enough.

It follows from the details of the proof above that when
applying an optimal control, at least one line becomes fully
loaded at each round. Such a strategy is likely non-robust.
We address this issue below using a stochastic line outage
rule and computing an appropriate control.

Despite the apparent shortcomings of the method, and
of the simplicity of the proposed control, the ability to
compute a global optimum in polynomial time (for fixed
R) is a significant asset, especially as a starting point for
the simulation-based methods for the general problem that
are proposed below. Furthermore, we suspect that the optimal
scaling problem can be formulated as single a linear program,
in which case it may prove practicable to study robust
versions of the problem.

IV. FIRST-ORDER METHODS FOR THE GENERAL CASE

Given a control vector (c, b, s), given by triples
(crv, b

r
v, s

r
v), for each demand bus v and each round r,

and using the control law given by eqs (4)-(5), denote by
Θ̃R(c, b, s) the final demand at termination of the R-round
cascade controlled by (c, b, s). Our goal is to maximize
Θ̃R(c, b, s) over all controls. This is a nonconcave, in fact
very combinatorial, maximization problem (see [4], [11]); it
is very large (e.g. if R = 10 the (c, b, s) vector has more than
180000 variables in the case of the Eastern Interconnect).
Toward this goal we will use an algorithm based on the
following template:

Procedure 4.1: First-order algorithm
Input: a control vector (c, b, s).
For k = 1, 2, . . . Do

1. Estimate g = ∇Θ̃R(c, b, s).
2. Choose “step-size” µ ≥ 0 and update control to

(c, b, s) + µ(gc, gb, gs).
3. If µ is small enough, stop.

Procedure 4.1, a common first-order (steepest ascent)
method, should be viewed as a local search method with
which to explore the neighborhood of a solution. In our
setting the procedure could prove expensive, since each
evaluation of Θ̃R (including in the estimation of ∇Θ̃R

through finite differences) requires a cascade simulation,
each round of which requires two power flow computations
in our setup.

A. The stochastic setting

We seek robust algorithms that hedge against the inherent
noise in a cascade process as well as the incompleteness of
the grid model. Specifically,
(1) The deterministic line outage rule (3) is unsatisfactory

in that the outage of a line could be caused by a large
number of complex processes (such as tree contacts)
that are correlated with flow approaching and exceeding
the flow limit, but would be extremely difficult to model
from a methodological perspective, let alone calibrate
with real data. In fact, exhaustively cataloguing all
reasons for line outages is probably impossible.

(2) Further, our control rule assumes real-time observations
of data (line overloads). Potentially such observations
will include errors, or ’noise’. We need algorithms that
are robust in the presence of errors.

In this paper we focus on (1) (though (2) is similarly
handled). A simple expedient is to replace our deterministic
line outage rule (3) with one incorporating stochastics. Recall
that as per “memory” equation (2), for a line j, f̃rj is the
moving average at round r of |fj |.

Rule 4.2: STOCHASTIC LINE OUTAGE
Parameters: 0 ≤ εr ≤ 1 for each round r.
Notation: refer to Template 1.2 and equation (2).
Application: For a line j in Gr:

if (1 + εr)uj ≤ f̃rj , then j outages,

if (1− εr)uj < f̃rj < (1 + εr)uj ,

then j outages with probability 1
2 , (15)

if f̃rj ≤ (1− εr)uj , thenj does not outage.

The parameters εr should be small, though not necessarily
very small (see the experiments below) – the goal here is
to smooth out the behavior obtained in the deterministic
case. Using rule 4.2 together with Template 1.2 we obtain
a stochastic cascade model and Θ̃R(c, b, s) is a random
variable. In this case Procedure 4.1 can be recast so as to
become a stochastic gradients method (see [12], [10]).
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Rule 4.2 is what we have implemented in our experiments.
However, the expectation EΘ̃R(c, b, s) under this rule is not
a differentiable function of (c, b, s), which is a requirement
in order to obtain a well-founded algorithm. We outline
a theoretically correct version of the stochastic gradients
method next.

First, rule 4.2 clearly leads to non-smooth behavior be-
cause of the abrupt change between stochastic and deter-
ministic regimes; in fact, even though it is preferable over a
purely deterministic rule, it still leads to numerically unstable
behavior since it interacts with round-off errors on the part
of the solvers. To bypass these issues, we modify the line
outage model so that the probability of a line will outage is
always strictly positive and strictly smaller than 1. To this
effect consider a function

F : R+ → [0, 1), s.t. F (0) = 0 and F (x)→ 1 as x→ +∞,

where the convergence is very rapid. An example is F (x) =
1− e−Mx, for large M > 0. Likewise, consider a function

G : [0, 1] → [0, 1), s.t. G(0) = 1 and G(x)→ 0 as x→ 1,

and again with rapid convergence. An example is G(x) =
e−Mx for large M > 0. We can now modify rule 4.2 as
follows: at round r, and given a tolerance 0 ≥ εr < 1, line
j is outaged with probability

1
2
G

(
1−

f̃rj
(1− εr)uj

)
, if f̃rj ≤ (1− εr)uj

1
2
, if (1− εr)uj < f̃rj < uj(1 + εr)

1
2

(
1 + F

(
f̃rj

(1 + εr)uj
− 1

))
, if (1 + εr)uj ≤ f̃rj .

In other words, if f̃rj > uj , the outage probability is very
large, but is bounded strictly away from 1, and if f̃rj < (1−
εr)uj the outage probability is very small but remains strictly
positive. By choosing F and G appropriately we obtain an
outage model that is arbitrarily close to rule (4.2), but has
smooth (or at least differentiable behavior). We call this the
fully stochastic line outage rule.

In our limited experiments, the fully stochastic line outage
rule produces smoother behavior (note that this is smoothness
in average, and the speed of convergence to average behavior
is adversely affected with, for example, how rapidly F (x)
converges to 1 as x ← +∞). From a modeling perspective
the rule is also useful in that it allows us to claim that at
some level we are handling the incompleteness of our grid
models. Thus, the rule is desirable and useful. Nevertheless,
it turns out that from a theoretical perspective, the rule still
does not guarantee differentiability of EΘ̃R(c, b, s).

The key issue here concerns our control law (4)-(5),
and in particular how it interacts with the demand/supply
adjustment in Step 3 of our generic cascade template (1.2)
(or in Step 6 of the cascade control template (2.1)). This is
the critical difficulty, and we proceed by adding a small,

random amount of demand to be shed: in round r we scale
the demand at bus v by a factor of (1 − δrv) where δrv is
a uniformly distributed random variable in the range (0, δ̄)
and δ̄ is a very small, fixed value (this is done in addition to
any control-dictated shedding, even if it is zero). We refer to
this procedure as randomized load shedding. We can prove:

Theorem 4.3: Using the fully stochastic line outage rule,
and randomized load shedding, EΘ̃R is a differentiable
function of the control parameters.

One can sketch a proof of this result by noting that with
probability 1, ΘR is a differentiable function of the control
parameters; this is done by induction on the rounds. We will
skip details for brevity.

The computation of the (stochastic) gradient of the
yield function at a given control vector (c̄, b̄, s̄) can now
be described. First, we sample a random cascade under
the control (c̄, b̄, s̄); modeling shed demand and outaged
lines using the smoothed control and rules outlined above.
This produces a particular sequence of lines that become
outaged; i.e. at round r a certain set Sr of lines is outaged,
for r = 1, 2, . . . , R − 1. Next, we compute the change in
yield that results when we perturb the control by a vector
(εc, εb, εs) with infinitesimally small entries, while still
assuming that set Sr is the set of lines outaged at round r,
for each r; this computation gives us the stochastic gradient.
We then proceed as in Procedure (4.1), where the line
search (Step 2) is done to maximize the expectation of Θ̃R.

We stress that we have not yet implemented the theo-
retically correct version of the stochastic gradients method;
however we expect that using the original control law (4)-(5)
as well as outage rule 4.2 yields reasonably close behavior.

V. EXPERIMENTS

For our experiments we used a snapshot of the U.S. East-
ern Interconnect, with approximately 15000 buses, 23000
lines, 2000 generators and 6000 load buses. The snapshot in-
cludes generator output levels, demands, and line parameters.
We developed a parallel implementation of our algorithms,
using three eight-core i7 machines with 48GB of RAM each.
The basic task that is run in parallel are cascade simulations;
communication was performed using Unix sockets; linear
system solves were done using Cplex 12.0 [8] and Gurobi
4.0 [9], both with all presolve options turned off.

In all the experiments the same approach was employed:
first, we interdicted the grid according to a synthetic contin-
gency, then we computed our affine control, and finally we
studied the behavior of this control. To obtain contingencies
we removed a set of K random lines from the grid, where
K is a parameter. The lines were chosen so as to avoid a
spanning tree of the grid (thus guaranteeing connectedness
of the residual network) and giving priority to high power
flow lines.

We ran our algorithm by first solving the optimal scaling
problem given in Section III, which requires α = 1 in the
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memory rule (2, and then switching to Procedure 4.1 (using
the correct value for α). Additional heuristics were employed
prior to the general first-order search, in particular segment-
ing demand buses into demand quantiles, and insisting that
the control parameters be constant in each quantile.

Our first set of experiments, shown in Table I, concern
cascades with R = 4 rounds. In this table and others,
’wallclock’ indicates the total observed running time for the
algorithm. Table IV

TABLE I
Performance of algorithm on 4-round cascades, Eastern Interconnect

K yield, yield, wallclock
no control control (sec)

1 90.04 95.03 268
2 1.25 50.13 174
5 32.94 81.05 214
10 2.02 36.97 194
20 1.64 27.84 220
50 0.83 16.96 477

Note that in the case K = 1 the interdiction has limited
effect, but even so the control is able to recover additional
demand. In the case K = 5 the demand loss in the no-control
case is substantial, but so is the benefit of the control. Finally,
in the cases K = 2, 10, 20, 50 the network collapses but the
control sill recovers a significant amount of demand. More
experiments of this type will be forthcoming.

In the next set of experiments, given in Table II, we use
the case K = 50 in Table I to investigate in more detail the
behavior of the algorithm as R increases. We used α = 0.5
for all these experiments. Note that keeping α constant but
increasing R effectively considers cascades that take longer
from a ’real time’ perspective, thereby giving more power
to an agent applying control. If, instead, if we were to
increase R while also decreasing α, thus giving more weight
to ’history’, we would be able to model cascades that last
for a fixed period of time, but where the individual rounds
encompass shorter spans of time.

TABLE II
Impact of increasing number of rounds on K = 50 case from Table I

R yield yield wallclock grad
no control gradient grid steps

5 4.13 31.86 1340 7
6 2.02 25.86 657 6
7 2.25 25.98 434 3
8 0.78 46.97 3151 10

We see that as expected the yield produced by our algo-
rithm does improve as the number of rounds increases. And
in the case of this family of cascades, terminating the cascade
early (with the termination step in the last round of Template
2.1) in the no-control case worsens the outcome. This point
is further explored in Table III, where the columns labeled
“Ck”, for k = 5, . . . , 8 represent the controls in Table II.
We see that, indeed, the cascade becomes worse in the no
control case as the number of rounds increase.

The next set of experiments concern the timing of control.
We considered a case with K = 2 random lines removed

TABLE III
Max line overload at end of each round for K = 50 case from Table II

Control
C5 C6 C7 C8 No control

round 1 6.47 1.83 2.22 3.79 177.83
2 14.12 1.83 1.57 33.49 122.06
3 36.79 1.23 1.30 6.90 114.45
4 1.72 1.14 2.26 6.70 22.47
5 0.99 1.18 59.33 45.43
6 1.08 1.98 40.33
7 1.18 114.90

as above, and R = 20 rounds. The random contingency
we generated is severe; at the start of round 1, in fact,
the maximum line overload is 40.96, indicating that, likely,
several lines with low flow limits are overloaded. If no
control is applied, at termination the yield is 2.47%. We
computed the best control where (i) crv = brv = 1 for all v and
r, (ii) srv = 0 for all v and 10 < r (thus, no control is applied
after round 10), and (iii) for each 1 ≤ r ≤ 10, either srv = s
(a fixed constant, to be determined) for all v, or srv = 0 for
all v. This control was computed using (parallelized) grid-
search; though we point out that the optimal scaling problem
computes a good approximation to the constant s.

Our control, which we denote by c20,
only applies control on rounds 2 and 7. In fact, in this
cascade, as the total number of rounds is changed,
rounds 2, 7 and sometimes 5 always prove optimal, and
round 1 is always a round in which not to apply control.
To put it simply, in this cascade delaying action appears
optimal – in our experiments this has emerged as a frequent
pattern in severe cascades.

In Table IV, where “r” indicates round and, for each round,

TABLE IV
Cascade evolutions

No control c20
r κ O I Y κ O I Y

1 40.96 86 1 100 40.96 86 1 100
2 8.60 187 8 99 8.60 165 8 96
3 55.51 365 20 98 61.74 303 17 96
4 67.14 481 70 95 66.63 408 44 94
5 94.61 692 149 93 131.08 492 94 93
6 115.53 403 220 91 112.58 416 146 90
7 66.12 336 333 89 99.62 326 191 78
8 47.83 247 414 87 60.95 227 248 77
9 7.16 160 457 85 32.50 72 279 76

10 7.06 245 542 84 9.50 43 292 76
11 37.55 195 606 83 45.28 35 303 76
12 13.04 98 646 82 11.60 10 306 76
13 22.61 128 688 82 3.88 6 310 75
14 10.64 107 715 81 1.46 4 312 75
15 5.03 64 721 81 1.34 1 312 75
16 84.67 72 743 80 1.13 1 312 75
17 32.15 52 756 80 1.38 2 312 75
18 6.50 43 763 80 1.26 1 312 75
19 9.97 85 812 80 0.99 0 312 75
20 32.34 39 812 2 0.99 0 312 75

“κ” indicates maximum line overload at the start of the
round, “O” is the number of lines outaged during the round,
“I” is the number of islands at the end of the round and “Y”
is yield. We see that even though c20 last applies control in
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round 7, the severity of the cascade quickly dwindles after
round 12 – essentially the control provides a “look ahead”
capability.

Note the rapid decrease of yield from 80% to 2% in the
no-control case. This is due to the termination feature in our
cascades that requires all line overloads to be eliminated by
the end of the last round; since the no-control cascade has
very high maximum overload (32.34), at the start of round
20, the termination rule forces a drastic reduction in yield.
Also, the combination of comparatively high yield (up to
round 4), high number of line outages, large line overloads
and large amount of islanding suggest the possibility that
many of the outages involve unimportant lines, and likewise
with many of the islands (though of course a 22% yield
loss should indicate a severe contingency). Altogether, one
wonders if somehow the no-control option might be attractive
if enough time (i.e., rounds) were available.

TABLE V
Further evolution of no-control cascade from Table IV

r 25 28 29 30 31 32 33 34
O 21.63 2.00 5.70 2.50 2.38 1.35 1.07 0.99
Y 79 78 78 78 78 78 78 78

Table V displays the outcome of adding rounds to the
cascade. We see that the no-control approach finally yields
stability by round 34, attaining yield 78%. This is slightly
better (but very close) to what c20 obtained in 20 rounds
(and, furthermore, control action under c20 was restricted
to rounds 1-10). Nevertheless, the no-control approach ex-
periences significant line overloads as late as round 32. By
maintaining high overloads into very late rounds, the no-
control strategy becomes more exposed to the unavoidable
noise that should be taken into account when modeling
cascades, which we have up to now ignored. In the following
tests we model noise by means of the stochastic fault outage
rule (4.2), and set

εr = 0.01 + 0.05 ∗ br/10c. (16)

Note that under this rule, until r = 20 a line will experience
random behavior only if the flow on that line is within 6%
of the flow limit. To investigate the impact of this noise
model, we consider controls where the termination takes
place before round 20. For T = 10, 15, 25, we compute
an optimal control required to terminate by round T , and
otherwise subject to rules (i)-(iii), that is crv = brv = 1 for
all v and r, srv = 0 for all v and 10 < r, and for each
1 ≤ r ≤ 10, either srv = 0.005 for all v, or srv = 0 for all v.
We name these controls c10, c15 and c25, respectively.

Table VI presents the comparisons between all the options
we have considered. In this table, “DetY” is the yield in the
deterministic case (εr = 0 for all r), “MaxY” and “MinY”
are the maximum and minimum yields in all the simulations
(resp.), “AveY” is the average yield and “StddY” is the
standard deviation of yield.

We can see that under the no control option the average
yield is more two standard deviations lower than the average

TABLE VI
1000 cascade simulations under stochastic outage rule (4.2) with noise

as in (16)

Option DetY MaxY MinY AveY StddY
c10 37.49 39.05 0.00 11.81 11.84
c15 72.44 71.85 0.00 33.94 22.51
c20 75.19 76.30 1.17 41.90 27.47
c25 77.23 42.34 1.38 11.99 10.97

no control 77.75 36.04 0.00 7.96 9.33

under c20. c20 is arguably superior to c25, though c15
and c20 are possibly comparable. The table illustrates a
balance between two competing forces: on the one hand
delaying control appears useful, but on the other hand doing
so exposes the control to noise. In future work we plan
to explore these notions using an implementation of the
stochastic gradients algorithm outlined in Section IV-A.

VI. CONCLUSIONS AND FUTURE WORKS

In spite of the significant complexity entailed in modeling
cascades, we believe it possible to develop effective compu-
tational tools that get at the heart of the matter, which is the
timing of control decisions. Another critical matter concerns
the modeling of uncertainty. Here we need robust models,
since a comprehensive model for noise seems unlikely. In
this context, there is an intriguing game-theoretic perspective
on modeling controls and noise in a cascade context. A final
ingredient in what we plan to test involves deploying much
higher levels of CPU power.
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