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Abstract— A Boolean network is widely used as a model
of gene regulatory networks. In control of gene regulatory
networks using Boolean networks, we assume that the concen-
tration level of a part of genes is arbitrarily determined as the
control input. However, there are cases that no gene satisfying
this assumption exists, and it is important to consider weak
control. In this paper, a Boolean network with two types of
the control inputs is proposed as a model of gene regulatory
networks. The first control input is the control input satisfying
the above assumption. The second control input is called here
a weak control input, and dynamics i.e. Boolean functions are
selected among the candidates of dynamics. For example, activa-
tion/inactivation of the whole network is controlled by the weak
control input. In order to solve the optimal control problem,
two approaches, i.e., an integer programming approach and a
polynomial optimization approach are proposed.

I. INTRODUCTION

During the last decade, there have been a lot of studies on
modeling, analysis, and control of gene regulatory networks
in the field of systems biology. Then it is appropriate to
use a simple model, and various models such as Petri nets,
Bayesian networks, Boolean networks, and hybrid systems
have been developed so far. In control problems, Boolean
networks and hybrid systems are frequently used [1], [2].
However, in the hybrid systems approach, a class of net-
works is limited to low-dimensional systems, because the
computation time to solve the problem is too long.

In Boolean networks, dynamics such as interactions be-
tween genes are expressed by a set of Boolean functions
[8]. Although there is a weakness that a Boolean network
is too simple as a model of gene regulatory networks, this
model can be applied to large-scale systems, and has been
extensively studied. In addition, since the behavior of gene
regulatory networks is stochastic by the effects of noise, it is
appropriate that a Boolean function is randomly decided at
each time among the candidates of Boolean functions. From
this viewpoint, a probabilistic Boolean network (PBN) has
been proposed in [11]. Furthermore, a context-sensitive PBN
(CS-PBN) in which the deciding time is randomly selected
has been proposed as a general form of PBNs [7], [10].
For PBNs and CS-PBNs, the control methods have been
developed so far [6], [7], [9], [10]. In these methods, the
control input is given by the concentration level of a part of
genes, that is, we assume that the concentration level of a
part of genes can be arbitrarily determined. However, there
exist cases such that this assumption is not satisfied, and it is
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suitable to suppose that weak control exists. As an example
of the weak control methods, we point out that the whole
network is activated/inactivated by an external stimulus. Also
in CS-PBNs, activation/inactivation of the whole network
is indirectly controlled by suitably selecting the probability
of forcing a switch of Boolean functions [7], but finding
the optimal probability is not easy. So a direct method is
desirable from the practical viewpoint.

In this paper, first, a Boolean network with two types of the
control inputs is proposed as a model of gene regulatory net-
works. The first control input is the control input satisfying
the assumption that the binary value is arbitrarily determined.
The second control input is called here a weak control input,
and dynamics i.e. Boolean functions are selected among
the candidates of dynamics. In addition, success/failure of
switching of the binary value and Boolean functions is
modeled as the probabilistic behavior. So Boolean networks
with two types of the control inputs are modeled by PBNs.

Next, for Boolean networks with two types of the control
inputs, solution methods of two optimal control problems is
proposed. In existing solution methods of optimal control of
PBNs, state transition diagrams with 2n nodes (i.e., 2n × 2n

transition probability matrices) must be computed for a
PBN with n states. Transition probability matrices cannot
be computed in MATLAB, even if the case of n = 15
(this size will be small-scale in gene regulatory networks).
So the use of transition probability matrices is a crucial
weakness, and is inconvenient for users. To overcome this
technical issue, we propose two approaches, i.e., an inte-
ger programming approach and a polynomial optimization
approach. The former approach is an extension of optimal
control methods proposed in [9], and the low bound of
some non-negative function is minimized. This problem is
reduced to an integer linear programming problem. In the
latter approach, the expected value of some non-negative
function is minimized, and this problem is reduced to a
polynomial optimization problem. In two approaches, given
Boolean functions expressing dynamics are directly used, and
implementation is easy. The proposed approaches provide us
practical control methods of gene regulatory networks.

Notation: Let R denote the set of real numbers. Let
{0, 1}n denote the set of n-dimensional vectors, which
consists of elements 0 and 1. Let In, 0m×n denote the
n × n identity matrix, the m × n zero matrix, respectively.
For simplicity, we sometimes use the symbol 0 instead of
0m×n, and the symbol I instead of In. For a matrix M ,
lnM denotes the matrix such that the (i, j)-th element is
given as the natural logarithm of the (i, j)-th element in M .
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II. BOOLEAN NETWORKS WITH TWO TYPES OF THE

CONTROL INPUTS

First, Boolean networks (BNs) are explained.
Consider the following BN:

x(k + 1) = fa(x(k)) (1)

where x ∈ {0, 1}n is the state (e.g., the concentration of
genes), k = 0, 1, 2, . . . is the discrete time. fa : {0, 1}n →
{0, 1}n is a given Boolean function with logical operators
such as AND (∧), OR (∨), and NOT (¬). Since the BN (1)
is deterministic, x(k+1) is uniquely determined for a given
x(k).

For the BN (1), consider two types of control inputs. First,
as the standard control method, the control input is added to
the BN (1) as follows:

x(k + 1) = f(x(k), u(k)) (2)

where u ∈ {0, 1}m is the control input, i.e., the value of u
(e.g., the concentration of genes) can be arbitrarily given, and
f : {0, 1}n×{0, 1}m → {0, 1}n is a given Boolean function.
The i-th element of the state x and the i-th element of the
control input u are denoted by xi and ui, respectively. Also
in the BN (2), x(k + 1) is uniquely determined for given
x(k) and u(k). Furthermore, in control of gene regulatory
networks, it may be difficult to arbitrarily give the value of
u by the effects of noises and disturbances, and there is a
possibility that switching of the value is failed. Considering
this fact, the control input is given as follows:

u(k) =

{
u(k) with the probability q1,
u(k − 1) with the probability 1− q1

(3)

where q1 ∈ [0, 1].
Next, as a weak control method, we consider to switch the

Boolean function f itself by some external stimuli. Suppose
that the candidates of f are given as fi, i = 1, 2, . . . , l.
Then it will be difficult to select one Boolean function
uniquely. So in this paper, we assume that one discrete
probability distribution is selected among mw discrete prob-
ability distributions. By ri,j , denote the probability that the
Boolean function fj is selected in the i-th discrete probability
distribution. Then

l∑
j=1

ri,j = 1, i = 1, 2, . . . ,mw

hold. mw-dimensional binary variables uw ∈ {0, 1}mw are
assigned to mw discrete probability distributions, and by uw

i

denote the i-th element of uw. uw corresponds to mw kinds
of external stimuli. Then the following equality constraint

mw∑
i=1

uw
i (k) = 1 (4)

is imposed. Considering the effects of noises and distur-
bances, uw is given as follows:

uw(k) =

{
uw(k) with the probability q2,
uw(k − 1) with the probability 1− q2

(5)

where q2 ∈ [0, 1].
Example 1: As a simple example, consider the following

Boolean network of an apoptosis network [5]:⎧⎨
⎩

x1(k + 1) = ¬x2(k) ∧ u(k),
x2(k + 1) = ¬x1(k) ∧ x3(k),
x3(k + 1) = x2(k) ∨ u(k)

(6)

where the concentration level (high or low) of the inhibitor
of apoptosis proteins (IAP) is denoted by x1, the concen-
tration level of the active caspase 3 (C3a) by x2, and the
concentration level of the active caspase 8 (C8a) by x3.
The concentration level of the tumor necrosis factor (TNF,
a stimulus) is denoted by u, and is regarded as the control
input.

Suppose that l = 2 and mw = 2. Then as an example of
the candidates of Boolean functions, we can consider

f1 =

⎡
⎣ ¬x2(k) ∧ u(k)

¬x1(k) ∧ x3(k)
x2(k) ∨ u(k)

⎤
⎦ , r1,1 = 0.8, r2,1 = 0.1, (7)

f2 =

⎡
⎣ x1(k)

x2(k)
x3(k)

⎤
⎦ , r1,2 = 0.2, r2,2 = 0.9. (8)

We suppose that the Boolean function f1 expresses the
situation that time evolution is activated, and the Boolean
function f2 expresses the situation that time evolution is
inactivated. In addition, two discrete probability distributions
{r1,1, r1,2} and {r2,1, r2,2} are selected at each time by using
uh
1 and uh

2 . For example, suppose that {r1,1, r1,2} is selected
at time 0. Then at time 1, either {r1,1, r1,2} or {r2,1, r2,2} is
selected with the probability q2. Otherwise, the distribution
is not changed with the probability 1−q2, that is, this implies
that switching is failed.

Since BNs with two types of the control inputs include the
probabilistic behavior, these are generalized to probabilistic
Boolean networks (PBNs). However, in the existing solution
methods for optimal control of PBNs, it is necessary to
compute state transition diagrams with 2n nodes (n is the
number of the state). Thus the existing method cannot be
applied to large-scale systems, and is inconvenient for users.
So a new solution method is required. In this paper, for
BNs with two types of the control inputs, two approaches
to optimal control are proposed. One of them is called
an integer programming approach. The other is called a
polynomial optimization approach. These methods provide
us new solution methods, in which state transition diagrams
are not computed.

Remark 1: By adding the candidates of Boolean func-
tions, BNs with two types of the control inputs can be
transformed into BNs with only the weak control input. That
is, the control input u can be eliminated from (2) by fixing
the value of u in (2). Then, noting (3), by using at most
2m+1l candidates of Boolean functions, Boolean networks
with only the weak control input can be derived. However,
since this transformation is hard for users, we consider two
types of the control inputs.
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III. INTEGER PROGRAMMING APPROACH

In this section, we propose an integer programming ap-
proach to optimal control of Boolean networks with two
types of the control inputs. First, the problem considered
in this section is given. Next, after some preparations, we
propose a solution method.

A. Problem Formulation

First, the following two notations are defined. By πi(k),
denote the probability that some Boolean function fi is
selected at time k. In addition, the probability that some
sequence of Boolean functions fi(k1), fi(k1+1), . . . , fi(k2) is
selected at time interval [k1, k2] is denoted by

π(k1, k2) :=

k2∏
k=k1

πi(k)(k).

For simplicity of notation, i(k1), i(k1 + 1), . . . , i(k2) are
omitted in π(k1, k2).

Next, for Boolean networks with two types of the control
inputs, consider the following optimal control problem.

Problem 1: Suppose that for the Boolean network with
two types of the control inputs, the initial state x(0) = x0,
the control inputs u(−1), uw(−1), ρ satisfying 0 ≤ ρ ≤ 1,
and the control time N are given. Then for all combinations
of Boolean functions satisfying the following constraint

π(0, N − 1) ≥ ρ, (9)

find two control input sequences u(0), u(1), . . . , u(N − 1)
and uw(0), uw(1), . . . , uw(N − 1) minimizing the lower
bound of the cost function

J =
N−1∑
i=0

{
Qx(i) +R

[
u(i)
uw(i)

]}
+Qfx(N) (10)

where Q,Qf ∈ R1×n, R ∈ R1×(m+mw) are weighting
vectors whose element is a non-negative real number.

For simplicity of discussion, a linear function with respect
to x and u is considered as a cost function, but a quadratic
cost function may be used. In addition, using the offset vector
xd ∈ {0, 1}n, x(i) may be replaced to x̂(i) := x(i) − xd.
Then it is necessary that the cost function (10) is also
replaced to J =

∑N−1
i=0 {Q|x̂(i)|+Ru(i)} + Qf |x̂(N)|.

Furthermore, in control of stochastic systems, the expected
value of some non-negative function is frequently used as
a cost function. In this section, we evaluate the control
performance by using the lower bound.

If the constraint (9) is not included in Problem 1, then
the behaviors is regarded as uncertain (nondeterministic)
behaviors, and the best performance is derived in Problem 1.
However, since combinations of Boolean functions selected
with low probability are included, performance evaluation is
not appropriate. So in order to exclude such combinations,
we impose the constraint (9). See Section V-B for a method
for deciding ρ. Similar problem formulations have been
considered in optimal control of stochastic hybrid systems
(see e.g. [3]).

We show an example for setting weighting vectors from
the biological viewpoint.

Example 2: Consider the Boolean network expressing an
apoptosis network in Example 1 again. For this system, we
consider to find a control strategy such that a stimulus u is
not applied as much as possible, and cell survival is achieved.
u = 0 implies that a stimulus is not applied to the system,
and x1 = 1, x2 = 0 express cell survival [5]. Then as one
of appropriate cost functions, we can consider the following
cost function

J =

N−1∑
i=0

{10|x1(i)− 1|+ 10|x2(i)− 0|+ u(i)}

+100|x1(N)− 1|+ 100|x2(N)− 0|.

By the coordinate transformation from x1 to x1−1, this cost
function can be rewritten as the form of (10).

B. Proposed Solution Method

Consider reducing Problem 1 to an integer linear program-
ming (ILP) problem.

First, to express success/failure of switching of the weak
control input uw, the following relation is introduced:

δw(k) = δs(k)uw(k) + (1− δs(k))uw(k − 1) (11)

where δw ∈ {0, 1}mw and δs ∈ {0, 1}1. δs = 1 corresponds
to success of switching, and δs = 0 corresponds to failure
of switching. From (11), we see that δw corresponds to the
weak control input. Success/failure in the control input u can
be expressed by adding the case of failure to the candidates
of Boolean functions.

Next, by using the fact1, the candidates of Boolean func-
tions fi(x(k), u(k)), i = 1, 2, . . . , l are transformed into
a polynomial on the real number field. By f̂i(x(k), u(k)),
denote the obtained polynomial. Then consider the following
system using f̂i(x(k), u(k)):

x(k + 1) =

l∑
i=1

{
δi(k)f̂i(x(k), u(k))

}
(12)

where δ1(k), δ2(k), . . . , δl(k) are binary variables satisfying

l∑
i=1

δi(k) = 1, (13)

and δ(k) := [ δ1(k) δ2(k) · · · δl(k) ]T is defined. δ is
used to select the polynomial f̂i, and to express (9) as a
linear form. Here, we define the following vector:

Si := [ ri,1 ri,2 · · · ri,l ] . (14)

1For two binary variables δ1, δ2, the following relations hold: (i) ¬δ1 is
equivalent to 1− δ1, (ii) δ1 ∨ δ2 is equivalent to δ1 + δ2 − δ1δ2, and (iii)
δ1 ∧ δ2 is equivalent to δ1δ2.

4373



Then by using the natural logarithm, π(0, N − 1) in (9) is
expressed as

ln π(0, N − 1) =
N−1∑
k=0

{(
mw∑
i=1

lnSiδ
w
i (k)

)
δ(k)

+(ln q2)δ
s(k)

+(ln(1− q2))(1− δs(k))}

=:

N−1∑
k=0

g(δw(k), δs(k), δ(k)). (15)

In the case of q2 = 1, from δs(k) = 1 and ln 1 = 0, we can
derive

g(δw(k), δs(k), δ(k)) =

(
mw∑
i=1

lnSiδ
w
i (k)

)
δ(k).

Then we obtain the following lemma.
Lemma 1: Problem 1 is equivalent to the following prob-

lem.

Problem A:

find u(k), uw(k), δw(k), δs(k), δ(k),

k = 0, 1, . . . , N − 1

min Cost function (10)

subject to System (12), x(0) = x0,

Inequality constraint:
N−1∑
k=0

g(δw(k), δs(k), δ(k)) ≥ ln ρ,

Equality constraint (4), (11), (13).
By using the result2 in [4], the system (12),

g(δw(k), δs(k), δ(k)) and (11) can be equivalently expressed
as the following linear form:

x(k + 1) = Ax(k) +B1δ̂(k) +B2z(k), (16)

g(δw(k), δs(k), δ(k)) = C1δ̂(k) + C2z(k), (17)

δw(k) = Dz(k) + uw(k − 1), (18)

Ex(k) + F1δ̂(k) + F2z(k) ≤ G (19)

where (19) is the linear inequality obtained by applying
the result in [4] to (12), g(δw(k), δs(k), δ(k)) and (11). In
addition, δ̂(k) := [ u(k) uw(k) δw(k) δs(k) δ(k) ]T ∈
{0, 1}m+mw+mw+1+l, and z(k) ∈ {0, 1}p is an auxiliary
binary variable. p is determined depending on the form of
given Boolean functions.

By using (16), (17), (18) and (19), we obtain the following
theorem straightforwardly.

Theorem 1: Problem A is equivalent to the ILP problem
with (m+ 2mw + l + p+ 1)N decision variables.

Problem B can be solved by a suitable solver such as
CPLEX [14].

2For binary variables δ1, δ2, . . . , δn ∈ {0, 1}, the product z =
δ1δ2 · · · δn is equivalent to a pair of

∑n

i=1
δi − z ≤ n − 1 and

−
∑n

i=1
δi + nz ≤ 0.

IV. POLYNOMIAL OPTIMIZATION APPROACH

In this section, as the second approach, we propose a
polynomial optimization approach. In this approach, we can
give the expected value of some non-negative function as a
cost function. First, the problem considered in this section
is given. Next, we show a simple example, Finally, after
preparations, we propose a solution method.

A. Problem Formulation

Consider the following optimal control problem.
Problem 2: Suppose that for the Boolean network with

two types of the control inputs, the initial state x(0) =
x0, the control inputs u(−1), uw(−1), and the control
time N are given. Then find two control input sequences
u(0), u(1), . . . , u(N − 1) and uw(0), uw(1), . . . , uw(N − 1)
minimizing the cost function

J = E

[
N−1∑
i=0

{
Qx(i) +R

[
u(i)
uw(i)

]}
+Qfx(N)

∣∣∣∣∣ x(0) = x0

]
(20)

where Q,Qf ∈ R1×n, R ∈ R1×(m+mw) are weighting
vectors whose element is a non-negative real number, and
E[·|·] denotes a conditional expected value.

Hereafter, for simplicity of notation, the condition x(0) =
x0 in (20) is omitted.

B. Proposed Solution Method

First, from the standard result in probability theory, we
obtain the following lemma immediately.

Lemma 2: Suppose that for n-dimensional binary random
variable x ∈ {0, 1}n, the Boolean function g(x), g :
{0, 1}n → {0, 1}1 is given, and the probability P (xi = 1)
that the i-th element of x is equal to 1 is given. Define
x̂ := [ P (x1 = 1) P (x2 = 1) · · · P (xn = 1) ]T ∈ [0, 1]n.
Then the probability that g(x) is equal to 1 is obtained by

P (g(x) = 1) = ĝ(x̂)

where ĝ denotes the polynomial corresponding to g.
Note that from g(x) ∈ {0, 1}, E[g(x)] = P (g(x) = 1)

holds. Using Lemma 2, consider to express the expected
value of the state E[x(k)]. Some preparations are given. By
f̂i, denote the polynomial corresponding to the candidate fi
of a Boolean function. By using Si of (14), define

S(k) :=

mw∑
i=1

uw
i (k)Si ∈ [0, 1]1×l.

Then the expected value of S(k) is derived as

E[S(k)] =

mw∑
i=1

E[uw
i (k)]Si.

In addition, the expected value of u is given as

E[u(k)] = q1u(k) + (1− q1)u(k − 1).

Then we obtain the following theorem.
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Theorem 2: Suppose that for the Boolean network with
two types of the control inputs, the initial state x(0) = x0

is given. Then the expected value of the state, E[x(k)] is
expressed as the following polynomial system

E[x(k + 1)] =

l∑
i=1

E[S(i)(k)]f̂i(E[x(k)], E[u(k)]) (21)

where E[S(i)(k)] denotes the i-th element of E[S(k)].
Proof: First, consider the case of k = 0. Since each el-

ement of E[u(0)] expresses the probability that each element
of u(0) is equal to 1, f̂i(x0, E[u(0)]) implies the probability
that each element of f̂i(x0, E[u(0)]) is equal to 1. Then
E[x(1)] is derived as a weighted sum of f̂i(x0, E[u(0)]),
i = 1, 2, . . . , l using E[S(i)(k)], i.e.,

E[x(1)] =

l∑
i=1

E[S(i)(0)]f̂i(x0, E[u(0)]).

Next, consider the case of k = 1. Noting P (xi(1) = 1) =
E[xi(1)], from Lemma 2 we obtain

E[x(2)] =

l∑
i=1

E[S(i)(1)]f̂i(E[x(1)], E[u(1)]).

By recursively repeating the above procedure, we obtain (21).

Sine f̂
(i)
j is a polynomial, the right-hand side of (21) is

also a polynomial. Therefore, from Theorem 2, we see that
the expected value E[x(k)] of the state is expressed as a
polynomial system.

Finally, consider reducing Problem 2 to a polynomial
optimization problem. Then by using (21) in Theorem 2,
we obtain the following result.

Theorem 3: Problem 2 is equivalent to the following
polynomial optimization problem.

Problem C:
find E[x(k + 1)] ∈ Rn, u(k) ∈ Rm,

uw(k) ∈ Rmw , k = 0, 1, . . . , N − 1

min Cost function (20)

subject to System (21),

ui(k)(ui(k)− 1) = 0, uw
i (k)(u

w
i (k)− 1) = 0.

Since E[x(k+1)] ∈ [0, 1]n is satisfied automatically from
Theorem 2, we set E[x(k + 1)] ∈ Rn in Problem C. In
addition, by solving (21), E[x(k+1)] can be eliminated from
decision variables in Problem C. However, implementation
makes easy by directly using (21). So E[x(k+1)] is regarded
as a decision variable.

The constraints ui(k)(ui(k)−1) = 0 and uw
i (k)(u

w
i (k)−

1) = 0 guarantee that u(k) and uw(k) are binary variables.
However, these constraints are non-convex, and the existence
of these is one of the reason why the computation time to
solve the problem is long. In a practical manner, instead of
these non-convex constraints, it will be desirable to use the
relaxed constraints 0 ≤ ui(k) ≤ 1 and 0 ≤ uw

i (k) ≤ 1.

V. NUMERICAL EXAMPLES

A. WNT5A Network

Consider a gene regulatory network with the gene
WNT5A, which is related to melanoma. The BN x(k+1) =
fa(x(k)) is given by x1(k + 1) = ¬x6(k), x2(k + 1) =
(¬x2(k) ∧ x4(k) ∧ x6(k)) ∨ {¬x2(k) ∧ (x4(k) ∨ x6(k))},
x3(k + 1) = ¬x7(k), x4(k + 1) = x4(k), x5(k + 1) =
x2(k)∨¬x7(k), x6(k+1) = x3(k)∨x4(k), and x7(k+1) =
¬x2(k)∨x7(k), where the concentration level (high or low)
of the gene WNT5A is denoted by x1, the concentration
level of the gene pirin by x2, the concentration level of the
gene S100P by x3, the concentration level of the gene RET1
by x4, the concentration level of the gene MART1 by x5,
the concentration level of the gene HADHB by x6, and the
concentration level of the gene STC2 by x7. See [13] for
further details.

In a WNT5A network, it important to inhibit the con-
centration level of the gene WNT5A [12]. We apply the
proposed two approaches to control of a WNT5A network.

B. Integer Programming Approach

First, consider to apply the proposed integer programming
approach. For simplicity, only the weak control input is
considered. Then suppose that the number of the weak
control inputs is two. If uw

1 (k) = 1, then x(k + 1) =
fa(x(k)) with the probability 0.8 and xi(k + 1) = xi(k),
i = 1, 2, . . . , 7 with the probability 0.2 are selected. If
uw
2 (k) = 1, then x(k+1) = fa(x(k)) with the probability 0.1

and xi(k + 1) = xi(k), i = 1, 2, . . . , 7 with the probability
0.9 are selected. The case of uw

1 (k) = 1 corresponds to
the situation such that the behavior of a WNT5A network is
activated. The case of uw

2 (k) = 1 corresponds to the situation
such that the behavior of a WNT5A network is inactivated.
From the above, n = 7, m = 0, mw = 2, l = 2, and
r1,1 = 0.8, r1,2 = 0.2, r2,1 = 0.1, r2,2 = 0.9. In addition,
we set q2 = 1. Since δs(k) = 1 holds, δw(k) = uw(k) is
obtained from (11).

For this WNT5A network, consider solving Problem 1.
Q,Qf , R in Problem 1 is given as Q = [ 1 0 0 0 0 0 0 ],
Qf = [ 10 0 0 0 0 0 0 ], R = [ 0 0 ], respectively. The
initial state is given as x0 = [ 1 0 1 0 1 0 0 ]T . Then
the number of decision variables in Problem B is 26N . In
this example, we set N = 5.

Next, we show the computation results. By J∗, denote the
optimal value of the lower bound of a given cost function
in Problem 1. By J

∗
, denote the upper bound of the cost

function derived by using the optimal control input. First,
consider the case of ρ = 10−5. Then we can obtain J∗ = 2
and J

∗
= 15. Since uw(k) is obtained as

uw(0) =

[
0
1

]
, uw(1) = · · · = uw(4) =

[
1
0

]
,

we see that the system is controlled by switching two discrete
probability distributions. However, noting that r2,1 = 0.1 and
ρ = 10−5(= (0.1)5), all combinations of Boolean functions
are considered, and the value of ρ is not appropriate. In
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particular, J
∗
= 15 implies x1(k) = 1, k = 0, 1, . . . , 5,

and is the trivial upper bound.
Next, consider the case of ρ = 0.1. Then we can obtain

J∗ = 2 and J
∗
= 5. uw(k) is obtained as

uw(0) = uw(1) = uw(4) =

[
1
0

]
,

uw(2) = uw(3) =

[
0
1

]
.

Noting that the trivial value of J
∗

is 15, we see that in this
case the effectiveness of control synthesis is clear.

Finally, we discuss the computation time to solve the
problem. In this example, two kinds of ILP problems are
solved. The computation times of these ILP problems were
less than 20 [msec], where we used ILOG CPLEX 11.0 as
an ILP solver on the computer with the Intel Core 2 Duo
CPU 3.0GHz and the 4GB memory.

C. Polynomial Optimization Approach

Next, consider to apply the proposed polynomial optimiza-
tion approach. For simplicity, the weak control input is not
considered. In the BN model of a WNT5A network, the
control input u is given by x2 (the concentration level of the
gene pirin), according to discussion on [6]. Then we obtain
the following BN model:

x1(k + 1) = f (1)(x(k), u(k)) = ¬x5(k),

x2(k + 1) = f (2)(x(k), u(k)) = ¬x6(k),

x3(k + 1) = f (3)(x(k), u(k)) = x3(k),

x4(k + 1) = f (4)(x(k), u(k)) = ¬x6(k) ∨ u(k),

x5(k + 1) = f (5)(x(k), u(k)) = x2(k) ∨ x3(k),

x6(k + 1) = f (6)(x(k), u(k)) = x6(k) ∨ ¬u(k).
In this example, suppose that one discrete probability distri-
bution is given. The probabilistic behavior is given by

xi(k+1) =

{
f (i)(x(k), u(k)), with the probability 0.8,
xi(k), with the probability 0.2.

Then l = 26 = 64 holds, and one discrete probability
distribution is determined. In addition, q1 in (3) is given as
q1 = 0.8.

For this WNT5A network, consider solving Problem 2.
Q,Qf , R in Problem 1 is given as Q = [ 1 0 0 0 0 0 ],
Qf = [ 10 0 0 0 0 0 ], R = 1, respectively. The initial
state and u(−1) are given as x0 = [ 1 1 0 1 0 0 ]T and
u(−1) = 1, respectively. In this example, we set N = 5.

Next, we show the computation results. By solving Prob-
lem 2, we obtain u(0) = u(1) = 1, u(2) = u(3) = u(4) = 0.
The expected value of the state at each time is obtained as

E[x(1)] = [ 1 1 0 1 0.8 0 ]
T
,

E[x(2)] = [ 0.36 1 0 1 0.96 0 ]
T
,

E[x(3)] = [ 0.104 1 0 1 0.992 0.64 ]
T
,

E[x(4)] = [ 0.027 0.488 0 0.488 0.998 0.928 ]
T
,

E[x(5)] = [ 0.007 0.155 0 0.155 0.590 0.986 ]
T
.

So we see that the concentration level x1 of the gene WNT5A
is inhibited with time.

Finally, we discuss the computation time to solve the
problem. The computation time to solve this problem was
2.86 [sec], where we used SparsePOP [15]. For large-scale
networks, it will be necessary to consider an approximate
solution method.

VI. CONCLUSION

In this paper, we have proposed a Boolean network with
two types of the control inputs. This model can express
several situations in control of gene regulatory networks.
Furthermore, two approaches to optimal control have been
proposed. In the polynomial optimization approach, the
expected value of the state can be computed. The integer
programming approach is suitable for control of large-scale
gene regulatory networks. It is desirable to select one of
the two approaches according to a given gene regulatory
network.

One of the future works is to apply our approach to
several biological systems. Also, it is important to consider
to decrease the computation time for solving problems.

This work was supported by Grant-in-Aid for Young Sci-
entists (B) 23760387 and Scientific Research (C) 21500009.
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