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Abstract— This paper proposes a consistent and computa-
tionally efficient FFT-based algorithm for inferring the network
topology where each node in the network is associated to a wide-
sense stationary, ergodic, Gaussian process. Each edge of the
tree network is characterized by a linear, time-invariant dynam-
ical system and additive white Gaussian noise. The proposed
algorithm uses Bartlett’s procedure to produce periodogram
estimates of cross power spectral densities between processes.
Under appropriate assumptions, we prove that the number of
vector-valued samples from a single sample path required for
consistent estimation is polylogarithmic in the number of nodes
in the network. Thus, the sample complexity is low. Our proof
uses properties of spectral estimates and analysis for learning
tree-structured graphical models.

I. INTRODUCTION

Imagine that there is a large linear electrical circuit
consisting of impedances (such as resistors, inductors and
capacitors) but its network topology is unknown. We are,
however, given noisy measurements of voltages at the nodes
in the circuit. Each of these voltages is modelled as a wide-
sense stationary (WSS), ergodic, discrete-time stochastic
process. Given a finite number of time samples of each node
voltage realization, we would like to reconstruct the network
topology consistently. But how many samples are required
to obtain a “reliable” estimate of the network topology?

The identification of large-scale graphs or networks of
systems is an important task in many realms of science and
engineering, including control engineering. In the literature,
this problem has been studied extensively by the graphical
model learning community in which each node is associated
to a random variable and the (vector-valued) observations
are independent and identically distributed. See [1] for an
overview. This differs from the circuit network topology
inference problem mentioned above since each node cor-
responds to a stationary stochastic process and we only
observe a finite number of samples of one sample path.

In this paper, we propose an algorithm to estimate such
tree-structured networks, where each edge is characterized by
an LTI system plus additive white Gaussian noise. There are
two main contributions: Firstly, we show that the proposed
algorithm is computationally efficient; it is (up to log factors)
quadratic in the number of nodes and linear in the number
of observations. Secondly, by using classical results from
spectral estimation [2], [3], we prove that under appropriate
assumptions, the proposed algorithm has very favorable
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sample complexity; if the number of samples N exceeds
O(log1+ε p), where p is the number of nodes in the network,
then the undirected network topology can be estimated with
high probability as N and p tend to infinity.

Previously, Bach and Jordan [4] used the Bayesian in-
formation criterion (BIC) and spectral methods to estimate
sparse graphs of stationary time series. In a collection of re-
lated works [5]–[7], authors also considered learning models
whose topologies are dynamic, i.e., they change over time.
Siracusa and Fisher [8] also proposed Bayesian techniques
to obtain posterior uncertainties of the underlying topol-
ogy. Most recently, Materassi and Innocenti [9] proposed
a provably consistent algorithm for estimating such tree-
structured networks. None of the above works include any
sample complexity guarantees. In this work, we combine the
results from learning graphical models [10], [11] and spectral
estimation [2] to obtain sample complexities for networks of
dynamical systems.

II. PRELIMINARIES AND SYSTEM MODEL

Let T = (V, E) be an undirected tree (a connected, acyclic
graph) where V = {1, . . . , p} is the set of nodes and E ⊂

(V
2

)
is the set of undirected edges. Let node 1 be labeled as the
root of the tree. For edge (i, j) ∈ E , if i is closer to 1 than
j, we say that node i is the parent of node j and node j
is a child of node i. Note that by the tree assumption, each
node (except the root) has exactly one parent. The root has
no parents. Define T to be the set of trees with p nodes.
We associate to each node i ∈ V a WSS, ergodic, discrete-
time stochastic process Xi = {Xi[n]}∞n=0. Each Xi[n] is a
real-valued random variable.

Let X = (X1, . . . , Xp) be the vector of stochastic
processes. The edge set E encodes the set of conditional
independence relations among the p processes [12]. More
precisely, X is Markov on T if for all i ∈ V , Xi is
conditionally independent of all other processes given its
parent and its children.

Let the root process X1 be a Gaussian process. For
example, each X1[n] can be an independent zero-mean, unit-
variance Gaussian random variable. For an edge (i, j) ∈ E ,
with j being a child of i, we assume that

Xj [n] = (hj,i ∗Xi)[n] +Wj [n], n = 0, 1, 2, . . . (1)

where hj,i[n] is a (non-zero) causal, stable LTI filter. In
addition, for each node j, the process Wj [n] is assumed
to be additive white Gaussian noise with power σ2

W . See
Fig. 1. Eqn. (1) says that the child process Xj is a noisy,
filtered version of the parent process Xi. Because all filters
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Fig. 1. The nodes are denoted by dark circles. The node set is V =
{1, 2, 3} and the edge set is E = {(1, 2), (2, 3)}. Note the conditional
independence relations among the stochastic processes: X1 ⊥⊥ X3 |X2.

are LTI and the noise is Gaussian, all processes Xj are jointly
Gaussian.

In this paper, we are provided with the first N samples
of a sample path of the vector-valued stochastic process
{X[n]}N−1n=0 . Given this data, we would like to devise an
efficient algorithm to obtain a consistent estimate of the tree
T . We denote the estimate given N samples {X[n]}N−1n=0

as T̂N . In addition, for δ > 0, we consider the following
quantity:

N(p, δ) := inf{N ∈ N : P(T̂N = T ) ≥ 1− δ}. (2)

The quantity N(p, δ) is the sample complexity for estimating
the topology of the network. It denotes the number of
samples needed to obtain a topology that is the same as
the original one with high probability. In general, N(p, δ)
will also be a function of the unknown filters {hj,i}(i,j)∈E
and the noise power σ2

W but we suppress this dependence.
We would like to ensure that the algorithm proposed has
low sample complexity, which means that N(p, δ) increases
slowly with p = |V| as both quantities scale (i.e., tend to
infinity).

III. AN ALGORITHM TO ESTIMATE THE NETWORK
TOPOLOGY VIA SPECTRUM ESTIMATION

In this section, we present a consistent and efficient
algorithm to estimate the tree topology T given the data
{X[n]}N−1n=0 . This algorithm is motivated by the Chow-Liu
algorithm [13] to approximate arbitrary multivariate distribu-
tions with trees. LetM(T) be the family of probability mea-
sures associated to multivariate processes that are Markov
on a tree with p nodes. Consider the following optimization
problem:

inf
ν∈M(T)

D(µ || ν) (3)

where µ is an estimate of the probability measure of the un-
derlying multivariate process. In (3), D(µ || ν) is the relative
entropy rate [14] between the two probability measures µ and
ν. Using the same reasoning as in [13], it is straightforward
to show the following:

Lemma 3.1 (Chow-Liu for WSS Stochastic Processes):
The measure that achieves the minimum in (3) corresponds
to a vector-valued process that is Markov on the tree T ∗
given by the maximum-weight spanning tree (MWST)
problem:

T ∗ = argmax
T ∈T

∑
(i,j)∈T

Iµ(Xi;Xj), (4)

where Iµ(Xi;Xj) is the mutual information (MI) rate of the
processes Xi and Xj under µ.

See Appendix for the proof. Lemma 3.1 is similar to the
main result in [9] but the derivation using (3) as an informa-
tion projection is more intuitive. In addition, we obtain the
mutual information rate Iµ(Xi;Xj) as edge weights for the
MWST in (4) whereas [9] derived a closely-related quantity
using Wiener filtering. Given Lemma 3.1, it remains to
estimate the MI rates consistently from the data {X[n]}N−1n=0 .
To this end, we first recall from [15] that for two WSS
Gaussian processes Xi and Xj ,

I(Xi;Xj) := − 1

4π

∫ 2π

0

log
(
1− |γi,j(ω)|2

)
dω (5)

where the magnitude-squared coherence of the processes Xi

and Xj is defined as

|γi,j(ω)|2 :=
|ΦXi,Xj

(ω)|2

ΦXi
(ω)ΦXj

(ω)
. (6)

In Eqn. (6), ΦXi
(ω) and ΦXi,Xj

(ω) are the power spectral
density (PSD) of Xi and cross PSD of Xi, Xj respectively.1

By the Cauchy-Schwarz inequality, 0 ≤ |γi,j(ω)|2 ≤ 1 so
the MI rate in (5) is non-negative. We assume that the MI
rate for all edges is uniformly bounded away from zero as
p→∞.

At a high level, the algorithm proceeds as follows: Since
it is intractable to compute the MI rate directly, we use
Bartlett’s averaging method [2] to estimate ΦXi

(ω) and
ΦXi,Xj

(ω) from the data before computing the magnitude-
squared coherences |γi,j(ω)|2. We then use a discretized
version of (5) to obtain an estimate of the MI rate. Finally
we obtain T̂N by solving the MWST problem in (4). The
details of the algorithm are provided below:

1) Divide each length-N realization {Xj [n]}N−1n=0 into
L non-overlapping segments of length M such that
LM ≤ N , i.e., we form the signal segments:

X
(l)
j [n] := Xj [lM + n], (7)

where 0 ≤ n ≤M − 1, 0 ≤ l ≤ L− 1 and j ∈ V . The
choice of L and M is discussed in Section IV-B.

2) Compute the length-M DFT (discrete Fourier trans-
form) for each signal segment:

X̃
(l)
j [k] :=

1

M

M−1∑
n=0

X
(l)
j [n]e−

√
−1 2π(k+1/2)n/M . (8)

Note that we deliberately sample the DTFT at frequen-
cies 2π(k+1/2)/M for k = 0, . . . ,M−1. The reason
for this will become apparent in Lemma 4.3.

3) Estimate the time-averaged periodograms for the PSD
and cross PSD using Bartlett’s averaging procedure on
the L signal segments, i.e.,

Φ̂Xi
[k] :=

1

L

L−1∑
l=0

∣∣∣X̃(l)
i [k]

∣∣∣2 , (9a)

Φ̂Xi,Xj
[k] :=

1

L

L−1∑
l=0

(
X̃

(l)
i [k]

)∗
X̃

(l)
j [k]. (9b)

1For simplicity, we denote the DTFT as Y (ω) instead of Y (ejω).
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4) Estimate the magnitude-squared coherences:

|γ̂i,j [k]|2 :=
|Φ̂Xi,Xj

[k]|2

Φ̂Xi [k]Φ̂Xj [k]
. (10)

5) Estimate the MI rates by using the Riemann sum:

Î(Xi;Xj) := − 1

2M

M−1∑
k=0

log
(
1− |γ̂i,j [k]|2

)
. (11)

6) Solve the MWST problem in (4) with
{Î(Xi;Xj)}i,j∈V as the edge weights to obtain
T̂N .

It is known that unless we average over signal segments as
in (9), the periodogram will not be a consistent estimate of
the PSD [2, Theorem 5.2.4]. However, because we assumed
that each process is ergodic and we average across different
signal segments, the estimates of the PSD and cross PSD are
consistent. In addition, since it is not possible to compute the
integral in (5) exactly, we approximate it using a Riemann
sum in terms of the DFT values of γ̂i,j [k] as in (11). We
note that the algorithm presented can be generalized by
considering overlapping segments and multiplying a length-
M window v[n] to each signal segment X(l)

j [n]. This is
the well-known Welch’s method [2]. We do not consider
these generalizations here since the analysis of the sample
complexity is much more involved.

Because the DFT operations in Step 2 can be implemented
efficiently using the fast Fourier transform (FFT), the pro-
posed algorithm is also computationally efficient.

Proposition 3.2 (Computational Complexity): The com-
putational complexity of the algorithm proposed to estimate
the tree network topology T is bounded above by

O(p2(N logM + log p)). (12)

Proof Step 2 requires O(pLM logM) operations using
FFTs. It is easy to see that Steps 1 and 3 - 5 require at most
O(p2N) operations. Finally, the MWST can be implemented
using Kruskal’s algorithm [16] in O(p2 log p) operations.

Despite the appealing computational complexity, it is not
clear how to choose L and M optimally given each length-N
signal {Xj [n]}N−1n=0 . This is an important consideration since
there is a fundamental tradeoff between spectral resolution
(which improves by increasing DFT length M ) and reduction
of the variance of the spectrum estimate (which improves
by increasing the number of segments L). In Section IV, we
provide intuition on how to choose L and M such that the
sample complexity N(p, δ) is low. In the following, it will
be useful to regard M , N and p as functions of L.

IV. SAMPLE COMPLEXITY AND PROOF OUTLINE

In this section, we state our sample complexity result and
provide an outline of its proof. Before doing so, we state an
overriding assumption: We assume that the arctanh of the
estimate of the magnitude-squared coherence2 satisfies the

2We suppress the dependence of γ and γ̂ on edge (i, j) for brevity.

normality assumption, i.e.,

arctanh(|γ̂(ω)|) ∼ N (mL, λL). (13)

See [3] and [17] for the details of this normalizing Fisher
z-transform. The mean in (13) is given as

mL := arctanh

(√
|γ(ω)|2 +

1− |γ(ω)|2
2(L− 1)

)
, (14)

and the variance λL = 1/(2(L − 1)). Note that this means
(by the continuity of arctanh) that the estimate at every
ω is asymptotically unbiased and consistent since mL →
arctanh|γ(ω)| and λL → 0.

A. Polylogarithmic Sample Complexity

Theorem 4.1 (Sample Complexity): Assume (13) holds.
For appropriately chosen L and M , the sample complexity of
the algorithm proposed to estimate the tree network topology
T is

N(p, δ) = O

(
log1+ε

(
p3

δ

))
(15)

for any ε > 0.
The interpretation of this asymptotic result if N and p

obey the prescribed scaling law, then the probability of
successful estimation P(T̂N = T ) can be made arbitrarily
close to 1. Note that p is allowed to grow much faster than
N , which means that even in the sample-limited regime,
we are guaranteed to successfully recover the unknown tree
topology T with relatively few samples.

B. Proof Outline

The proof of Theorem 4.1 is a consequence of four lem-
mata whose proofs are in the appendices. It is worth noting
that standard concentration results from large-deviations the-
ory such as Sanov’s Theorem or the Gärtner-Ellis Theorem
[18] do not readily apply for deriving concentration results
for this problem. Instead, we use the normality assumption
[3], [17] to obtain concentration results.

Lemma 4.2 (Concentration of Coherence): Fix η > 0.
Define the function g : [0, 1)→ R+ as

g(γ) := − 1

4π
log(1− |γ|2). (16)

Then we have the following upper bound:

P (|g(γ̂(ω))− g(γ(ω))| > η) ≤ e−(L−1)ϕ(γ(ω);η), (17)

where the exponent above ϕ : [0, 1] × (0,∞) → R+ is a
continuous function. In addition, ϕ(γ; η) is monotonically
decreasing in γ and monotonically increasing in η.
Lemma 4.2 quantifies the deviation of |γ̂(ω)| from |γ(ω)|.
Observe that if the tolerance η is large, the exponent ϕ is
also large. Besides, larger coherences values are “harder”
to estimate. Recall from Step 2 that we only evaluate
the magnitude-squared coherence estimate at M uniformly
spaced frequencies 2π(k + 1/2)/M for k = 0, . . . ,M − 1.
We now quantify the deviation of estimated MI rate obtained
using a Riemann sum from the true MI rate. This is the most
technically challenging step in the proof.
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Lemma 4.3 (Concentration of MI Rate): If the number of
DFT points ML satisfies

lim
L→∞

ML =∞, lim
L→∞

L−1 logML = 0, (18)

then for any η > 0, we have

lim sup
L→∞

1

L
logP

(
|Î − I| > η

)
≤− min

ω∈[0,2π)
ϕ(γ(ω); η).

(19)
Now we use the proof technique in [10], [11] to quantify

the error probability of estimating an incorrect topology. For
a non-edge (k, l), let Path(k, l) be the set of edges along the
unique path joining nodes k and l. By the data-processing
lemma [14] and the fact that the LTI filters are non-zero,

ξ := min
(k,l)/∈E

min
(i,j)∈Path(k,l)

I(Xk;Xl)− I(Xi;Xj), (20)

is uniformly bounded away from zero for all tree-structured
networks. The quantity ξ in (20) is the minimum difference
between the MI rate of an edge and the MI rate of any edge
along its path.

Lemma 4.4 (Crossover Probability for MI Rates): Let
(k, l) be a non-edge and (i, j) ∈ Path(k, l). Then assuming
that ML satisfies (18), we have the large deviations upper
bound

lim sup
L→∞

1

L
logP

(
Î(Xk;Xl) ≥ Î(Xi;Xj)

)
(21)

≤ − min
ω∈[0,2π)

min {ϕ(γi,j(ω); ξ/2), ϕ(γk,l(ω); ξ/2)} .
This lemma implies that the error in mistaking a non-edge
for a true edge decays exponentially fast in L, since the right
hand side of (21) is negative. The next lemma utilizes the
fact that the number of potential error events as in (21) is
O(p3).

Lemma 4.5 (Error in Topology Estimation): If ML satis-
fies (18), then there exists a constant K > 0 such that

lim sup
L→∞

1

L
logP

(
T̂N 6= T

)
≤ −K + lim sup

L→∞

3 log p

L
. (22)

This result shows that if p = O(1), the last term in (22)
is zero and the error in network topology estimation decays
exponentially fast in the number of signal segments L. Since
M = dLεe satisfies (18) (for any ε > 0), N is required to be
at least dL1+εe and hence the error probability in topology
estimation can be upper bounded as

P(T̂N 6= T ) = O
(
p3 exp(−CN1/(1+ε))

)
∀ ε > 0. (23)

The proof of Theorem 4.1 is completed by inverting the
relationship P(T̂N 6= T ) ≤ δ.

V. CONCLUSION

We proposed a consistent and efficient algorithm to esti-
mate networks whose edges are characterized by LTI filters
and noise. Our main contribution is the asymptotic sample
complexity analysis that shows that for very large networks,
a relatively small number of samples is required to estimate
the network topology reliably. We intend to extend our
results in three main directions: Firstly, in place of Bartlett’s
non-overlapping method for periodogram estimation, we

would like to analyze the more accurate Welch’s overlapping
method [2]. Secondly, we intend to find sufficient conditions
that allow for inferring the directed tree. Thirdly, we will per-
form numerical simulations to verify the sample complexity
result.

APPENDIX

Proof This proof extends Chow and Liu’s result [13] to
stationary stochastic processes. The fact that ν ∈ M(T)
implies that we have the factorization:

ν =
∏
i∈V

νi
∏

(i,j)∈E

νi,j
νi × νj

, (24)

where νi and νi,j are measures corresponding to the the
marginal and pairwise processes respectively. Recall that the
relative entropy rate is defined as

D(µ || ν) =

{ ∫
log dµ

dν dµ µ� ν
+∞ o.w.

where dµ
dν is the Radon-Nikodým derivative of µ wrt ν. By

stationarity, the relative entropy in (3) can be written as a
limit

D(µ || ν) = lim
N→∞

1

N
D(µ[0 : N − 1] || ν[0 : N − 1]),

where µ[0 : N −1] is the probability measure corresponding
to the first N time points of the µ process. Hence,

D(µ||ν)= lim
N→∞

1

N

∫
log

dµ[0 :N − 1]

dν[0 :N − 1]
dµ[0 :N − 1] (25)

Now, substitute (24) into (25) and note that we are optimizing
over the measure ν only. Hence, the relative entropy rate is
(up to a constant) the limit of the expression

1

N

∫ ∑
(i,j)∈E

log
dνi,j [0 : N − 1]

d(νi[0 : N − 1]×νj [0 : N − 1])
dµ[0 : N − 1]

as N → ∞. Each term is minimized by setting νi = µi
and νi,j = µi,j (by non-negativity of relative entropy). By
exchanging the sum and integral in the above, we see that
each of the terms is the mutual information Iµ(Xi[0 : N −
1];Xj [0 : N−1]) = D(µi,j [0 : N−1] ||µi[0 : N−1]×µj [0 :
N − 1]). Now by stationarity, the following limit exists and
equals the mutual information rate:

lim
N→∞

1

N
Iµ(Xi[0 : N − 1];Xj [0 : N − 1]) = Iµ(Xi;Xj).

Combining this with the above sum, we see that the mini-
mization problem is (3) is given by the MWST problem in
(4) where the edge weights are the mutual information rates
in (5).

Proof For simplicity in notation, we drop the dependence of
γ on the frequency ω, i.e., denote γ̂ = γ̂(ω) and γ = γ(ω).
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Also, recall the definition of g in (16). Then, for η > 0, we
have that P(|g(γ̂)− g(γ)| ≥ η) can be upper bounded as

P
(∣∣∣∣log

1− |γ̂|2

1− |γ|2

∣∣∣∣ > 4πη

)
≤ P

(
log

1− |γ̂|2

1− |γ|2
>4πη

)
+P

(
log

1− |γ̂|2

1− |γ|2
<−4πη

)
= P (|γ̂| < a(γ, η)) + P (|γ̂| > a(γ,−η)) , (26)

where we applied the union bound and the function
a(γ(ω), η) in (26) is defined as

a(γ, η) :=
√
|γ|2 − (e4πη − 1)(1− |γ|2).

Because the arctanh function is continuous, we have

P(|g(γ̂)− g(γ)| ≥ η) ≤ P (arctanh(|γ̂|) < arctanh(a(γ, η)))

+ P (arctanh(|γ̂|) > arctanh(a(γ,−η)))

By using the normality assumption as stated in (13) we have
that

P(|g(γ̂)− g(γ)| ≥ η)≤Q(
√

2(L− 1)(−b1(γ, η)+O(L−1)))

+Q(
√

2(L− 1)(b2(γ, η) +O(L−1))) (27)

where Q(z) =
∫∞
z
N (u; 0, 1) du and the functions b1(γ, η)

and b2(γ, η) are defined as

b1(γ, η) := arctanh(a(γ, η)− arctanh(|γ|) < 0

b2(γ, η) := arctanh(a(γ,−η) + arctanh(|γ|) > 0.

We now use the fact that Q(z) ≤ 1
2e
−z2/2 to conclude that

(27) can be upper bounded as

P(|g(γ̂)− g(γ)| ≥ η) ≤ 1

2

(
exp

(
−2(L− 1)b1(γ, η)2

)
+ exp

(
−2(L− 1)b2(γ, η)2

) )
.

The proof is completed by the identification

ϕ(γ(ω); η) := 2 min
i=1,2

{
bi(γ(ω), η)2

}
.

This function is positive because b21 and b22 are positive. It can
also continuous because bi(γ(ω), η), i = 1, 2 are continuous.
The monotonicity properties also forward straightforwardly
from the definitions of a and bi.

Proof Recall from Riemann integration theory that for a
smooth function φ, the error in approximating a Riemann
integral using its (middle) Riemann sum approximation as
in (11) is upper bounded as∣∣∣∣∣
∫ 2π

0

φ(τ) dτ − 1

M

M−1∑
k=0

φ

(
2π(k + 1/2)

M

)∣∣∣∣∣ ≤ B

M2
L

(28)

where B := (2π)3 max[0,2π) |φ′′(τ)|/24. By using the defi-
nition of g in Lemma 4.3, we have

P
(
|Î − I| > η

)
= P

(∣∣∣∣∫ 2π

0

g(γ̂(ω))− g(γ(ω)) dω

∣∣∣∣ > η

)
,

where the function g was defined in Lemma 4.2. Next, by the
elementary inequality from integration theory |

∫
ψ(τ) dτ | ≤∫

|ψ(τ)| dτ , we have

P
(
|Î − I| > η

)
≤ P

(∫ 2π

0

|g(γ̂(ω))− g(γ(ω))| dω > η

)
,

Because γ, g ∈ C2, so is the function φ := g◦ γ̂−g◦γ ∈ C2.
Hence the constant B in (28) is finite. By using (28), we
have the inclusion of the events{∫ 2π

0

|g(γ̂(ω))− g(γ(ω))| dω > η

}
⊂{

1

ML

ML−1∑
k=0

|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

}

Now assuming that ML >
√
B/η, and using monotonicity

of measure, we have the upper bound,

P
(
|Î − I| > η

)
≤

P

(
1

ML

ML−1∑
k=0

|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

)
. (29)

Note that {ωk = 2π(k + 1/2)/M : k = 0, 1, . . . ,M − 1} is
the set of frequencies that we sample the DTFT in Step 2.
Note that we have replaced the integral over the set [0, 2π)
with a sum over a discrete set of frequencies. The deviation
of the sum is much easier to bound. Now, using the fact that
the mean of finitely many positive numbers is no greater than
the maximum, we can upper bound (29) and hence P(|Î −
I| > η) as follows:

P
(

max
0≤k≤ML−1

|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

)
= P

(
ML−1⋃
k=0

{
|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

})

≤
ML−1∑
k=0

P
(
|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

)
(30)

≤ML max
0≤k≤ML−1

P
(
|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

)
≤ML max

0≤k≤ML−1
exp

(
−(L−1)ϕ

(
γ(ωk); η− B

M2
L

))
(31)

= ML exp

(
−(L− 1) min

0≤k≤ML−1
ϕ

(
γ(ωk); η − B

M2
L

))
≤MLexp

(
−(L− 1) min

ω∈[0,2π]
ϕ

(
γ(ω); η− B

M2
L

))
, (32)

where (30) is from the union bound and (31) follows from
Lemma 4.2. Taking the normalized logarithm of (32), we
have

1

L
logP

(
|Î − I| > η

)
≤

1

L
logML −

L− 1

L
min

ω∈[0,2π]
ϕ

(
γ(ω); η − B

M2
L

)
. (33)
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Now, by the continuity of ϕ in (γ, η) and the fact
that [0, 2π] ⊂ R is compact,3 the assignment η 7→
minω∈[0,2π] ϕ(γ(ω); η) is continuous. Hence,

lim
L→∞

min
ω∈[0,2π]

ϕ

(
γ(ω); η − B

M2
L

)
= min
ω∈[0,2π]

ϕ (γ(ω); η) ,

because ML →∞. As a result, taking the upper limit of (33)
and using the fact that L−1 logML → 0 yields the statement
of the lemma.

Proof Noting the definition of ξ in (20), we have

I(Xk;Xl) ≤ I(Xi;Xj)− ξ. (34)

for every edge (i, j) ∈ Path(k, l) and every non-edge
(k, l) /∈ E . Eqn. (34) is also due to the data-processing lemma
[14, Ch. 1]. Define the event

Ai,j(η) :=
{
|Î(Xi;Xj)− I(Xi;Xj)| > η

}
.

Clearly, if the event {Î(Xk;Xl) ≥ Î(Xi;Xj)} occurs, then
either Ai,j(ξ/2) or Ak,l(ξ/2) occurs, i.e.,

{Î(Xk;Xl) ≥ Î(Xi;Xj)} ⊂ Ai,j(ξ/2)
⋃
Ak,l(ξ/2). (35)

This is because of (34). Following this, we have the upper
bound

P
(
Î(Xk;Xl) ≥ Î(Xi;Xj)

)
≤ P

(
Ai,j(ξ/2)

⋃
Ak,l(ξ/2)

)
≤ P (Ai,j(ξ/2)) + P (Ak,l(ξ/2)) , (36)

where (36) is because of the inclusion in (35) and mono-
tonicity of probability measure. This completes the proof
since Ai,j(η) is precisely the error event in Lemma 4.3.

Proof We use the proof technique in [10], [11]. In particular,{
T̂N 6= T

}
=

⋃
(k,l)/∈E

⋃
(i,j)∈Path(k,l)

{
Î(Xk;Xl) ≥ Î(Xi;Xj)

}
.

That is, the error event in network topology estimation is
equal to the existence of a non-edge (k, l) and an edge (i, j)
such that the event {Î(Xk;Xl) ≥ Î(Xi;Xj)} occurs. Using
a union bound again, we have that the probability of {T̂N 6=
T } is upper bounded as∑

(k,l)/∈E

∑
(i,j)∈Path(k,l)

P
(
Î(Xk;Xl) ≥ Î(Xi;Xj)

)
≤p3 max

(k,l)/∈E
max

(i,j)∈Path(k,l)
P
(
Î(Xk;Xl)≥ Î(Xi;Xj)

)
. (37)

Define the positive number

Ji,j,k,l := min
ω∈[0,2π)

min {ϕ(γi,j(ω); ξ/2), ϕ(γk,l(ω); ξ/2)} .

Now take the normalized logarithm and the upper limit
in (37) to get

lim sup
L→∞

1

L
logP

(
T̂N 6= T

)
≤

− min
(k,l)/∈E

min
(i,j)∈Path(k,l)

Ji,j,k,l + lim sup
L→∞

3 log p

L
.

3Since γ(0) = γ(2π) (by periodicity of the DTFT), we can either
minimize over [0, 2π) or [0, 2π] in (32).

This yields (22), where the positive constant K is defined
as K := min(k,l)/∈E min(i,j)∈Path(k,l) Ji,j,k,l. This completes
the proof.

Proof Fix ε > 0. Choose ML = dLεe satisfying (18). Then
N = dL1+εe. We drop the d·e notation from now on for
simplicity. Hence L = Nα for α = 1

1+ε ∈ (0, 1). From (22),
we have

lim sup
N→∞

1

Nα
logP

(
T̂N 6= T

)
≤ −K + lim sup

N→∞

3 log p

Nα
.

which means that for any C < K and N sufficiently large,
we have

P
(
T̂N 6= T

)
≤ p3 exp(−CNα).

Hence, for the error probability to be less than δ > 0, it
suffices to have the number of sample satisfy:

Nα = N
1

1+ε ≥ O
(

log
p3

δ

)
.
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