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Abstract— This paper deals with the issue of estimating the
parameters in a continuous-time nonlinear dynamical model
from sampled data. We focus on the issue of bias-variance
trade-offs. In particular, we show that the bias error can be
significantly reduced by using a particular form of sampled data
model based on truncated Taylor series. This model retains the
conceptual simplicity of models based on Euler integration but
has much improved accuracy as a function of the sampled
period.

I. INTRODUCTION

Many (and arguably most) physical systems are described
by continuous time differential equation models. Indeed, the
parameters within these equations may be of direct physical
interest and hence of importance in any estimation study. On
the other hand, experimental data collected from a system is
almost always in sampled form. This raises the issue as to
how one can best estimate the parameters in a continuous
time model from sampled data.

Even in the case of linear systems, the sampled response
of a continuous time system is a highly nonlinear function
of the continuous parameters. For example, the sampled data
state transition matrix takes the form eA∆ where A,∆ are
respectively the continuous system matrix and the sampling
period. The nonlinear case is even more difficult since no
closed form exists for the sampled data model.

At fast sampling rates, it is tempting to use an Euler
approximation for the discrete model. Thus, say that the
continuous system is described by

ẋ(τ) = f(x(τ)) + g(x(τ))u(τ), τ ∈ R (1)
ỹ(τ) = h(x(τ)) (2)

then an approximate sampled data model (for a zero oder
hold input and sample period ∆) is

x(t∆ + ∆) = x(t∆) + ∆ {f(x(t∆)) + g(x(t∆))u(t∆)}
(3)

ỹ(t∆) = h(x(t∆)), t ∈ N (4)

This model is obtained by simple Euler integration and has
local truncation error [1] of order ∆2 and global truncation
error [1] of order ∆.

Our interest in the current paper is in cases where the
system has a well defined relative degree. This case has been
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extensively studied for linear dynamical systems. An issue of
importance is that the corresponding sampled data model has
extra zero dynamics with associated “sampling zeros”. In the
linear case, these sampling zeros have been given a precise
asymptotic characterisation (see [2]). Moreover, these extra
zeros play a key role in the accuracy of sampled data models.
For example, it has been shown in [3] that it is crucial that
these extra zeros be included in the approximate model if one
wants to have a model for which the relative errors converge
to zero as ∆→ 0.

The nonlinear case is more difficult. Indeed, it is only
recently that insights have been obtained into the “sampling
zero dynamics” of nonlinear systems. For example, it has
been shown in [4] (see also [5]) that by using a particular
form of truncated Taylor series we can obtain an (approxi-
mate) sampled data model for a continuous time nonlinear
system having three key properties, namely:

(i) the sampled data model has extra zero dynamics which
are identical to the sampling zero dynamics for a linear
system of the same relative degree,

(ii) the model has local and global truncation errors in the
output of order ∆r+1 and ∆r respectively, where r is
the relative degree of the system,

(iii) the model depends only on f(·) and g(·) in a simple
fashion.

Points (ii) and (iii) above actually provide the core moti-
vation for the work described in the current paper. We argue
that use of this particular sampled data model allows one
to obtain a much improved bias-variance tradeoff in system
identification than would be achieved if an Euler integration
based model were to be used.

II. PRELIMINARIES

Throughout the paper we limit attention to the single-input
single-output case. We consider a nonlinear system of order
n described as follows:

ẋ(τ, θo) = f(x(τ, θo)) + g(x(τ, θo))u(τ) (5)
ỹ(τ, θo) = h(x(τ, θo)) (6)

where x(τ) is the state evolving in an open subsetM⊂ Rn,
and where the vector fields f(·), g(·), and the output function
h(·) are analytic. The system is assumed to have a vector
of true parameters θo and uniform relative degree r when
x(τ) ∈M.

Remark 1: If an anti-aliasing filter is used, then assume
that this has been incorporated into the above model. �
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We will be interested in the problem of estimating θo from
a finite sample of observations where the sample period is
∆. We assume that the samples satisfy

yt = ỹt(θo) + vt, t ∈ N+ (7)

where yt denotes y(t∆) and {vt} is a stationary stochastic
process.

Remark 2: In the sequel, for simplicity of exposition,
we will take {vt} to be an i.i.d gaussian sequence of mean
zero and variance σ2. The extension to the case where {vt}
is a coloured noise sequence is straightforward and will not
be pursued. �

We introduce an (approximate) sampled model having
output ŷt(θ) parameterised by θ. We assume that the ap-
proximate model has truncation error of order ∆m. This is
expressed as

ỹt(θo)− ŷt(θo) = E(∆, θo) ∈ O(∆m), ∀t ∈ N (8)

Our goal in the current paper is to quantify the impact
that the truncation error E(∆, θo) has on the estimation of
θo. Before proceeding, we describe (in the next section) two
possible choices for ŷt(θo).

III. APPROXIMATE SAMPLED DATA MODELS

Our analysis will cover any model for which an error
quantification of the form (8) is available. Two possible
choices are discussed below. We assume throughout that the
input is generated by a zero-order hold, i.e. u(τ) = ut, τ ∈
[t∆, t∆ + ∆). First, we provide the following definitions:

Definition 1: We define T = N · ∆ as the time horizon
over which the approximate model will be used, where ∆
is the length of the time discretisation and N is the number
of steps. We also define the following notation for any state
zi,t = zi(t∆) = zi[t] and z+

i = zi,t+1,∀t ∈ N. ���

Definition 2 (Global Modified Truncation Error (see [5]):
Consider a dynamical system with states (x1, . . . , xn) and
an associated approximate model with states (x̂1, . . . , x̂n).
The global modified truncation error of the approximate
model is said to be (∆m1 , . . . ,∆mn) if, for initial state
errors

x̂1[k]− x1[k] ∈ O(∆m̄1) (9)
...

x̂n[k]− xn[k] ∈ O(∆m̄n) (10)

for any m̄i ≥ mi, i = 1, . . . , n then after N steps, where
N = bT/∆c, we have that

x̂1[k +N ]− x1[k +N ] ∈ O(∆m1) (11)
...

x̂n[k +N ]− xn[k +N ] ∈ O(∆mn) (12)

���

Remark 3: The main difference between local and global
(modified) truncation errors is that the first only holds
for one step while the latter holds for finitely many N
steps. Note though, that only the global errors allow us to
characterise (8). �

A. Euler Integration

The simplest possible (approximate) model is obtained
from (5)–(6) by Euler integration. This leads to the model
(3)–(4) which we rewrite here as:

x̂t+1 = xt + ∆ {f(x̂t, θ) + g(x̂t, θ) · ut} (13)
ŷt(θ) = h(x̂t, θ), t ∈ N (14)

It is well known [1] that the global truncation error for
Euler integration is of order ∆, i.e. E(∆, θo) ∈ O(∆).

B. Truncated Taylor Series

Here we depart from the usual approach in numerical
analysis [1] and consider a particular realisation of the
nonlinear state space model having a particular relevance
to control. A key result from nonlinear systems theory [6]
is that a nonlinear system of degree n and uniform relative
degree r can be described by a model in Normal Form. In
this case, we write the model as:

ż1(τ) = z2(τ) (15)
...

żr−1(τ) = zr(τ) (16)
żr(τ) = b(ζ, η) + a(ζ, η) · u(τ) (17)
η̇(τ) = c(ζ, η) (18)

where the output is ỹ(τ) = z1(τ) and zi(τ), i = 2, . . . , r
are its first r − 1 derivatives. Also ζ, η and a, b, c are well
defined vectors and functions respectively (see [4] for further
details).

The approximate sampled data model of interest here is
obtained by using a truncated Taylor series expansion of the
states in normal form.

Definition 3 (Approximate Sampled Data Model): Using
the procedure described in [4], we can obtain an approximate
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sampled-data model for (5)–(6) using (16)–(19), given by

ẑ+
1 = ẑ1 + ∆ẑ2 +

∆2

2
ẑ3 + . . .+

∆r−1

(r − 1)!
ẑr

+
∆r

r!

{
b(ζ̂, η̂) + a(ζ̂, η̂) · u(τ)

} ∣∣
τ=t∆

(19)

ẑ+
2 = ẑ2 + ∆ẑ3 + . . .+

∆r−2

(r − 2)!
ẑr

+
∆r−1

(r − 1)!

{
b(ζ̂, η̂) + a(ζ̂, η̂) · u(τ)

} ∣∣
τ=t∆

(20)

...

ẑ+
r−1 = ẑr−1 + ∆ẑr

+
∆2

2

{
b(ζ̂, η̂) + a(ζ̂, η̂) · u(τ)

} ∣∣
τ=t∆

(21)

ẑ+
r = ẑr + ∆

{
b(ζ̂, η̂) + a(ζ̂, η̂) · u(τ)

} ∣∣
τ=t∆

(22)

η̂+ = η̂ + ∆c(ζ̂, η̂)
∣∣
τ=t∆

(23)

where the output is ŷk = ẑ1,k. (See [4] for further details).
���

It has been shown [4], [5] that the local and global
(modified) truncation errors in the output for this model are
of order ∆r+1 and ∆r respectively, where r is the relative
degree of the system. This implies that E(∆, θo) ∈ O(∆r)
for this specific model.

Remark 4: Note that for r > 1, the model in Section
III-B has smaller output truncation errors than the model
in Section III-A. We will discuss the implications of this
observation in Section V. �

IV. MAXIMUM LIKELIHOOD ESTIMATION

We now return to the problem of estimating of θo. We
assume we are given observations {y0, . . . , yN}. We also
assume that the initial state is known, say the origin. Since,
{vt} is an i.i.d. gaussian sequence, the maximum likelihood
cost function can be written as

JN (θ) =
1

N

N∑
t=1

[yt − ŷt(θ)]2 (24)

We then define

θ̂N = arg min
θ
JN (θ) (25)

We will also be interested in the asymptotic estimate θ∗
defined by

θ∗ = arg min
θ

lim
N→∞

JN (θ) = lim
N→∞

θ̂N (26)

The existence of θ∗ requires the assumption that there exist
well defined limits:

JN (θ)→ J∞(θ) (27)

θ̂N → θ∗ (28)

Note also that θo satisfies

θo = arg min
θ

lim
N→∞

1

N

N∑
t=1

[yt − ỹt(θ)]2 (29)

when the model structure corresponds to the true system, i.e.
ŷt(θ) = ỹt(θ)

In addition we assume that

J ′′∞(θ) ≥ cI, c > 0, ∀θ ∈ B (30)

where B is a neighbourhood that includes θ0 and θ∗.
Our intention is to quantify the estimation error θo − θ̂N .

For this purpose we will establish the following key result:
Theorem 1: Subject to standard regularity conditions and

assuming the output truncation error satisfies E(∆, θ) ∈
O(∆m), then the estimation error θo − θ̂N can be written
as

θo − θ̂N = C(N)

{
1√
N
·A(N) +B(N)

}
(31)

where C(N) ∈ O(1) is such that

lim
N→∞

C(N) ≤ sup
θ∈B
‖J ′′∞(θ)−1‖ ≤ I · 1/c (32)

and where A(N) converges to a normal random variable
having zero mean and covariance

Ω = lim
N→∞

1

N

(
N∑
t=1

Φ̂tΦ̂
T
t

)
σ2 (33)

where

Φ̂t =
∂ŷt
∂θ

∣∣∣∣
θo

(34)

and B(N) is of order ∆m.
Proof: By definition we have

θ̂N = arg min JN (θ)

= arg min
1

N

N∑
t=1

[yt − ŷt(θ)]2 (35)

It follows that

J ′N (θ̂N ) = 0 (36)

Then we can write

J ′N (θ0) = J ′N (θ0)− J ′N (θ̂N )

= J ′′N (ξ)[θ0 − θ̂N ] (37)

where we have used the mean value theorem. Note that

J ′′N (θ) =
1

N

N∑
t=1

2vt

(
−∂2ŷt
∂θ2

) ∣∣∣∣
θ

+
2

N

N∑
t=1

[
{ỹt − ŷt(θ)}

(
−∂2ŷt
∂θ2

) ∣∣∣∣
θ

+

(
∂ŷt
∂θ

)2 ∣∣∣∣
θ

]
(38)
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where

J ′′∞(θ) = lim
N→∞

J ′′N (θ)

= lim
N→∞

1

N

N∑
t=1

2

[
{ỹt − ŷt(θ)}

(
−∂2ŷt
∂θ2

) ∣∣∣∣
θ

+

(
∂ŷt
∂θ

)2 ∣∣∣∣
θ

]
∈ O(1) (39)

For convenience, we define

C(N) = J ′′N (ξ)−1 (40)

and (33) follows from the assumptions. From (38)

(θ0 − θ̂N ) = C(N)

[
1

N

N∑
t=1

(yt − ŷt(θ0))

]
Φ̂t(θ0) (41)

= C(N)
1

N

N∑
t=1

[vt + ỹt(θ0)− ŷt(θ0)]Φ̂t(θ0)

(42)

= C(N)

{
1√
N

[
1√
N

N∑
t=1

vtΦ̂t(θ0)

]

+
1

N

N∑
t=1

[ỹt(θ0)− ŷt(θ0)] Φ̂t(θ0)

}
(43)

We now define

A(N) =
1√
N

N∑
t=1

vtΦ̂t(θ0) (44)

B(N) =
1

N

N∑
t=1

[ỹt(θ0)− ŷt(θ0)] Φ̂t(θ0) (45)

A standard result, e.g. [7], [8], shows that A(N) converges
to a normal random variable as stated in the theorem. On the
other hand, it is easy to see that

|B(N)| =

∣∣∣∣∣ 1

N

N∑
t=1

(ỹt(θ0)− ŷt(θ0))Φ̂t(θ0)

∣∣∣∣∣ (46)

≤

√√√√ 1

N

N∑
t=1

|ỹt(θ0)− ŷt(θ0)|2

√√√√ 1

N

N∑
t=1

|Φt|2 (47)

≤ KE(∆, θ0) (48)

which completes the proof.
�

V. FINITE DATA LENGTH INTERPRETATION

The quantification given in Section IV is asymptotic in N .
In practice one can use this result to motivate a quantification
of the error for finite N as:

MSE ≈
∣∣∣ lim
N→∞

C(N)
∣∣∣2 · |B(N)|2

+
1

N
· trace

{
lim
N→∞

C(N)

(
1

N

N∑
t=1

Φ̂Tt Φ̂t

)
C(N)Tσ2

}
(49)

where |B(N)|2 ∈ O(∆2m).
Moreover, we have seen that, for fixed N , E(∆, θ∗) ∈

O(∆) for the model of Section III-A and E(∆, θ∗) ∈ O(∆r)
for the model of Section III-B.

The expression (50) shows that |B(N)|2 represents a lower
bound on the achievable MSE no matter how much data
we collect. In particular, there is no point choosing an N
such that the second term (variance) is much smaller that
the inescapable bias term.

Thus, if one can collect as much data as one likes, then
it is preferable to use the model presented in Section III-B
since the bias error is smaller than if the Euler model were
to be used for a given sampling period.

VI. CONCLUSIONS

This paper has examined the question of bias-variance
tradeoffs when estimating the parameters of continuous time
models using sampled data. We have shown that when
approximate sampled data models are used then bias errors
result which place an inescapable lower bound on the estima-
tion accuracy no matter how much data is collected. We have
also shown that this lower bound can be reduced by using
models other than those based on simple Euler integration.
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