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Abstract—An adaptive energy-efficient control allocation 
(A-EECA) is developed for planar motion control of electric 
ground vehicles (EGVs) with four in-wheel motors.  Different 
from distribution processes in previous EECA designs [19][28], 
which needed to instantaneously solve nonlinear (even 
non-convex) optimization problems at each sampling time, this 
adaptive EECA approach can make distributed control 
actuation gradually converge to energy-optimal operating 
points.  The consequent advantages are reflected in both low 
computational cost and free selections of initial conditions. 
Based on experimental data and some reasonable assumptions 
on the efficiencies of in-wheel motors, the adaptive EECA 
dictates different torque distributions to all the EGV wheels 
based on their different efficiencies.  Simulation results of 
different maneuvers indicate that much less energy and 
computational cost are consumed when the adaptive EECA 
scheme is applied for controlling the planar motion of an EGV. 

I. INTRODUCTION 
LECTRIC ground vehicles (EGVs) have attracted 
increasing attention from both industrial and academic 

communities recently.  On one hand, electrical machines and 
energy management technologies involved in hybrid 
electrical vehicles (HEVs) and plug-in hybrid electrical 
vehicles (PHEVs) have become mature, which could be 
heuristically applied to EGVs.  On the other hand, high 
energy-density and power-density batteries and in-wheel 
motors with fast and accurate torque control capabilities offer 
other opportunities for the development of pure EGVs with 
four independently actuated in-wheel motors [1]-[4]. 

In conventional vehicle powertrain architectures, even for 
HEVs and PHEVs, driving and braking actions of different 
wheels are coupled by mechanical transmissions and/or 
differentials. Comparably, EGVs with independently 
actuated (driving and regenerative braking) in-wheel motors 
can provide a unique advantage of higher control flexibility 
[20][30][31] and other consequent potentials, such as 
real-time tire-road friction coefficient estimation independent 
of vehicle longitudinal motion [5].  However, this unique 
configuration also brings a more challenging problem of 
control because an EGV with four independently-actuated 
in-wheel motors is an over-actuated system, where the 
number of actuators is greater than the system degrees of 
freedom [6][7].  For over-actuated systems, control allocation 
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(CA) is a common approach to distribute desired virtual 
controls to all the available actuators within their respective 
constraints [3][4].  Many CA algorithms, which were usually 
formulated as numerical optimization problems, were applied 
to ground vehicles.  Plumlee et al. [11] applied CA to a 
linearized vehicle model in order to track a desired yaw rate 
trajectory, which was solved based on quadratic 
programming (QP).  Wang et al. [4] improved a QP-based 
CA algorithm for coordinated vehicle dynamic control by 
considering vehicle operating condition and tire-road friction.  
Moreover, Tagesson et al. [12] compared two numerical CA 
algorithms, active-set and primal-dual interior point, for the 
real-time performance when they were applied to the yaw 
motion control of heavy vehicles.  The aforementioned CA 
applications on vehicles all solve optimal CA problems at 
instantaneous time, which however require considerably high 
computational costs.   

Given virtual control information offline, Gerard and 
Verhaegen [13][14] suggested that tire force distributions in a 
two-layer chassis control law were not necessarily optimized 
at each time step, but trended in the optimal direction for a 
convex CA problem. Tjønnås and Johansen [15][16] 
developed a general adaptive CA algorithm that largely save 
computational cost based on a Lyapunov method, with 
applications on brake control to achieve yaw stabilization of a 
vehicle for extreme maneuvers.  Liao et al. [8][18] extended 
the adaptive CA work to nonlinear systems with internal 
dynamics with applications on a non-minimum phase aircraft 
system. 

Within the aforementioned vehicle applications, the 
adopted CA algorithms, adaptive or non-adaptive, rarely 
considered energy optimization during virtual control 
distributions, though different vehicle performances were 
achieved.  Since minimum actuation magnitudes for actuators 
do not necessarily lead to minimum power consumption due 
to actuators’ efficiency characteristics, the authors [19][28] 
proposed an energy-efficient control allocation (EECA) 
scheme to simultaneously achieve energy optimization as 
well as desired vehicle dynamics control.  However, previous 
EECA methods [28] needed to instantaneously solve complex 
non-convex optimization problems to distribute torques, 
which is challenging to be implemented due to limited 
computational capacities on EGVs.  Based on the adaptive 
CA [16][17], the proposed adaptive EECA with a modified 
slack parameter, which is novelly introduced to guarantee 
equality conditions for working-mode selections of in-wheel 
motors, can make torque distributions gradually converge to 
energy-optimal operating points while maintaining EGV’s 
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planar motion control. It requires less computational cost and 
is more feasible for real vehicle implementations. 

The remainder of this paper is organized as follows.  In 
section II, a control-oriented model for vehicle planar motion 
and a higher-level sliding mode controller are reviewed.  The 
adaptive EECA is developed in section III.  In section IV, 
co-simulations with Simulink and CarSim are applied for 
different vehicle maneuvers in order to verify savings on both 
energy and computational cost of the adaptive EECA.  
Conclusive remarks are presented in section V. 

II. VEHICLE MODEL AND HIGH-LEVEL CONTROLLER 
For self-completeness, a control-oriented model for EGV 

planar motion and a higher-level sliding mode controller 
(SMC) are reviewed in this section.  Descriptions in detail are 
referred to [28]. 
A. EGV control-oriented model for planar motion 

 
Figure 1. Coordinates for planar motions of EGV. 

Figure 1 displays the EGV planar motion coordinates 
(longitudinal, lateral, and yaw). Let xvx 1 , yvx 2  and

rx 3 , a nonlinear control-oriented model is obtained as 

follows [28]. 
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Moreover, the virtual control dv  is expressed as 

 1 2 3

T

dv v v v Bu  , (2) 

with 

1 2 3

TT T T
x v eff x v eff x z effB m R m R I R      , 

 1 2 3 4

T
u T T T T . 

B. Higher-level sliding mode control 
In order to track the desired planar motions, a hierarchical 

control strategy consisting of a higher-level SMC and a 
lower-level adaptive EECA algorithm is adopted.  The SMC 
offers the generalized forces/moments (virtual control) 
required to track the desired vehicle planar motions and 
accommodates uncertainties involved in vehicle dynamics.   

For the control-oriented model (1), the SMC design is 
partitioned into three single-input-single-output systems 
since the virtual control inputs are decoupled. Furthermore, 
by considering a potential problem of yaw rate error 
accumulation due to chattering effects of SMC design, the 
modified three virtual control signals are directly displayed in 
the following [28]. 
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where the sliding surfaces are denoted by ms  1, 2,3m  .  

Within the above equations, the control gain 0mk   can be 

appropriately selected to address the parameter uncertainties. 

mrx  represents the reference longitudinal, lateral speed, and 

yaw rate, respectively.  The estimated lateral friction force 

ŶF  is calculated based on a Magic Formula tire model [22], 

which is generally accepted as a fairly accurate model and 
widely adopted in vehicle dynamical simulations and 
analyses [23][24][27]. Angular acceleration   can be 
estimated through Kalman filters for noisy angular velocities 
measured from four independent wheel-speed sensors.  
Saturation function  sat   instead of  sign   function is 

applied to reduce chattering effects in practical 
implementation of the control laws [25][26].  Thus, the 
control laws shown in (3), (4) and (5) ensure the EGV planar 
motion tracking. 

III. ADAPTIVE EECA DESIGN 
Based on the virtual control expression (2), the EECA 

problem is formulated as follow, 

      cdav
T

dae PvuuBWvuuBJ  ''
2

1
min

 

s.t.  

  

min max

min max' ' '

' 0, 1, , 4i i

u u u
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u u i 
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(6) 

where the virtual actuators ' ' ' '
1 2 3 4'

T
u T T T T     are 

introduced to represent in-wheel motor regenerative braking 
torques.  The control effectiveness matrix is represented as 
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 aB B B . vW  and   are a positive definite weighting 

matrix and a weighting factor, respectively.  The above 
constraints apply to the real and virtual actuators 
component-wisely.  The introduction of virtual actuators and 
the division of control effect into driving/braking cases ( '/uu
) are due to their different power consumptions and 
efficiencies [19][30].  Compared with the EECA formulation 
in [20][28], the equality constraints in (6), which ensure that 
only one operating mode is assigned to an actuator at any 
given time instant, are all modified with a small constant 
slack number 0  for developing the adaptive control law 
shown as follows. 

Within (6), the total power consumption of four in-wheel 
motors for dual operating modes is formulated as 
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Here, oiP  denotes the output power at the energy consuming 

mode and iiP  is the input power at the energy gaining mode.  

The actuator efficiencies at energy consuming and gaining 
modes are represented by oi  and ii , respectively. The 

energy gaining mode is inferred by the minus sign in (7).  
Before the main result is shown, two preliminary definitions 
are introduced first.  

Define the corresponding Lagrangian function for (6) as, 
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 where     jjj uuuuC min1 ',  ,     jjj uuuuC  max2 ', , 

    jjj uuuuC min3 ''',   and     jjj uuuuC ''', max4 

 1, , 4j   .  1 2 3 4

T      is the vector of 

Lagrangian multipliers. 0   is a constant for logarithm 

barrier functions.  The two front tire steering angles fl  and 

fr  are equal to the steering angle  because of the small 

ratio between the vehicle track and wheelbase. 
Since local minima of (8) satisfy the first-order optimality 

conditions [21], an optimal set *E  is defined as 
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Note that 0 L in the definition of *E  guarantees 

equality constraints in (6).  When the optimal set is reached, 

iu   (or 'iu   ) is compatible with the other two optimal 

conditions 0L u   and ' 0L u   .  If the slack number is 

not adopted, 0iu   (or ' 0iu  ) will make the L u   (or 

'L u  ) go to infinity due to the derivatives of the logarithm 

barrier functions with common boundary values 

min max' 0u u  .  The relationship between the original 

nonlinear optimization problem (6)-(7) and the two preceding 
definitions is shown through the following lemma. 
Lemma 1 The problem (6)-(7) achieves local minima if and 
only if the optimal set *E  is reached. 
Proof: The necessity is obvious based on the first 

necessary optimal condition [21].  The sufficiency can be 
obtained by observing the second derivatives 2 2 0L u     

and 2 2' 0L u    from the expressions shown in the 

Appendix.  According to the perturbation theory for real 
symmetric matrices [29], the bounded power and boundary 
related terms can be all dominated by the positive definite 
matrix T

vB W B  by suitably selecting certain small positive 

numbers   and  .  Thus, the sufficiency is guaranteed by 

the second-order sufficient condition [21].       ■ 
Theorem 1   *, ',u u E   as t   when the following 

update laws for control inputs and Lagrangian multipliers are 
adopted: 
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where 1 1 0T    , 2 2 0T    , and 3 3 0T     are 

constant matrices.  Vectors  ,  , and   are defined as 

2 2 2

2

2 2 2

2

2 2

'

' ' ' ' '

0
'

T T

T T

T T

L L L
L L

u u u u
u u

L L L L L
H

u u u u u u
L L

L L

u u








 
 

                
                  

                                                                   




 

 

 

 

(11) 

and 1 , 2 , and 3 are vectors satisfying the following scalar 

time-varying algebraic equation 

1 2 3 0T T T          . (12) 
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Proof: A control Lyapunov function candidate is defined 
as 
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From the expressions of T , T , 
T and  in (11) and (13), 

V  in (15) is rewritten as 

 , , , , ', 'T T T
d iV x v u u u u            . 

Substituting (10) and (12) in, 

  1 2 3, , , , ', T T T
d iV x v u u               

the proof is completed by showing the H matrix is 
non-singular, which guarantees the equivalence between 

, ,    and , ',L u L u L       .  Based on the expressions 

shown in Appendix, the determinant of H is represented as 
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Since 2 2 0L u   , 2 2' 0L u    (as shown in Lemma 1 

proof) and 0T
vB W B  , nonzero determinant of matrix H is 

guaranteed because 4 1u I   and 4 1'u I   cannot be zeros 

simultaneously  when 0dv  .            ■ 

Remarks: Following Lemma 2 in [17], one common 
approach to make the scalar time-varying algebraic equation 
(12) always hold is to solve the corresponding least-square 
problem.  Define a new Lagrangian function with a 
Lagrangian multiplier 
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Through the first-order optimality conditions 01  mL    
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Thus, when  ,   and   are not all zeros, equation (17) and 

consequently (12) has a unique solution.  In the case of 
0  , the trivial solutions are defined by 

0321   . 

IV. SIMULATION RESULTS AND DISCUSSIONS 
In this section, different maneuvers are simulated to verify 

the effectiveness of the adaptive EECA algorithms. The 
power consumptions, computational cost, and torque 
distributions are compared with those of standard CA 
methods, in which the magnitude of control were often 
minimized during CA process [3][8][13][18]. 

The experimental data for driving and regenerative braking 
efficiencies of in-wheel motors are first described as follows.  

 
Figure 2.  Driving and regenerative braking efficiency curve 
fitting of an in-wheel BLDC motor based on experimental data. 

As shown in Figure 2, the driving and regenerative braking 
efficiencies of one in-wheel motor,  Td  and  'b T , are 

expressed by fitting two groups of a BLDC in-wheel motor 
experimental data at a constant rotational speed. 
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Constant coefficients are represented by lp , 1, ,5l    and 

jp' .  Note that although the motor speed may also affect the 

motor efficiency, the efficiency curves are similar within a 
large range of motor rotational speeds based on experimental 
tests [28].  Moreover, the regenerative braking efficiency 
curve is always lower than the driving efficiency, which is 
reasonable for a real in-wheel motor and more experimental 
data can be found in [30]. 

Table 1 Simulation Parameters 

Symbol Values Symbol Values 

1p  -7.2888e-5 vm  800 kg 

2p  1.8023e-5 zI  729 

3p  -0.0016099   1e-3 

4p  0.057038 effR  0.312 m 

5p  0.16446 J  1.4 

1'p  3.5227e-6 aC  0.37 

2'p  -0.00061109 fl  0.85 m 

3'p  0.034213 sl  0.7 m 

4'p  0.010455 rl  1.04 m 
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All the simulation parameters are displayed in Table 1. 
Moreover, different working conditions/health status will 
make the four in-wheel motors’ efficiencies different besides 
the manufacturing processes.  Although the differences may 
not be huge under normal operations, four identical 
efficiencies in-wheel motors cannot be assumed. Without loss 
of generality, both driving and regenerative braking 
efficiencies of two rear in-wheel motors are scaled by 0.8 
respectively to conveniently explain the simulation results. 

The power functions oiP  ( iiP ) in (7) are written as 

;oi i i ii i iP T P T   ,                                                          (19) 

where the rotational wheel speeds can be measured through 
four independent wheel speed sensors. 

A combined maneuver of the EGV first contains an 
acceleration process from 20 km/h to 30 km/h within 10 
seconds. Then a single lane change (SLC) is commanded at a 
constant speed from the 20th second to the 30th second. 
Finally, the vehicle speed is decelerated to 20 km/h from the 
40th second to the 50th second. The control results and torque 
distributions by using the adaptive EECA are shown in Figure 
3 and Figure 4, respectively. 

 
Figure 3.  Tracking control effect of planar motion and virtual 
control for the adaptive EECA.  

 
Figure 4.  Torque distributions under the adaptive EECA 
scheme.  

From Figure 3, the desired longitudinal, lateral speed and 
yaw rate are tracked well under the high-level SMC. The 

virtual controls generated by the SMC are distributed to four 
in-wheel motors by the adaptive EECA to optimize the total 
power consumptions (7).  As shown in Figure 4, during the 
acceleration period, two front high-efficiency motors exert 
larger driving torques than two rear low-efficiency motors to 
reduce overall power consumptions.  Note that a transient 
process is shown before reaching a steady state distribution.  
In the deceleration period, two front motors also absorb 
higher power by exerting larger regenerative braking torques 
than two rear motors.  During the SLC maneuver, the 
high-efficiency front motors are always distributed with 
larger driving torques than the low-efficiency rear motors for 
optimal power consumptions. 

 
Figure 5.  Torque distributions under the standard CA 
algorithm.  

Although the standard CA algorithm can also give good 
tracking results, similar to the results shown in Figure 3, the 
driving/braking torques are just equally distributed to the four 
or two motors according to the motion requirements, as 
shown in Figure 5. This torque distribution scheme, which 
does not consider different efficiencies of actuators, cannot 
guarantee optimal power consumption during EGV planar 
maneuvers.  Figure 6 illustrates this point. 

 
Figure 6.  Power consumption comparison between the standard 
CA and the adaptive EECA.  

Figure 6 shows instantaneous power consumptions for both 
the standard CA and the adaptive EECA during the 50 
seconds. By integrating the instantaneous power 
consumptions along time for the 50 seconds, the total energy 
consumes in the standard CA procedure is 67.15 kJ, which is 
larger than that consumed in the adaptive EECA case, 61.76 
kJ by 9%.  It is clear that the adaptive EECA consumes less 
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power at the most time period.  It is expected that the energy 
saving will accumulatively increase and become considerable 
as the travel time is prolonged.  Moreover, under the same 
simulation conditions, the computational time for the 
adaptive EECA is about 50 seconds, while the time for the 
standard CA is about 36 minutes, which is about 40 times 
slower than the adaptive EECA. 

APPENDIX 
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V. CONCLUSIONS AND FUTURE WORK 
This paper proposes an adaptive EECA for planar motion 

control of an EGV, actuated by four independently in-wheel 
motors. Different maneuvers are tested for the comparison of 
power consumption, computational cost, and torque 
distribution between the standard and the adaptive EECA.  In 
order to asymptotically optimize power consumptions during 
planar motion maneuvers, the EECA dictates different torque 
distributions on in-wheel motors with different efficiencies 
compared with the standard CA method.  Thus, less energy 
and computational cost are consumed when the adaptive 
EECA is applied.  The future work includes experimental 
validation and robustness analyses of the control algorithms.  
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