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Abstract— We develop a novel framework for formulating a
class of stochastic reachability problems with state constraints
as a stochastic optimal control problem. Previous approaches to
solving these problems are either confined to the deterministic
setting or address almost-sure stochastic notions. In contrast, we
propose a new methodology to tackle probabilistic specifications
that are less specific than almost sure requirements. To this
end, we first establish a connection between two stochastic
reach-avoid problems and a class of stochastic optimal control
problems for diffusions with discontinuous payoff functions.
We then derive a weak version of dynamic programming
principle (DPP) for the value function. Moreover, based on
our DPP, we give an alternate characterization of the value
function as the solution to a partial differential equation in the
sense of discontinuous viscosity solutions. Finally we validate
the performance of the proposed framework on the stochastic
Zermelo navigation problem.

I. INTRODUCTION

Reachability is a fundamental concept in the study of

dynamical systems, and in view of applications of this con-

cept ranging from engineering, manufacturing, biology, and

economics, to name but a few, has been studied extensively in

the control theory literature. One particular problem that has

turned out to be of fundamental importance in engineering

is the so-called “reach-avoid” problem. In the deterministic

setting this problem consists of determining the set of initial

conditions for which one can find at least one control strategy

to steer the system to a target set while avoiding certain

obstacles. The set representing the solution to this problem is

known as capture basin [1]. This problem finds applications

in, air traffic management [23], security of power networks

[16]. A direct approach to compute the capture basin is

formulated in the language of viability theory in [9], [11].

Related problems involving pursuit-evasion games are solved

in, e.g., [2], [20] employing tools from non-smooth analysis,

for which computational tools are provided by [11].

An alternative and indirect approach to reachability in-

volves using level set methods defined by value functions that

characterize appropriate optimal control problems. Employ-

ing dynamic programming techniques for reachability and

viability problems in the absence of state-constraints, these

value functions can in turn be characterized by solutions

to the standard Hamilton-Jacobi-Bellman (HJB) equations
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corresponding to these optimal control problems [22], [25].

Numerical algorithms based on level set methods were devel-

oped by [28] and have been coded in efficient computational

tools by [25], [26]. Extending the scope of this technique, the

authors of [18] and [24] treat the case of time-independent

state constraints and characterize the capture basin by means

of a control problem whose value function is continuous.

In the stochastic setting, different probabilistic analogs of

reachability problems have been studied extensively: Almost-

sure stochastic viability and controlled invariance are treated

in [1], [4], [6]; see also the references therein. Methods in-

volving stochastic contingent sets [3], [4], viscosity solutions

of second-order partial differential equations [5], [6], and

derivatives of the distance function [13] were developed in

this context. In [14] the authors developed an equivalence

for the invariance problem between a stochastic differential

equation and a certain deterministic control system Following

the same problem, the authors of [29] studied the differential

properties of the reachable set based on the geometrical

partial differential equation which is the analogue of the HJB

equation for this problem.

Although almost sure versions of reachability specifica-

tions are interesting in their own right, they may be too

strict a concept in some applications. For example, in the

safety assessment context, a common specification involves

bounding the probability that undesirable events take place.

Motivated by this, in this article we develop a new framework

for solving the following stochastic reach-avoid problem:

Given p ∈ [0, 1], a horizon T > 0, and two disjoint

sets A,B ⊂ R
n, construct, if possible, a policy such that

the controlled processes reaches A prior to entering B with

probability at least p within the interval [0, T ]. Observe that

this is a significantly different problem compared to its

almost-sure counterpart referred to above. It is of course

immediate that the solution to the above problem is trivial

if the initial state is either in B (in which case it is almost

surely impossible) or in A (in which case there is nothing to

do). However, for generic initial conditions in R
n \ (A∪B),

due to the inherent probabilistic nature of the dynamics, the

problem of selecting a policy and determining the probability

with which the controlled process reaches the set A prior to

hitting B is non-trivial.

In this article we establish a connection between the

stochastic reach-avoid problems and a stochastic optimal

control problem with discontinuous payoff functions. In a

fashion similar to [8], we propose a weak version of the

dynamic programming principle (DPP) which avoids the

technical difficulties related to the measurability of value

functions. To this end, the proposed approach imposes fairly
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mild conditions on the system dynamics and the sets, namely,

a non-degeneracy of the diffusion term and an interior cone

condition, respectively. In the sequel, we will derive the

dynamic programming equation in the sense of viscosity

solutions based on our weak DPP. As a by-product of our

work, we shall also address the related issue determining

whether there exists a policy such that with probability at

least p the controlled processes resides in A at time T while

avoiding B on the interval [0, T ].
In §II we introduce the two stochastic reach-avoid prob-

lems dealt with in this article. §III provides a connection

between the stochastic reach-avoid problems and a class

of stochastic optimal control problems. In §IV we first

establish a DPP corresponding to the value function, and

characterize it as the (discontinuous) viscosity solution of

a partial differential equation. §V presents a connection

between §III and §IV and solves the stochastic reach-avoid

problem in a “ε-conservative” sense. One may observe that

this ε-precision can be made arbitrarily small. Throughout the

article, we skip all the proofs of Propositions and Theorems

and refer the reader to [27] for the detailed proofs. To

illustrate the performance of our techniques, the theoretical

results developed in preceding sections are applied to solve

the stochastic Zermelo navigation problem in §VI.

II. PROBLEM STATEMENT

Consider a probability space (Ω,F ,P) whose filtration

F = (Fs)s≥0 is generated by a n-dimensional Brownian

motion (Ws)s≥0 adapted to F. Let the natural filtration of

the Brownian motion (Ws)s≥0 be enlarged by its right-

continuous completion; — the usual conditions of complete-

ness and right continuity, and (Ws)s≥0 is a Brownian motion

with respect to F. Let U ⊂ R
m be a control set, and let

U denote the set of F-progressively measurable maps into

U.1 The basic object of our study concerns the R
n-valued

stochastic differential equation (SDE)

dXs = f(Xs, us) ds+ σ(Xs, us) dWs, s ≥ 0, (1)

where X0 = x given, f : Rn×U −→ R
n and σ : Rn×U −→

R
n×n are measurable maps, (Ws)s≥0 is the above standard

n-dimensional Brownian motion, and u := (us)s≥0 ∈ U .

Assumption 2.1: We stipulate that

a. U ⊂ R
m is compact;

b. f is continuous and Lipschitz in its first argument uni-

formly with respect to the second;

c. σ is continuous and Lipschitz in its first argument uni-

formly with respect to the second.

It is known [7] that under Assumption 2.1 there exists a

unique strong solution to the SDE (1). By definition of the

filtration F, we see that the control functions u ∈ U satisfy

the non-anticipativity condition [7]—to wit, the increment

Wt−Ws is independent of the past history {Wy, uy | y ≤ s}
1Recall [15, Chapter IV] that a U-valued process (yt)t≥0 is F-

progressively measurable if for each T > 0 the function Ω × [0, T ] �
(ω, t) �→ y(ω, t) ∈ U is measurable, where Ω × [0, T ] is equipped with
F ⊗ B([0, T ]), U is equipped with B(U), and B(S) denotes the Borel
σ-algebra on a topological space S.

of the Brownian motion and the control for every s ∈ [0, t[
(In other words, u does not anticipate the future increment

of W ). We let (Xt,x;u
s )s≥t denote the unique strong solution

of (1) starting from time t at the state x under the control

policy u. We denote by T the collection of all F-stopping

times. For τ1, τ2 ∈ T with τ1 ≤ τ2 P-a.s. the subset T[τ1,τ2]
is the collection of all F-stopping times τ that τ1 ≤ τ ≤
τ2 P-a.s. and are conditionally independent of Fτ1 given

(τ1, X
t,x;u
τ1 ). We also denote by Uτ the collection of all

processes u ∈ U which are conditionally independent of

Fτ given (τ,Xt,x;u
τ ). Measurability on R

n will always refer

to Borel-measurability. In the sequel the complement of a

set S ⊂ R
n is denoted by Sc.

Definition 2.2 (First entry time): Given a control u, the

process (Xt,x;u
s )s≥t, and a measurable set A ⊂ R

n, we

introduce2 the first entry time to A:

τA(t, x) = inf{s ≥ t
∣∣ Xt,x;u

s ∈ A}. (2)

In view of [17, Theorem 1.6, Chapter 2], τA(t, x) is an

F-stopping time.

X(1)

A
B

Rn

x0

X(2)

X(3)

Fig. 1. The trajectory X(1) hits A prior to B within time [0, T ], while
X(2) and X(3) do not; all three start from initial state x0.

Given an initial condition (t, x), we define the set

RA(t, p;A,B) (resp. R̃A(t, p;A,B)) as the set of all ini-

tial conditions such that there exists an admissible control

strategy u ∈ U such that with probability more than p the

state trajectory Xt,x;u
s hits the set A before set B within the

time (resp. at the time) horizon T .

Definition 2.3 (Reach-Avoid within the interval [0, T ]):

RA(t, p;A,B) :=
{
x ∈ R

n
∣∣∣ ∃u ∈ U : p <

Pu
t,x

(
∃s ∈ [t, T ], Xt,x;u

s ∈ A and ∀r ∈ [t, s] Xt,x;u
r /∈ B

)}
.

Definition 2.4 (Reach-Avoid at the terminal time T ):

R̃A(t, p;A,B) :=
{
x ∈ R

n
∣∣∣ ∃u ∈ U :

p < Pu
t,x

(
Xt,x;u

T ∈ A and ∀r ∈ [t, T ] Xt,x;u
r /∈ B

)}
.

We have suppressed the initial condition in the above

probabilities, and will continue doing so in the sequel. A

pictorial representation of our problems is in Figure 1.

2By convention, inf ∅ = ∞.
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III. CONNECTION TO STOCHASTIC OPTIMAL CONTROL

PROBLEM

In this section we establish a connection between the

stochastic reach-avoid problems and a stochastic optimal

control problem. Consider the value functions V, Ṽ : [0, T ]×
R

n → R defined as follows:

V (t, x) := sup
u∈U

E
[
1A(X

t,x;u
τ )

]
, τ := τA∪B ∧ T, (3a)

Ṽ (t, x) := sup
u∈U

E
[
1A(X

t,x;u
τ̃ )

]
, τ̃ := τB ∧ T. (3b)

where ∧ denotes the minimum operator. Here τA∪B is the

hitting time introduced in Definition 2.2, and depends on

the initial condition (t, x). Also note that for a measurable

function f : Rn → R hereinafter E
[
f
(
Xt,x;u

τ

)]
stands for

conditional expectation with initial condition (t, x) given and

under the control u. For notational simplicity, we drop the

initial condition in this section.

In our subsequent work, measurability of the functions V
and Ṽ turn out to be irrelevant; see Remark 4.5 for details.

The first result of this section, Proposition 3.2, asserts

that E
[
1A(X

t,x;u
τ )

]
= Pu

t,x

(
τA < τB , τA ≤ T

)
. Since

τA and τB are F-stopping times, it then indicates mapping

(t, x) �→ E
[
1A(X

t,x;u
τ )

]
is well-defined. Furthermore, the

similar results can be deduced for the other reachability

problem introduced in Definition 2.4 and the value function

(3b).

Assumption 3.1: The sets A and B are disjoint and closed.

Proposition 3.2: Consider the system (1), and let A,B ⊂
R

n be given. Under Assumptions 2.1 and 3.1 we have

RA(t, p;A,B) = {x ∈ R
n | V (t, x) > p},

where the set RA is the set defined in Definition 2.3 and V is

the value function defined in (3a).

We state the following proposition concerning assertions

identical to those of Proposition 3.2 for the reach-avoid

problem of Definition 2.4. The proof follows effectively the

same approach as that of Proposition 3.2.

Proposition 3.3: Consider the system (1), and let A,B ⊂
Rn be given. If the set B is closed, then under Assumption 2.1

we have R̃A(t, p;A,B) = {x ∈ R
n | Ṽ (t, x) > p}, where

the set R̃A is the set defined in Definition 2.4.

IV. ALTERNATIVE CHARACTERIZATION OF

REACH-AVOID PROBLEM

The stochastic control problems introduced in (3) are well-

known as an exit-time problem. In this section we present

an alternative characterization of this class of problems as

the (discontinuous) viscosity solution of a partial differential

equation. To this end, we generalize the value functions to

V (t, x) := sup
u∈Ut

E
[
�
(
Xt,x;u

τ̄(t,x)

)]
, τ̄(t, x) := τO ∧ T, (4)

with the function � : Rn → R being bounded measurable,

and O a measurable set. Note that τO is the stopping time

defined in Definition 2.2 that in case of value function (3a)

can be considered as O = A ∪ B. Note once again that

measurability of the function V is irrelevant to our work;

see Remark 4.5 for details.

Hereafter we shall restrict our control processes to Ut, the

set Ut denotes the collection of all processes u ∈ U which

are conditionally independent of Ft given (t, x). In view

of independence of the increments of Brownian motion, the

restriction of control processes to Ut is not restrictive, and

one can show that the value function in (4) remains the same

if Ut is replaced by U ; see, for instance, [21, Theorem 3.1.7,

p. 132] and [8, Remark 5.2].

Our objective is to characterize the value function (4) as

a (discontinuous) viscosity solution of a suitable Hamilton-

Jacobi-Bellman equation. We introduce the set S := [0, T ]×
R

n and denote the lower and upper semicontinuous en-

velopes of function V : S → R by V∗(t, x) and V ∗(t, x)
respectively, see [19, Definition 4.1, p. 266].

A. Assumptions and Preliminaries

Assumption 4.1: In addition to Assumption 2.1, we stip-

ulate the following:

a. (Non-degeneracy) The controlled processes are uniformly

non-degenerate, i.e., there exists δ > 0 such that for all

x ∈ R
n and u ∈ U, σσ� ≥ δI where σ = σ(x, u) is the

diffusion term in SDE (1).

b. (Interior Cone Condition) There exist positive constants

h, r an R
n-value bounded map η : O → R

n satisfying

Brt

(
x+ η(x)t

)
⊂ O for all x ∈ O and t ∈ (0, h]

where Br(x) denotes an open ball centered at x and

radius r and O stands for the closure of the set O.

c. (Lower Semicontinuity) The function � in (4) is lower

semicontinuous.

Note that if the set A in §III is open, then �( · ) = 1A( · )
satisfies Assumption 4.1.c. The interior cone condition in

Assumption 4.1.b. concerns shapes of the set O.

Let us define the function J : S× U → R:

J
(
t, x;u

)
:= E

[
�
(
Xt,x;u

τ̄(t,x)

)]
, (5)

where the stopping time τ̄ is defined in (4) and depends on

the initial condition (t, x). In the following proposition, we

establish continuity of τ̄(t, x) and lower semicontinuity of

J(t, x,u) with respect to (t, x).

Proposition 4.2: Consider the system (1), and suppose

that Assumptions 2.1 and 4.1 hold. Then for any strategy

u ∈ U , the function (t, x) �→ τ̄(t, x) is continuous P-a.s.

Moreover, the function (t, x) �→ J
(
t, x,u

)
defined in (5) is

uniformly bounded and lower semicontinuous

Remark 4.3: As a consequence of Proposition 4.2, given

(t, x,u) ∈ S× U the function

Ω � ω �→ J
(
θ(ω), Xt,x;u

τ̄(ω) (ω);u
)
∈ R

is P-measurable. �
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B. Dynamic Programming Principle

The following Theorem provides a dynamic programming

principle (DPP) for the exit time problem introduced in (4).

Theorem 4.4 (Exit Time Problem DPP): Consider the

system (1), and suppose that Assumptions 2.1 and 4.1 hold.

Then for every (t, x) ∈ S and for all stopping times θ ∈ T[t,T ],

V (t, x) ≤ sup
u∈Ut

E
[
1{τ̄(t,x)<θ}�

(
Xt,x;u

τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ}V ∗(θ,Xt,x;u

θ

)]
,

(6)

and

V (t, x) ≥ sup
u∈Ut

E
[
1{τ̄(t,x)<θ}�

(
Xt,x;u

τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ}V∗

(
θ,Xt,x;u

θ

)]
,

(7)

where V is the value function defined in (4).

Remark 4.5: The dynamic programming principles in (6)

and (7) are introduced in a weaker sense than the standard

DPP for stochastic optimal control problems [19]. To wit,

note that one does not have to verify the measurability of

the value function V defined in (4) to apply our DPP. �

C. Dynamic Programming Equation

Our objective in this subsection is to demonstrate how the

DPP derived in §IV-B characterizes the value function V as

a (discontinuous) viscosity solution to an appropriate HJB

equation. For the general theory of viscosity solutions we

refer to [12] and [19].

Definition 4.6 (Dynkin Operator): Given u ∈ U, we de-

note by Lu the Dynkin operator/infinitesimal generator as-

sociated to the controlled diffusion (1) as

LuΦ(t, x) := ∂tΦ(t, x) + 〈f(x, u), ∂xΦ(t, x)〉

+
1

2
Tr[σσ�(x, u)∂2

xΦ(t, x)],

where Φ is a real-valued function smooth on the interior

of S, with ∂tΦ and ∂xΦ denoting the partial derivatives with

respect to t and x respectively, and ∂2
xΦ denoting the Hessian

matrix with respect to x.

Theorem 4.7 (Exit Time DPE): Consider the system (1),

and suppose that Assumptions 2.1 and 4.1 hold. Then:

◦ the lower semicontinuous function of V introduced in (4)

is a viscosity supersolution of

− sup
u∈U

LuV∗(t, x) ≥ 0 on [0, T )×O
c
,

◦ the upper semicontinuous function of V is a viscosity

subsolution of

− sup
u∈U

LuV ∗(t, x) ≤ 0 on [0, T )×O
c
,

both with boundary conditions{
V (t, x) = �

(
x
)

∀(t, x) ∈ [0, T ]×O (Lateral),

V (T, x) = �
(
x
)

∀x ∈ R
n (Terminal).

Rn

Aε

B

A

ε

Fig. 2. Construction of the sets Aε from A as described in §V.

V. A CONNECTION BETWEEN THE REACH-AVOID

PROBLEM AND PDE CHARACTERIZATION

In this section we draw a connection between the reach-

avoid problem of §II and the stochastic optimal control

problems stated in §III. To this end, note that on the one

hand, an assumption on the sets A and B in the reach-avoid

problem (Definition 2.3) within the time interval [0, T ] is

that they are closed. On the other hand, our solution to the

stochastic optimal control problem (defined in §III and solved

in §IV) relies on lower semicontinuity of the payoff function

� in (4), see Assumption 4.1.c.

To achieve a reconciliation between the two sets of hy-

potheses, given sets A and B satisfying Assumption 3.1, we

construct a smaller measurable set Aε ⊂ A◦ such that Aε :=
{x ∈ A | dist(x,Ac) ≥ ε} and Aε satisfies Assumption

4.1.b. Note that this is always possible if O := A∪B satisfies

Assumption 4.1.b.—indeed, simply take ε < h/2 to see this,

where h is as defined in Assumption 4.1.b. Figure 2 depicts

this case.

Analytically, we define

Vε(t, x) := sup
u∈Ut

E
[
1A◦

(
Xt,x;u

τε

)]
, τε := τAε∪B ∧ T. (8)

In the following Theorem, we show that the above technique

affords an ε-conservative but precise way of characterizing

the solution to the reach-avoid problem defined in Definition

2.3 in the framework of §IV.

Theorem 5.1: Consider the system (1), and suppose that

Assumptions 2.1, 3.1, 4.1.a. and 4.1.b. hold. Then, for all

(t, x) in S and ε1 ≥ ε2 > 0, we have Vε2(t, x) ≥ Vε1(t, x),
and V (t, x) = limε↓0 Vε(t, x) where the functions V and Vε

are defined as (3a) and (8) respectively.

Observe also that for the problem of reachability at the

time T , defined in Definition 2.4, the above procedure is

unnecessary if the set A is open, see the required conditions

for Proposition 3.3.

VI. NUMERICAL EXAMPLE: ZERMELO NAVIGATION

PROBLEM

To illustrate the theoretical results of the preceding sec-

tions, we apply the proposed reach-avoid formulation to the

Zermelo navigation problem with constraints and stochas-

tic uncertainties. In control theory, the Zermelo navigation

7072



y

x

α

VS

f(x, y)

Avoid set Target

waterfall

Fig. 3. The Zermelo navigation problem: river and waterfall viewed from
above.

problem consists of a swimmer who aims to reach an island

(Target) in the middle of a river while avoiding the waterfall,

with the river current leading towards the waterfall. The

situation is depicted in Figure 3. We say that the swimmer

“succeeds” if he reaches the target before going over the

waterfall, the latter forming a part of his Avoid set.

A. Mathematical modeling

The dynamics of the river current are nonlinear; we let

f(x, y) denote the river current at position (x, y) [10].

We assume that the current flows with constant direction

towards the waterfall, with the magnitude of f decreasing in

distance from the middle of the river: f(x, y) :=
(

1−αy2

0

)
.

This model may not describe the behavior of a realistic

river current, so we consider some uncertainties in the river

current modeled by a diffusion term as σ(x, y) :=
(

σx 0
0 σy

)
.

We assume that the swimmer moves with constant velocity

VS , and we assume that he can change his direction α
instantaneously. The complete dynamics of the swimmer in

the river is given by[
dxs

dys

]
=

[
1− ay2 + VS cos(α)

VS sin(α)

]
ds+

[
σx 0
0 σy

]
dWs, (9)

where Ws is a two-dimensional Brownian motion, and α ∈
]− π, π] is the direction of the swimmer with respect to the

x axis and plays the role of the controller for the swimmer.

B. Reach-Avoid formulation

Obviously, the probability of the swimmer’s “success”

starting from some initial position in the navigation region

depends on starting point (x, y). As shown in §III, this

probability can be characterized as the level set of a value

function, and by Theorem 4.7 this value function is the

discontinuous viscosity solution of a certain differential

equation on the navigation region with particular lateral and

terminal boundary conditions. The differential operator L in

Theorem 4.7 can be analytically calculated as

sup
α∈]−π,π]

LαΦ(t, x, y) = ∂tΦ(t, x, y) + (1− ay2)∂xΦ(t, x, y)

+
1

2
σ2
x∂

2
xΦ(t, x, y) +

1

2
σ2
y∂

2
yΦ(t, x, y)

+ VS‖∇Φ(t, x, y)‖,

where ∇Φ(t, x, y) :=
[
∂xΦ(t, x, y) ∂yΦ(t, x, y)

]
and

the controller value maximizing the Dynkin operator is

α∗(t, x, y) = arctan
(

∂yΦ
∂xΦ

)
(t, x, y).

C. Simulation results

For the following numerical simulations we fix the diffu-

sion coefficients σx = 0.5 and σy = 0.2. We investigate three

different scenarios: First, we assume that the river current is

uniform, i.e., a = 0 m−1s−1 in (9). Moreover, we consider

the case that the swimmer velocity is less than the current

flow, e.g., VS = 0.6 ms−1. Based on the above calculations,

Figure 4(a) depicts the value function which is the numerical

solution of the differential operator equation in Theorem 4.7

with the corresponding terminal and lateral conditions. As

expected, since the swimmer’s speed is less than the river

current, if he starts from the beyond the target he has less

chance of reach the island. This scenario is also captured by

the value function shown in Figure 4(a).

Second, we assume that the river current is non-uniform

and decreases with respect to the distance from the middle of

the river. This means that the swimmer, even in the case that

his speed is less than the current, has a non-zero probability

of success if he initially swims to the sides of the river

partially against its direction, followed by swimming in the

direction of the current to reaches the target. This scenario

is depicted in Figure 4(b), where a non-uniform river current

a = 0.04 m−1s−1 in (9) is considered.

Third, we consider the case that the swimmer can swim

faster than river current. In this case we expect the swimmer

to succeed with some probability even if he starts from

beyond the target. This scenario is captured in Figure 4(c),

where the reachable set (of course in probabilistic fashion)

covers the entire navigation region of the river except the

region near the waterfall.

All simulations were obtained using the Level Set Method

Toolbox [26] (version 1.1), with a grid 101×101 in the region

of simulation.
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