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Abstract— The aim of this paper is to cope with the H∞

control synthesis for time-delay linear systems. We extend the
use of a finite order LTI system, called comparison system to
H∞ analysis and design. Differently from what can be viewed as
a common feature of other control design methods available in
the literature to date, the one presented here treats time-delay
systems control design with classical numeric routines based on
Riccati equation and H∞ theory. An illustrative example and
a practical application involving a 3-DOF networked control
system are presented.

I. INTRODUCTION

Time delay in dynamic systems generally implies on poor

performance, or even instability. For this reason, in the past

decades, there has been a great effort for the development of

efficient control design techniques to cope with time-delay.

See the books [9] and [14], and the survey paper [18]. In this

context the H∞ controller plays a central role of maintaining

the H∞ norm of the transfer function between the external

disturbance and the controlled output below a pre-specified

level γ > 0 for a given value of time delay, keeping the

closed-loop system stable [1].

In the literature, many works have dealt with state feed-

back design in the Riccati equation framework, as for exam-

ple [12] and [20] for the delay independent case, whereas

[6], [7] and [13] address the same design problem by

means of Lyapunov-Krasoviskii functionals, obtaining delay

dependent controllers. For the output feedback problem, [3]

and [8] have proposed delay independent controllers obtained

from the solution of Riccati equations, whereas [5] solved

the same problem using Lyapunov-Krasoviskii functionals.

In the context of delay dependent output feedback design

problems, to the best of our knowledge, much less attention

has been given, see [7].

Our goal is to present delay-dependent design procedure

for output feedback control design. Towards this end we

apply the Rekasius substitution [17] to replace the delay

operator by a rational first order transfer function. The paper

[15] has proposed an useful technique for stability analysis

of time-delay system applying the Rekasius substitution

and the Routh-Hurwitz criterion. In [11], the same problem

has been addressed in the frequency domain, based on the
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celebrated Nyquist criterion. An important consequence of

the Rekasius substitution in [11] is the definition of a finite

order linear time invariant system, called comparison system,

which provides a tight lower bound to the H∞ norm of

the time-delay system, allowing a simple and efficient filter

synthesis algorithm. A comparison system for time-delay

systems was first introduced in the paper [22], yielding one

of the most important results for stability analysis and H∞

norm calculation. Indeed, adopting such a comparison system

approach, the well known Padé approximation is used to

determine linear time invariant systems of increasing but

finite order, allowing the direct determination of stability

margin and bounds for the H∞ norm performance of the

time-delay system.

This paper follows the same stream as [11] and [22]. It is

important to stress that comparing to [11], the present paper

innovates in the following directions:

• The output feedback controller design needs a new

parametrisation from the stabilizing solution of a Riccati

equation (filter) and any feasible solution of a Riccati

inequality (control). It assures the existence of a starting

feasible solution that is essential for the development

of our design method. Moreover, the design procedure,

when compared to the ones already cited, is simpler to

be implemented and provides more accurate results.

• A practical application concerning the control of a 3-

DOF system of sixth order and four control inputs is

presented. It puts in evidence that the proposed method

is well adapted to deal with control-delayed signals

arising in networked control systems.

The notation used throughout is standard. Exclusively, ratio-

nal transfer functions of LTI systems are denoted as

C(sI −A)−1B+D =

[

A B

C D

]

(1)

where all matrices are real and of compatible dimensions.

The maximum singular value is denoted as σ(·).

II. RATIONAL COMPARISON SYSTEM

In this section we present the LTI comparison system in-

troduced in [11] associated to the time-delay system minimal

realization

ẋ(t) = A0x(t)+A1x(t − τ)+E0w(t) (2)

z(t) = Cz0x(t)+Cz1x(t − τ) (3)
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The system state vector is x ∈ R
n, w ∈ R

r is the exogenous

input and z ∈R
q is the output. It is assumed throughout that

x(t) = 0 ∀ t ∈ [−τ,0], and the delay τ ≥ 0 is constant with

respect to time. The basic idea stems from the Rekasius’

substitution which implies that for s = jω with ω ∈ R, the

equality

e−sτ =
1−λ−1s

1+λ−1s
(4)

holds for some λ ∈ R such that ω/λ = tan(ωτ/2). It

is important to notice that for a given pair (λ ,ω) there

exist many τ ≥ 0 satisfying this relation. Based on this we

introduce a rational comparison system associated to (2)-(3):

H(λ ,s) =

[

Aλ E

Cz 0

]

=





0 λ I 0

A0 +A1 A0 −A1 −λ I E0

Cz0 +Cz1 Cz0 −Cz1 0



 (5)

Denoting by T (τ,s) the transfer function of the time-delay

system from the input w to the output z, this LTI system has

been determined in such a way that H(λ , jω) = T (τ, jω)
holds whenever λ ∈ R, τ ≥ 0 and the frequency ω ∈ R are

related by the relation ω/λ = tan(ωτ/2).

A. Stability Analysis

An standard problem consists on the determination of

a time delay τ∗ > 0 such that the system (2)-(3) remains

asymptotically stable for all τ ∈ [0,τ∗). Clearly, the determi-

nation of τ∗ depends upon the poles of the transfer function

T (τ,s), that are the roots of the characteristic equation

∆T (τ,s) = det
(

sI −A0 −A1e−sτ
)

(6)

which is transcendental (whenever τ > 0) and admits, gen-

erally, infinitely many roots. Most of the existing procedures

are based on the detection of the crossings of poles through

the imaginary axis since from the root continuity argument

the poles vary continuously with respect to delay, so that

any root crossing from the left to the right half-plane will

need to pass through the imaginary axis. A comparison

between algorithms to find the position where the roots cross

the imaginary axis is provided by [21]. Another strategy to

the solution of this problem is presented in [11]. Based on

the celebrated Nyquist criterion, a simple graphical test is

performed in order to decide if the system is asymptotic

stable for a given value of the delay. Hence, by increasing

τ ≥ 0, it is possible to determine the value τ∗ corresponding

to the first occurrence of an unstable pole, which defines the

so-called stability margin of the time-delay system.

B. H∞ Norm Calculation

In this section our purpose is to show how to calculate

‖T (τ,s)‖∞ = sup
ω∈R

σ(T (τ, jω)) (7)

for a given τ ∈ [0,τ∗). A line search with respect to

ω ≥ 0 together with a singular value decomposition of

T (τ, jω) is an immediate, although certainly not the best,

way to evaluate the supremum appearing in (7). The pur-

pose of this section is to show that the rational transfer

function H(λ ,s) can be successfully used for H∞ norm

calculation and does not present any inconvenient for lin-

ear control synthesis. In this context, we define the posi-

tive scalar λo = inf
{

λ | Aξ is Hurwitz ∀ξ ∈ (λ ,∞)
}

, assur-

ing that ‖H(λ ,s)‖∞ = supω∈R σ(H(λ , jω)) holds and is

bounded ∀λ ∈ (λo,∞).
Theorem 1: [11] Assume that A0 + A1 is Hurwitz. For

each λ ∈ (λo,∞) define α ≥ 0 such that

α = arg sup
ω∈R

σ(H(λ , jω)) (8)

and determine τ(λ ) from α/λ = tan(ατ/2). If τ(λ )∈ [0,τ∗)
then the inequality ‖H(λ ,s)‖∞ ≤ ‖T (τ(λ ),s)‖∞ holds.

At this point, it is relevant to analyze the previous result

for λ → ∞. The approximation H(λ ,s) ≈ (Cz0 +Cz1)
(

sI −

A0 −A1

)−1
E0 is valid for all |s| finite whenever λ goes to

infinity. In this case, all poles of H(∞,s) are in the open

left hand side of the complex plane and we get τ = 0. As a

consequence, the result provided by Theorem 1 turns out to

be exact since the transfer functions H(∞,s) and T (0,s) are

asymptotically stable, equal and, consequently, ‖H(∞,s)‖∞ =
‖T (0,s)‖∞ <∞. Moreover, notice that we can not discard the

possibility that for some λ ∈ (λo,∞) the value of the time

delay calculated from (8) be such that τ(λ ) /∈ [0,τ∗). In this

case, the lower bound provided by Theorem 1 remains valid

but only in a subset of the interval (λo,∞).
Corollary 1: [11] Assume that A0 + A1 is Hurwitz. For

any given positive parameter γ > ‖H(∞,s)‖∞ there exist λγ ≥
λo > 0 and 0 ≤ τγ ≤ τ∗ such that the inequality

‖H(λ ,s)‖∞ ≤ ‖T (τ,s)‖∞ < γ (9)

holds ∀ λ ∈ (λγ ,∞) whenever the time-delay function τ(λ )
given by Theorem 1 is continuous in the same interval.

From Corollary 1 we know that it is possible to determine

a sub-interval of λ > 0 such that the lower and upper bounds

‖H(λ ,s)‖∞ ≤ ‖T (τ,s)‖∞ < γ hold. It is important to keep in

mind that the determination of the sub-interval defined by

λγ must be done with care due to the eventual occurrence

of multiple solutions α(λ ) to problem (8), which may cause

discontinuities on the associated value of the time-delay τ(λ )
extracted from the nonlinear relationship provided in Theo-

rem 1. From Corollary 1, a numeric procedure to calculate

these bounds is as follows: for each element of a strictly

decreasing sequence λk = {∞, · · · ,λo} the time-delay value

τk = τ(λk) is computed. The index k is increased whenever

−2/λ 2 < dτ(λ )/dλ < 0 at λ = λk and ‖T (τk,s)‖∞ < γ .

When this procedure stops we get λγ = λk−1 and τγ = τk−1.

The existence of the derivative dτ(λ )/dλ < 0 implies the

continuity and monotonicity of τ(λ ) and avoids its sudden

variation with respect to the variation of λ . This allows us

to identify any unboundedness tendency of ‖T (τ(λ ),s)‖∞

and also the stability margin τ∗ since this norm is con-

tinuous within the entire interval (λγ ,∞). The constraint

−2/λ 2 < dτ(λ )/dλ < 0 at λ = λk, inspired by inequality

0 ≤ τ(λ ) < 2/λ , is numerically implemented through the
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simple test 0 < τk −τk−1 < 2(λk−1−λk)/λ 2
k whose accuracy

is controlled by taking |λk+1 −λk| sufficiently small.

Remark 1: The first element of the sequence {λk} can be

chosen as 2/ε , where ε > 0 is such that the norms of the

finite order systems, namely ‖H(2/ε,s)‖∞ and ‖T (0,s)‖∞,

are close to each other, which means that their distance is

within some precision defined by the designer. Such an ε > 0

satisfying this condition always exists.

III. OUTPUT FEEDBACK DESIGN

Consider the minimal realization time-delay system

ẋ(t) = A0x(t)+A1x(t − τ)+B0u(t)+E0w(t) (10)

y(t) = Cy0x(t)+Cy1x(t − τ)+Dyww(t) (11)

z(t) = Cz0x(t)+Cz1x(t − τ)+Dzuu(t) (12)

where, in addition to the assumptions and the variables

defined before, y(t) ∈R
p is the measured signal. The aim of

this section is to design a full order dynamic output feedback

controller with the following structure

˙̂x(t) = Â0x̂(t)+ Â1x̂(t − τ)+ B̂0y(t) (13)

u(t) = Ĉ0x̂(t)+ Ĉ1x̂(t − τ) (14)

where x̂(t) ∈R
n and x̂(t) = 0 ∀ t ∈ [−τ,0]. When connected

to (10)-(12) it yields the regulated output z(t) as

ξ̇ (t) = F0ξ (t)+F1ξ (t − τ)+G0w(t) (15)

z(t) = J0ξ (t)+ J1ξ (t − τ) (16)

where ξ (t) = [x(t)′ x̂(t)′]′ ∈ R
2n is the state and

F0 =

[

A0 B0Ĉ0

B̂0Cy0 Â0

]

, F1 =

[

A1 B0Ĉ1

B̂0Cy1 Â1

]

(17)

G′
0 = [E ′

0, D′
ywB̂′

0], J0 = [Cz0, DzuĈ0] and J1 = [Cz1, DzuĈ1].
The transfer function from the external input w(t) to the

controlled output z(t) is given by

TC(τ,s) =
(

J0 + J1e−τs
)(

sI−F0 −F1e−τs
)−1

G0 (18)

where the subindex “C” indicates its dependence on a

controller of the form (13)-(14). Hence, for a given γ > 0,

the goal is to design a controller such that ‖TC(τ,s)‖∞ < γ
based on the 4n-th order rational comparison system

HC(λ ,s) =

[

Fλ G

J 0

]

=





0 λ I 0

F0 +F1 F0 −F1 −λ I G0

J0 + J1 J0 − J1 0



 (19)

For each λ > 0, the H∞ output feedback design problem is

solved and the corresponding time-delay τ(λ ) is extracted as

indicated in Corollary 1. This is possible because the state

space realization (19) admits an important property that is

the key for output feedback control design. Indeed, applying

the similarity transformation

S =









I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I









(20)

one can rewrite (19) in the equivalent form

HC(λ ,s) =

[

SFλ S−1 SG

JS−1 0

]

=





Aλ BĈ E

B̂Cy Âλ B̂Dyw

Cz DzuĈ 0



 (21)

where the matrices (Aλ ,E,Cz) have been defined in (5), B′ =
[0, B′

0], Cy = [Cy0 +Cy1, Cy0 −Cy1],

Âλ =

[

0 λ I

Â0 + Â1 Â0 − Â1 −λ I

]

, B̂ =

[

0

B̂0

]

(22)

and Ĉ = [Ĉ0 + Ĉ1, Ĉ0 − Ĉ1]. Hence, the controller (13)-

(14) whenever connected to the time-delay system (10)-

(12) produces an LTI comparison system associated to the

regulated output (15)-(16) whose transfer function can be

alternatively determined from the connection of the LTI

comparison system of the system (10)-(12) and the LTI

comparison system of the controller (13)-(14).

At first glance (21) leads to the conclusion that the state

space realization of HC(λ ,s) has the classical structure of

the regulated output. This is true, however, matrices Âλ and

B̂ must be constrained to have the particular structures given

in (22). To circumvent this difficult we firstly propose to

design an LTI full order output feedback controller replacing

the matrices variables (Âλ , B̂,Ĉ) in (21) by general matrices

variables (AC,BC,CC) and solve ‖HC(λ ,s)‖∞ < γ for given

λ > 0 and γ > 0, which is a classical problem in H∞

theory. The second step is to determine a non-singular matrix

V ∈ R
2n×2n such that (Âλ , B̂,Ĉ) = (VACV−1,VBC,CCV−1),

which naturally implies that the regulated output transfer

function of the comparison system remains unchanged. Once

we have the controller at hand, it is simple to verify whether

‖TC(τ(λ ),s)‖∞ < γ holds.

For a given γ > 0, under the usual assumptions C′
zDzu =

0, ED′
yw = 0, DywD′

yw = I and D′
zuDzu = I, imposed just

for simplicity, it is a well known that the existence of a

stabilizing matrix P = P′ > 0 and Π = Π′ > 0 satisfying

Aλ Π+ΠA′
λ +EE ′−Π

(

C′
yCy − γ−2C′

zCz

)

Π = 0 (23)

A′
λ P+PAλ +C′

zCz −P
(

BB′− γ−2EE ′
)

P < 0 (24)

and the spectral radius constraint rs(PΠ)< γ2 is a necessary

and sufficient condition for the existence of a full order LTI

controller (depending on λ ) such that ‖HC(λ ,s)‖∞ < γ . In

the affirmative case, the desired controller has the state space

realization defined by matrices in (41) and (42) (see, for

instance, [4] and [25] for more details).

Lemma 1: For λ > 0 large enough, the stabilizing positive

definite solution of (23) and any positive definite feasible

solution of (24) exhibit the structures

Π =

[

Z λ−1Q

λ−1Q′ λ−1W

]

,P−1 =

[

Y +R −R

−R R

]

(25)

where Z > 0, W > 0, Q, Y > 0, R > 0 are n× n matrices.

Proof: See the Appendix.
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Theorem 2: Consider γ > minC ‖HC(∞,s)‖∞. For λ > 0

large enough the relations ‖HC(∞,s)‖∞ = ‖TC(0,s)‖∞ < γ
hold.

Proof: It follows from (25) and the controller parametri-

sation given in the Appendix.

An important point concerning the controller design is how

to obtain a suitable similarity transformation V ∈ R
2n×2n.

Notice that V must put AC and BC in the appropriate form.

Moreover it might guarantee that the closed-loop system is

stable since V does not define a similarity transformation for

the time-delay system.

Lemma 2: [11] Assume that dim(y) = p ≤ n = dim(x),
λ > 0 and the matrix

V =

[

N

λ−1NAC

]

∈ R
2n×2n (26)

where N′ ∈ R
2n×n belongs to the null space of B′

C is non-

singular. Then (Âλ , B̂,Ĉ) = (VACV−1,VBC,CCV−1) holds.

An important fact is the influence of the similarity transfor-

mation V in (26) as λ → ∞. Partitioning matrix N = [N1 N2],
where N1 is assumed to be non-singular, making use of

Lemma 1 the similarity transformation (26) yields

C∞(s) =

[

N1AC0N−1
1 N1BC0

CC0N−1
1 0

]

(27)

where (AC0,BC0,CC0) is the central controller associated

to τ = 0. As expected, the similarity transformation does

not affect the controller transfer function when τ = 0, and

consequently ‖HC(∞,s)‖∞ = ‖TC(0,s)‖∞ for any nonsingular

V ∈R
2n×2n.

We are able to extend the previous algorithm to obtain

intervals λ ∈ (λγ ,∞) and τ(λ ) ∈ [0,τγ ) assuring the exis-

tence of a controller (13)-(14) for each pair (λ ,τ(λ )) such

that ‖HC(λ ,s)‖∞ ≤ ‖TC(τ(λ ),s)‖∞ < γ . At each iteration k

we must calculate the time delay τk = τ(λk), the central

controller (ACk,BCk,CCk) and the similarity transformation

matrix Vk. In order to assure the continuity of ‖TC(τ(λ ),s)‖∞,

what enables us to detect any unboundedness tendency, we

must compute matrix Nk in (26) with care. As in [11] we

have chosen N′
k as the first n column vectors provided by

the Matlab null space routine applied to B′
Ck and we verify

continuity by evaluating the norm condition ‖Nk−Nk−1‖≤ ε ,

with ε > 0 sufficiently small. In fact, the problem of generate

a continuous null space basis for matrix BC depending on the

parameter λ is not a simple task, see [2].

IV. ILLUSTRATIVE EXAMPLE

Let us consider an example borrowed from [7]. The time-

delay system (10)-(12) matrices are defined as follows1:

[

A0 A1 E0 B0

]

=

[

0 0 −1 −1 1 0 0

0 1 0 −0.9 1 0 1

]

[

Cy0 Cy1 Dyw

]

=
[

0 1 0 0 0 0.1
]

1In this case, a simple change of variables must be performed in order
to get a model satisfying D′

ywDyw = I and DzuD′
zu = I.

[

Cz0 Cz1 Dzu

]

=

[

0 1 0 0 0

0 0 0 0 0.1

]

The proposed algorithm generates a sequence of stabilizing

controllers for each pair (λk,τ(λk)) such that λk ∈ (λγ ,∞)
and τ(λk) ∈ [0,τγ ). With γ = 1 we have determined λγ =
1.0100 and τγ = 1.2477 [s]. For τ(λ ) ∈ [0,0.5) the values

of the lower bound ‖HC(λ ,s)‖∞ and the true values of

‖TC(τ(λ ),s)‖∞ are identical and, in the remaining interval,

the maximum difference between them is about 3.2%.

For the time delay τ = 0.9990 [s], obtained from λ =
1.40438 the norm ‖TC(τ,s)‖∞ = 0.2731 is 68% smaller than

the H∞ norm obtained in [7]. Moreover, the lower bound

‖HC(λ ,s)‖∞ = 0.2681 is only 1.81% smaller than the true

norm value. As it can be verified, the time-delay controller

[

Â0 Â1

]

=

[

−28.6072 1.4110 3.6807 −2.4378

−76.1020 3.8891 11.2365 −7.4419

]

[

B̂0 Ĉ′
0 Ĉ′

1

]

=

[

15.0420 −10.5733 2.2117

36.8268 0.4678 −0.9181

]

makes the closed-loop system asymptotically stable with the

transfer function H∞ norm previously calculated.

V. PRACTICAL APPLICATION - NETWORKED CONTROL

Networked control systems (NCS) have received a great

amount of attention in recent years. The main feature of NCS

is that measurement and control actions are supported by a

communication network. As a result, the control design has

to take into account some phenomena that can deteriorate the

final performance and reduce the stability margin. Among

them, it is worth mention bandwidth limitations, packet

dropout, and delay. See the survey paper [10] and the papers

[23], [24] for interesting and useful discussions on this topic.

Presently, we focus our attention to the effect of network-

induced delay in NCS control, exclusively, see [24]. In

addition, since depending on the medium access control

(MAC) protocol of the control network, network-induced

delay can be constant, time varying, or even random, [24] we

also make the assumption that the time-delay is deterministic

and constant. Our main purpose is to design a dynamic output

feedback controller with good stability margin and small

performance deterioration in terms of maximum delay and

H∞-norm cost.

In this framework, we consider a system with 4 propellers

mounted on a three degrees of freedom (3-DOF) pivot, [16].

Each pair of diametrically opposed propellers generate lift

forces that control the pitch p and roll r angles, while the

total torque causes a yaw y to the body as well, see [16].

The lift forces are proportional to the voltages applied to the

motors that command the propellers and the angular displace-

ments are measured by encoders placed in the three rotation

axis of the body. To change the measurement frame to the

body axis, instead of the encoder axis, it must be performed a

basis transformation by means of a nonsingular matrix Tmeas

defined in [16]. We define the state vector x = [p r y ṗ ṙ ẏ]′

and the control input vector u = [V f Vb Vr Vl]
′, depending

upon the voltages applied to the propellers. Moreover, the

1869
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Fig. 1. Time response for τ = 0.34 [s] and the classical H∞ controller.
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Fig. 2. Time response for τ = 0.34 [s] and the proposed H∞ controller.

vector of external disturbances w belongs to R
7, whose first

4 elements correspond to control signal noise, and its last

3 components are related to the measurement noise. Hence,

with the data provided in [16] the state space realization (10)-

(12) follows. The angular positions p, r and y are measured

and, inspired in [19], they are sent to the controller through a

network which adds a total delay τ > 0 to the signals. Under

this context, our goal is to control the angular positions p, r

and y subjected to a H∞ norm level γ = 5. Thus, we define

the output matrices

Cy0 = 0, Cy1 =
[

I3 0
]

, Dyw =
[

0 0.1I3

]

Cz0 =

[

I3 0

0 0

]

, Cz1 = 0, Dzu =

[

0

I4

]

To evaluate the robustness of the controller designed for

τ = 0 we consider the autonomous system (w= 0) with initial

condition x(0) = [π/6 π/4 π/3 0 0 0]′ [rad] measured in the

encoder axis frame. Fig. 1 depicts the time simulation for a

time delay value τ = 0.34 [s]. The continuous line denotes

the pitch angle p, the dashed line denotes the roll angle r

and the dot-dashed line denotes the yaw angle y measured, in

degrees, in the body axis frame. The time delay τ = 0.34 [s]
corresponds to the stability threshold, and it can be verified

that although the stability is guaranteed, the H∞ norm level is

not preserved. On the other hand, Fig. 2 shows again the time

simulation for the position angles behavior based on the same

assumptions as before, but for a controller properly designed

to cope with the time delay τ = 0.34 [s], assuring the pre-

specified norm level. It is clear that the performance of the

second controller is much better than in the first one, and this

fact agrees with the discussion that in a networked control

framework, neglecting the existence of time-delays may lead

to poor performance and, even worse, lead the closed-loop

system to instability. Applying the algorithm proposed in

Section III, we have λγ = 3.3229 and τγ = 0.5960 [s], which

is an adequate value for actual long distance network delay.

VI. CONCLUSIONS

In this paper we have proposed a new procedure for time-

delay control design. It is based on what we call comparison

system which is an LTI system with order twice the number

of state variables of the time-delay system. Moreover, under

some weak limitations, it is well adapted not only for

stability analysis but also for linear control design of time-

delay dynamic systems. The most important feature of the

comparison system is that it makes possible the control

design by manipulating finite order LTI systems, exclusively.

As a consequence, the classical routines for control synthesis

can be applied, opening the possibility to handle time-delay

systems with high number of state variables.

APPENDIX

Consider the 2nth order LTI system

ẋ(t) = Aλ x(t)+Bu(t)+Ew(t) (28)

y(t) = Cyx(t)+Dyww(t) (29)

z(t) = Czx(t)+Dzuu(t) (30)

and the full order output feedback controller to be designed

ẋc(t) = ACx(t)+BCy(t) (31)

u(t) = CCxc(t) (32)

such that the closed-loop system, with state vector ξ (t) =
[x(t)′ x′c(t)]

′ ∈ R
4n, has its dynamics governed by

ξ̇ (t) = Ãξ (t)+ B̃w(t) (33)

z(t) = C̃ξ (t) (34)

where

[

Ã B̃ C̃′
]

=

[

Aλ BCc E C′
z

BcCy Ac BcDyw C′
cD′

zu

]

(35)

The closed-loop system satisfies an H∞ performance level

γ > 0 if there exist P̃ > 0 ∈R
2n such that

Ã′P̃+ P̃Ã+ C̃′C̃+ γ−2P̃B̃B̃′P̃ < 0 (36)

Considering the classical partitioning

P̃ =

[

X U

U ′ X̂

]

, P̃−1 =

[

Y V

V ′ Ŷ

]

, Γ̃ =

[

Y I

I 0

]

(37)

multiplying (36) by Γ̃′ on the left and by its transpose on

the right, we obtain the following inequalities

AλY +YA′
λ +YC̃′

zC̃zY + γ−2EE ′+

+BL+L′B′+L′L < 0 (38)
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XAλ +A′
λ X + γ−2XẼẼ ′X +C′

zCz+

+FCy +C′
yF ′+ γ−2FF ′ < 0 (39)

where L =V ′CC, F =UBC, and C̃z and Ẽ have been defined

in Section III. Moreover, in order to (38) and (39) be

equivalent to (36) the following equality must also hold

XAλY +FCyY +XBL+UAcV
′+A′

λ+

+C′
zCzY + γ−2XEE ′ = 0 (40)

From (38) and (39) we determine the gains L = −B′ and

F = −γ2C′
y, corresponding to the central controller param-

eterisation. Considering these values, we multiply (38) and

(39) on both sides by Y−1 and γ2X−1, respectively, and define

P=Y−1 and Π= γ2X−1. As an immediate consequence, (24)

is obtained from (38). Since the equality XY +UV ′ = I must

hold, we can fix U = X = γ2Π−1 and calculate

BC = −ΠC′
y

CC = B′P(I− γ−2ΠP)−1 (41)

Assuming that Ẽ0Ẽ ′
0 > 0, which can be assured with no

loss of generality by a slight perturbation in this matrix

if necessary, a positive definite solution X−1 lying on the

border of inequality (39) is determined by replacing it by the

correspondent Riccati equation. This procedure together with

the proposed change of variables yield (23) and then, from

(40) and (23), we can recover after some tedious calculations

the controller matrix

AC = Aλ + γ−2ΠC′
zCz +BCCy −BCC (42)

Moreover, the condition P̃ > 0 is equivalent to X >Y−1 > 0,

which from the above change of variables reduces to Π > 0,

P > 0 and γ2Π−1 > P > 0.

Now, we determine the behavior of positive definite ma-

trices Π and P stated in Lemma 1, for λ → ∞. First, to

evaluate the behavior of Π with respect to λ , let us consider

the matrix function

Φλ = Aλ Π+ΠA′
λ + ẼẼ ′−Π

(

C′
yCy − γ−2C′

zCz

)

Π (43)

where Π is given in (25). Calculating limλ→∞ Φλ = Φ∞ we

obtain the following matrix blocks identities:

Φ11
∞ = Q+Q′−Z(Cy0 +Cy1)

′(Cy0 +Cy1)Z+
+γ−2Z(Cz0 +Cz1)

′(Cz0 +Cz1)Z
Φ12

∞ = W +Z(A0 +A1)
′−Q

Φ22
∞ = −2W + Ẽ0Ẽ ′

0

(44)

Assuming Ẽ0Ẽ ′
0 > 0, otherwise perturb it slightly, the con-

dition Φ∞ = 0 is satisfied whenever Z > 0 is the stabilizing

solution of the Riccati equation

(A0 +A1)Z +Z(A0 +A1)
′+ Ẽ0Ẽ ′

0 −Z
(

(Cy0 +Cy1)
′×

×(Cy0 +Cy1)− γ−2(Cz0 +Cz1)
′(Cz0 +Cz1)

)

Z = 0 (45)

because the condition Π> 0 for λ →∞ is equivalent to Z > 0

and W > 0. Hence, the first part of Lemma 1 follows.

For the second part, considering any P > 0 feasible to

inequality (24), multiplying it by P−1 on both sides we can

apply the same procedure as in Theorem 2 of [11], which

yields the conclusion that (24) is satisfied for λ → ∞ if

and only if P−1 has the structure given in (25) with Y > 0

satisfying

(A0 +A1)
′Y−1 +Y−1(A0 +A1)−Y−1(BB′+

−γ−2EE ′)Y−1 +(C̃z0 + C̃z1)
′(C̃z0 + C̃z1) < 0 (46)

and R > 0 arbitrary.
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