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Abstract— Recently, the concept of strong structural control-
lability has attracted renewed attention. In this context the
existing literature to strong structural controllability has been
revisited and some of the previous results have been found
to be incorrect. Therefore, in this paper an overview of the
previous results on strong structural controllability, counter–
examples and a new graph–theoretic characterization of strong
structural controllability are given.

I. INTRODUCTION

It is well known that many properties of linear state
space models are generic properties, in the sense that these
properties are typical properties of the associated structured
system, e.g. [1]. A linear system is structured if each entry
of the matrices A, B, C and D of the state space model

ẋ(t) = Ax(t) +Bu(t), (1)
y(t) = Cx(t) +Du(t) (2)

is either a fixed zero or a free nonzero parameter. (Here,
x(t) ∈ Rn, u(t) ∈ Rp and y(t) ∈ Rq). That is, instead of
numerically given matrices M, associated Boolean structure
matrices [M] are investigated. Moreover, many models of
physical and technical systems depend on physical parame-
ters and are structured originally [2].

From a practical point of view, the structured system ap-
proach is attractive since it requires neither knowledge of the
exact values of parameters nor floating point operations, and
hence, is not subject to any numerical errors [3]. Recently,
this approach has also found interest in the field of networked
control systems [4]–[7].

It has been known for some time that the generic con-
trollability of structured systems is determined solely by the
zero-nonzero structure of the pair (A, B) [8], i.e., ”almost
all systems”1 of the same structure have identical control-
lability properties. However, due to numerical cancellation
or interrelations between system parameters a system can
be uncontrollable despite the fact that it is structurally
controllable (see e.g. the PHEV–model in [9]). To avoid
this kind of phenomenon, the concept of strong structural
controllability, which requires that all systems with the same
structure are controllable, has been introduced in [10].

Recently, the concept of strong structural controllability
has attracted renewed attention in the course of the control-
lability analysis of a linear drivetrain model of a parallel
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1For a detailed discussion of the term ”almost all systems”, see e.g. [1].

hybrid electric vehicle [9]. This analysis has motivated the
introduction of the new notion of dimension of strongly struc-
turally controllable subspaces, which is a lower bound for the
dimensions of the controllable subspaces of all systems with
the same structure. In the context of this research the existing
literature [2], [10]–[12] to strong structural controllability has
been revisited and some of the previous results have been
found to be incorrect.

In this paper, an overview of the previous results on
strong structural controllability, counter–examples, and a new
graph–theoretic characterization of strong structural control-
lability are given. The remainder of the paper is organized as
follows: A brief introduction into the concepts of structural
and strong structural controllability of linear systems is given
in Section III and Section IV, and the main contribution of
this paper is presented in Section V.

II. NOTATIONS AND PRELIMINARIES

In the following we use the notations introduced in [2]
and [11]. Let Q be a square matrix of order m. To Q one
may assign a weighted digraph G(Q) as follows:
G(Q) has m vertices v1, . . . , vm. There is an edge directed
from vj to vi associated with the weight qij if the matrix
entry qij does not vanish.

The determinant det(Q) may be obtained from the col-
lection of the spanning cycle families within G(Q), e.g. [2,
Appendix A2.1]. Here a cycle family of a digraph G is a
set of vertex disjoint cycles and a spanning cycle family is
a cycle family which covers all the vertices of G.

The system (1) is numerically controllable if and only if

rank [A− λI,B] = n (3)

for all eigenvalues λ of the matrix A, [13].
In the context of ”structural” analysis, Boolean structure

matrices [A], [B] that represent the zero-nonzero structure of
the matrices A and B, rather than numerically given matrices
A and B, are investigated. A numerical matrix M is called
an admissible numerical realization of the structure matrix
[M], M ∈ [M] for short, if M can be obtained by assigning
nonzero numerical values to the non–vanishing entries of
[M].

III. STRUCTURAL CONTROLLABILITY

A structured system is called structurally controllable if
there exists at least one admissible numerical realization.
In this case almost all admissible numerical realizations are
controllable.

The concept of ”Structural Controllability” has been in-
troduced by Lin [8]. His results for single input systems are
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based on a graph–theoretic and an algebraic approach. For
multi–input systems, Shields and Pearson have established
the following algebraic criteria by using two special forms
of the matrix [A, B], [14]:

1) A structured system ([A], [B]) is said to be reducible or
to be in Form I if there exists a permutation matrix P
such that

PTAP =

[
A11 0
A21 A22

]
, PTB =

[
0
B2

]
, (4)

where Aij is an ni × nj matrix for i, j = 1, 2 with
0 < n1 ≤ n and n1 + n2 = n, B2 is a n2 × p matrix,
and PT denotes the transpose of P. Otherwise, ([A], [B])
is said to be irreducible.

2) A structured system ([A], [B]) is said to be not of full
row rank or to be in Form II, if the generic rank of
[A B] is less than n.

Here the generic rank is the maximal rank if the maximum is
taken over all numerical realizations. The following Theorem
has been established in [14].

Theorem 1: The structured system ([A],[B]) is structurally
(or generically) controllable if and only if it is neither in
Form I nor in Form II.
For a recent overview of further graph–theoretic criteria, see
[1].

IV. STRONG STRUCTURAL CONTROLLABILITY

The fundamental assumption of the structural approach is
that the entries of the matrices A and B are either fixed
zeros or mutually independent free parameters. Given that
many practical systems do have interdependent entries [3],
[10], that assumption constitutes a serious limitation of the
structured approach. To avoid this kind of phenomenon,
the concept of strong structural controllability (strong s–
controllability), which requires that all admissible numerical
realizations are controllable, has been introduced in [10], and
is formally defined as follows:

Definition 1: A class of systems (1) defined by the struc-
tured matrices [A], [B] is said to be strongly structurally
controllable if

rank [A− λI,B] = n

for all admissible numerical realizations A ∈ [A],B ∈ [B].
The first graph–theoretic conditions for strong structural

controllability of single–input linear systems have been given
by Mayeda and Yamada in [10]. These conditions could
easily be extended to the multi–input case in [15]. A straight-
forward computational implementation of these conditions
can only be used for low order systems (n < 15) due to the
combinatorial complexity of O(2n). This drawback seemed
to be eliminated by a result given in [2, Corollary 14.1].

Theorem 2: A class of systems characterized by the struc-
tured matrix pair ([A], [B]) is strongly s–controllable if and
only if the digraph G(Q1) meets the following conditions:
(a) For each state–vertex in G(Q1) there is at least one

path from one of the p input–vertices to the chosen
state vertex.

(b) There is exactly one cycle family of width n in G(Q1).
Here the (n+ p)× (n+ p) matrix Q1 is defined by

Q1 =

[
A B
E 0

]
,

where all entries of the p × n matrix E are free nonzero
parameters. A cycle family of width n is a cycle family that
covers exactly n state–vertices.

Unfortunately, the above result is wrong; Example 2 in
[11] shows that (b) is not necessary for strong structural
controllability, and the following example shows that (a),
and (b) are not sufficient either: The eigenvalue 1 is not
controllable if the matrices A and B of the system 1 are
given by

A =


0 0 0 0
−1 0 0 0
−1 0 1 0
−1 0 0 1

 , B =


1
0
0
0

 .

However, there are edges connecting the input-vertex to
the state vertex 1, and the latter, to any other state vertex.
Moreover, it is easily seen that there is only one cycle family
of width 4 here, which consists of the self cycles incident
with vertices 3 and 4 and the cycle involving the input vertex
and the state vertices 1 and 2. Hence, conditions (a) and (b)
are fulfilled.

A new graph–theoretic criterion and a new simple alge-
braic criterion for a strong structural controllability test has
been given in [11], together with an algorithm that checks
the algebraic conditions within O(n3) time. Similar algebraic
conditions are given in [12] for the case that there is only
one input vector which has exactly one nonzero entry. Here
the authors use the notion qualitative controllability instead
of strong structural controllability.

V. MAIN RESULTS

In [11] the (n+ p)× (n+ p) matrix

Q0 =

[
A− λI B

0 0

]
(5)

and the corresponding digraph G(Q0) are used to charac-
terize graph–theoretically the property of strong structural
controllability.

Here the state–vertices of G(Q0) are denoted by
1, 2, . . . , n, and the input–vertices by I1, . . . , Ip. Within the
digraph G(Q0), the diagonal entries (aii − λ) of Q0 are
represented by self cycles incident to the state-vertices i. In
the following it is important to distinguish between two kinds
of self-cycles. If aii 6= 0, the corresponding self cycle will
be a “normal–line self cycle”. In contrast, if aii = 0, the
corresponding self cycle will be a “red bold–line self cycle.”

The graph–theoretic characterization of strong s–
controllability in [11] is based on an investigation of the
minors of [A − λI,B]. By deleting p columns of the
n × (n + p) matrix [A − λI,B],

(
n+p
n

)
minors of order n

of [A − λI,B] are obtained. The rank condition (3) is met
iff at least one of these minors does not vanish.

1214



The
(
n+p
n

)
minors under consideration may be formed as

follows:
one of these minors is just [A− λI],

p · n of these minors are obtained by deleting one
column of A− λI and inserting one column
of B,(

p
i

)(
n
i

)
of these minors are obtained by deleting i
columns of A − λI and inserting i columns
of B (0 ≤ i ≤ p[≤ n]).

This way,
∑p
i=0

(
p
i

)(
n
i

)
=
(
n+p
n

)
square matrices and the

corresponding n× n minors are obtained.
Each of the n × n submatrices introduced above corre-

sponds to a digraph which may be obtained by a slight
modification of G(Q0):

• [A− λI] corresponds to G(A− λI).

• A submatrix formed by deleting the k-th column of
[A−λI] and inserting the l-th column of B corresponds
to a digraph obtained from G(Q0) by the following
modification:

– delete all edges starting in the state–vertex k,
– delete all input vertices except Il,
– add a ”feedback” edge from k to Il.

• A submatrix formed by deleting the columns k1, . . . , ki
of [A − λI] and inserting the columns l1, . . . , li of B
corresponds to a digraph obtained from G(Q0) by the
following modification:

– delete all edges starting in the state–vertices
k1, . . . , ki,

– delete all input–vertices different from Il1,. . .,Ili,
– add i ”feedback” edges from k1 to Il1, . . . , ki to
Ili, respectively.

These rules can easily be obtained from the following
relation: An n × n minor of [A − λI,B] can be formed
by deleting p columns k1, k2, ..., kp of [A−λI,B]. Its value
corresponds to the determinant of Q0 if we have exactly one
entry ’1’ in each of the last p rows of Q0 in the columns
k1, k2, ..., kp.

These rules will be applied to a simple single input system
in the following.

Example 1: We consider a pair (A,b) with the following
structure:

A =


0 a12 0 0
a21 a22 a23 0
0 a32 0 a34
0 0 a43 a44

 , b =


0
b2
0
0

 . (6)

Firstly, we build the compound matrix (5):

Q0 =


−λ a12 0 0 0
a21 a22 − λ a23 0 b2
0 a32 −λ a34 0
0 0 a43 a44 − λ 0
0 0 0 0 0

 . (7)

The corresponding digraph G(Q0) has 4 state–vertices and
one input–vertex and is given in Figure 1.
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Fig. 1. Digraph G(Q0) of Example 1

Here, the red–bold self cycles incident to the state–vertices
one and three correspond to the diagonal entries of [A−λI]
with aii = 0.

By applying the above introduced rules to the digraph in
Figure 1 we get the digraphs in the Figures 2-6.
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Fig. 2. Digraph G(A− λ I) of Example 1
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Fig. 3. Digraph of Example 1 after deleting column 4 of (A− λI,b)

The following graph–theoretic characterization in terms of
the digraphs corresponding to the n×n minors of (A−λI,B)
of strong s–controllability for multi–input systems is given
in [11]:

Theorem 3:
1) A class of systems (1) cannot be strongly s–

controllable if each of the
(
n+p
n

)
digraphs introduced

above contains more than one spanning cycle family.
2) A class of systems (1) is strongly s–controllable iff at

least one of the following two conditions is satisfied:
a) There is at least one among the

(
n+p
n

)
digraphs

that contains exactly one spanning cycle family
without self cycles.
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Fig. 4. Digraph of Example 1 after deleting column 3 of (A− λI,b)
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Fig. 5. Digraph of Example 1 after deleting column 2 of (A− λI,b)

b) There are two among the
(
n+p
n

)
digraphs which

contain exactly one spanning cycle family each,
where one family does not involve red bold–line
self cycles, and the other does not involve normal–
line self cycles.

Now, Theorem 3 is applied to Example 1. The digraph
shown in Figure 3 has exactly one spanning cycle family
with one red–bold self cycle, which is illustrated in Figure
7.

Hence, condition 1) of Theorem 3 is not fulfilled, and
the condition 2) has to be checked. The sufficient condition
2a) of Theorem 3 requires the digraph to contain exactly
one spanning cycle family without self cycles. Obviously,
the spanning cycle family in Figure 7 does not meet this
condition.

The digraph in Figure 4 contains exactly one spanning
cycle family which, however, contains one normal self cycle
and one red–bold self cycle (see Figure 8).

It is easy to see that the digraphs in Figures 5 and 6
contain two spanning cycle families each. Hence, none of
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Fig. 6. Digraph of Example 1 after deleting column 1 of (A− λI,b)
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Fig. 7. Unique spanning cycle family of the Digraph of Fig. 3
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Fig. 8. Unique spanning cycle family of the Digraph of Fig. 4

the conditions of the second part of Theorem 3 is fulfilled,
and by that theorem, Example 1 should not be strongly s–
controllable.

Unfortunately, Example 1 is strongly s–controllable and
Theorem 3 is incorrect. This can easily be deduced from
the digraphs corresponding to the n × n minors of [A −
λI,b] in Figures 2 - 6. Figure 3 shows the digraph of [A−
λI,b] with column 4 removed. This digraph contains exactly
one spanning cycle family, which is shown in Figure 7. The
corresponding n× n minor has only one term, which is the
product of the edge weights of the family:

|A− λI,b|1,2,3,5 = b2 · (−λ) · a32 · a43 . (8)

This minor is nonzero for λ 6= 0, so it ensures the controlla-
bility of all nonzero eigenvalues. In addition, if the red–bold
self cycle is removed, the digraph in Figure 6 has exactly
one spanning cycle family (see Figure 9). The corresponding
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Fig. 9. Unique spanning cycle family of the Digraph of Fig. 6 after deleting
the red–bold self cycle

n × n minor has exactly one term, which is given by the
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product of the edge weights of the cycle family,

|A,b|2,3,4,5 = b2 · a12 · a43 · a34 . (9)

This ensures the Hautus condition (3) is fulfilled for λ = 0
and any admissible realization. Thus, Example 1 is strongly
s–controllable.

The same result can be obtained by using the algebraic
criteria given in [11]. For this algebraic characterization of
strong s–controllability a further special form of the matrix
[A,B] is required:

Definition 2: A structured pair ([A],[B]) is said to be in
Form III if there exist two permutation matrices P1 and P2

such that

P1[A,B]P2 =


⊗ . . . ⊗ × 0
...

...
. . . ×

...
...

. . . . . .
⊗ . . . ⊗ . . . . . . ⊗ ×

 (10)

where the ×-entries must be nonzero. The ⊗-entries can be
either zero or nonzero.

Then the following algebraic characterization of strong s–
controllability is given in [11] as a corollary to Theorem 3
(which we have just demonstrated to be incorrect).

Theorem 4: The structured pair ([A],[B]) is strongly s–
controllable if and only if

1) the matrix [A,B] is of Form III, and

2) the matrix [A − λI,B] can be transformed into Form
III in such a way that the ×-entries do not correspond
to terms (aii − λ) with aii 6= 0.

It is easy to see that the rank of [A,B] is equal to n for
all admissible realizations of the structured pair ([A],[B]) if
condition 1) of Theorem 4 is fulfilled. It follows that 0 is not
an uncontrollable eigenvalue of any admissible realization.
On the other hand, condition 2) ensures that admissible
realizations do not have nonzero uncontrollable eigenvalues.
Thus, ([A],[B]) is strongly s–controllable. The necessity of
the conditions in the above theorem follows from the results
in [16], [17].

Now, Theorem 4 is applied to Example 1. A permutation
of the rows 2,4 and 2,3 followed by a permutation of the
columns 3 and 4 transforms the matrix [A,b] into Form III,

P1[A,b]P2 =


0 a12 0 0 0
0 a32 a34 0 0
0 0 a44 a43 0
a21 a22 0 a23 b2

 . (11)

Therefore, condition 1) of Theorem 4 is fulfilled. Note that
the diagonal entries of (11) correspond to the weights of the
spanning cycle family in Figure 9.

Application of the row permutation [ 4 3 1 2 ] and the
column permutation [ 4 3 2 1 5 ] to the matrix

[A− λI,b] =


−λ a12 0 0 0
a21 a22 − λ a23 0 b2
0 a32 −λ a34 0
0 0 a43 a44 − λ 0

 (12)

yields 
a44 − λ a43 0 0 0
a34 −λ a32 0 0
0 0 a12 −λ 0
0 a23 a22 − λ a21 b2

 . (13)

Here, the diagonal entries of (13) correspond to the weights
of the spanning cycle family in Figure 7.

The permuted matrix (13) is in Form III (10) without terms
(aii− λ) with aii 6= 0 on the diagonal. Therefore, condition
2) of Theorem 4 is also fulfilled, and the structured pair
([A],[B]) of Example 1 is strongly s–controllable.

Hence, there is only a problem with the graph–theoretic
conditions of strong s–controllability in [11], and in partic-
ular, with the condition 2 b). In Theorem 5 two new graph–
theoretic conditions are given in part 2 b):

Theorem 5:
1) A class of systems (1) cannot be strongly s–

controllable if each of the
(
n+m
n

)
digraphs introduced

above contains more than one spanning cycle family.
2) A class of systems (1) is strongly s–controllable iff at

least one of the following two conditions is satisfied:
a) There is at least one of the

(
n+m
n

)
digraphs that

contains exactly one spanning cycle family with-
out self cycles.

b)
• There is at least one of the

(
n+m
n

)
digraphs that

contains exactly one spanning cycle family after
the red–bold self cycles have been deleted.

• There is at least one of the
(
n+m
n

)
digraphs that

contains exactly one spanning cycle family that
involves no normal–line self cycles.

Proof:
2 a): The digraphs introduced above correspond to the n×n
minors of [A− λI,B]. If one of these digraphs has exactly
one spanning cycle family without self cycles, then the
value of the corresponding minor is a nonzero constant and
independent of λ. Hence, the controllability condition (3)
is fulfilled for all admissible numerical realizations A ∈
[A],B ∈ [B].

2 b): If the sufficient condition 2 a) is not fulfilled, the first
part of 2 b) ensures that λ = 0 can not be an uncontrollable
eigenvalue of the pair (A, B): After deleting the red–bold self
cycles in the digraphs that correspond to the n×n minors of
[A− λI,B], these digraphs correspond to the n× n minors
of [A,B]. If one of these digraphs has exactly one spanning
cycle family then the corresponding minor of [A,B] is a
nonzero constant for all admissible numerical realizations.
Then all admissible numerical realizations of the structured
pair ([A], [B]) fulfill (3) for λ = 0.

If this condition is fulfilled, a digraph that meets the
second part of 2 b) corresponds to an n × n minor of
[A− λI,B] that is a polynomial of the form pν · λν , with ν
the number of red–bold self cycles contained in the spanning
cycle family. Obviously, the corresponding minor is nonzero
for all λ 6= 0 and ensures that all nonzero eigenvalues are
controllable.
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Finally, a further statement in [11] regarding the algebraic
strong s–controllability conditions is incorrect. The statement
was, that a system is strongly s–controllable if the matrix
[A,B] is of From III and the ×-entries in that same form
contain no aii-entry. In this case verification of condition 2)
of Theorem 4 would not be necessary.

Obviously, Form III (11) of the strongly s–controllable
Example 1 fulfills this condition. Now, when we introduce
in Example 1 a further nonzero entry a31 the transformed
matrix (11) of [A,b] is still in Form III:

P1[A,b]P2 =


0 a12 0 0 0
a31 a32 a34 0 0
0 0 a44 a43 0
a21 a22 0 a23 b2

 . (14)

However, this system is not strongly s–controllable since
the condition 2) of Theorem 4 cannot be met. This can be
verified by including the nonzero entry a31 in the matrix
(13):


a44 − λ a43 0 0 0
a34 −λ a32 a31 0
0 0 a12 −λ 0
0 a23 a22 − λ a21 b2

 . (15)

Hence, we have the following result for the modified
Example 1:

• None of the admissible realizations of the structured pair
([A],[b]) can have uncontrollable eigenvalues at λ = 0
since [A,b] can be transformed into Form III.

• Admissible realizations of the structured pair ([A],[b])
with uncontrollable nonzero eigenvalues do exist since
the condition 2) of Theorem 4 is not fulfilled.

The modified Example 1 shows also that condition a) of
Theorem 2 is only a necessary condition for the nonzero
eigenvalues of all admissible realizations of a structured pair
([A],[B]) to be controllable.

The problem with the modified Example is caused by entry
a33 = 0 in the upper right zero part of (11). Hence, it is not
enough to avoid diagonal entries of A on the diagonal of the
Form III of [A, B]. The statement of [11] should be corrected
to read:

Corollary 1: If the ×-entries of the Form III of [A,B]
contain no aii-entry and no zero diagonal entries of A are
in the upper right zero part of Form III of [A,B], then the
system is strongly structurally controllable.

Proof: Obviously, the condition 2) of Theorem 4 is
fulfilled if Form III of [A,B] meets the Corollary.

VI. CONCLUSION

In this paper, the concept of strong structural control-
lability has been revisited. Additionally, counter–examples
to previous published graph–theoretic characterizations of
strong structural controllability are given. Moreover, we
have discussed a new graph–theoretic criterion for strong
structural controllability of structured linear systems.
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