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Abstract— This paper deals with the exponential sta-
bility analysis of switched neutral systems under certain
state-dependent switching rules with nonlinear perturbations
bounded in magnitude. The proposal of an energy functional
allow us to investigate the asymptotic and exponential stability
of switched neutral systems through the solution of linear
matrix inequalities. The results are ilustrated with the expo-
nential stability analysis of an oilwell drilling system allowing
a significant reduction of the stick slip behavior.

I. INTRODUCTION

Switched systems, as an important branch of hybrid con-
trol systems, have received great attention of researchers
in recent years. A switched systems is a dynamic system
that consists of a finite number of subsystems and a logical
rule which orchestrates switching between these subsystems.
Such systems are useful for modeling various real-world sys-
tems such as chemical processes, communication networks,
traffic control, manufacturing system control and the oilwell
drillstring system studied in this paper.

Switched systems with delay deserve attention because
actuators, sensors and transmission lines may introduce time
lags. In fact, many models involve not only time delay but
also the derivative of the past state, due to the reduction of
distributed parameter models into neutral type delay models.
In recent years, some stability criteria of switched systems
with time delay have been obtained (see for example [7] and
[1]). The case of neutral type switched systems is addressed
in [5], [9] and [2]. These articles investigate the stability of
switched neutral type delay systems provided that all the
neutral difference operators are stable, or that there exist
Hurwitz linear convex combinations of state matrices, which
reduce the scope of the obtained stability conditions.

In this paper we are interested in the stability analysis
of switched neutral systems under state depending switching
rules and nonlinear perturbations bounded in magnitude. The
proposal of an energy functional and the property of strict
completeness of matrices allow us to investigate the stability
of this particular kind of systems through the solution of
linear matrix inequalities. This approach avoids the use of
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convex combinations of system matrices, and reduces the
number of variables.

Our motivation is the exponential stability analysis and
stick slip control of an oilwell drilling system. Oilwell drill-
strings are mechanisms that play a key role in the petroleum
extraction industry. The drilling system is described by an
hyperbolic partial differential equation with mixed boundary
conditions. Through the D’Alembert method this model can
be easily transformed into a formally stable neutral type
delay system with autonomous switching which describes
the behavior of the system at the ground level.

The paper is organized as follows: In Section II we present
the distributed parameter model describing the drilling sys-
tem and the equivalent neutral type delay model obtained
trough the D’Alembert transformation. Section III concerns
with the problem formulation, the definition of completeness
of matrices is given. In Section IV we develop the strategy to
analyze the asymptotic stability of switched neutral type de-
lay systems with bounded nonlinear perturbations, a change
of variable allow us to determine the exponential stability
conditions. In Section V we present the numerical analysis
of the drilling system. Conclusions are presented in the last
section.

II. DRILLING SYSTEM MODEL

The main process during well drilling for oil is the creation
of borehole by a rock-cutting tool called bit. The drillstring
consists of the BHA (bottom hole assembly) and drillpipes
screwed end to end to each other to form a long pipe.
The BHA comprises the bit, stabilizers which prevent the
drillstring from balancing, and a series of pipe sections which
are relatively heavy known as drill collars. While the length
of the BHA remains constant, the total length of the drill
pipes increases as the borehole depth does. An important
element of the process is the drilling mud or fluid which
among others, has the function of cleaning, cooling and
lubricating the bit. The drillstring is rotated from the surface
by an electrical motor.

The drill pipe is considered as a beam in torsion. A lumped
inertia IB is chosen to represent the assembly at the bottom
hole and a damping β ≥ 0 which includes the viscous
and structural damping, is assumed along the structure. The
drillstring is rotated from the surface (ξ = 0) by an electrical
motor, Ω is the angular velocity coming from the rotor that
does not match the rotational speed of the load ∂θ

∂t (0, t). This
sliding speed results in the local torsion of the drillstring. The
other extremity (ξ = L), is subject to a torque T, which is a
function of the bit speed. The mechanical system is described
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by the following partial differential equation:

GJ
∂2θ

∂ξ2
(ξ, t)− I ∂

2θ

∂t2
(ξ, t)− β ∂θ

∂t
(ξ, t) = 0, (1)

ξ ∈ (0, L), t > 0,

with boundary conditions

GJ
∂θ

∂ξ
(0, t) = ca

(
∂θ

∂t
(0, t)− Ω(t)

)
;

GJ
∂θ

∂ξ
(L, t) + IB

∂2θ

∂t2
(L, t) = −T

(
∂θ

∂t
(L, t)

)
,

where θ(ξ, t) is the angle of rotation, I is the inertia, G is the
shear modulus and J is the geometrical moment of inertia.

Considering that the damping β is negligible, the dis-
tributed parameter model (1) reduces to the unidimensional
wave equation. Using the D’Alembert transformation we can
describe the drilling behavior with the following neutral type
delay equation:

ẅ(t)−Υẅ(t− 2Γ) + Ψ
·
w(t) + ΨΥẇ(t− 2Γ) =

− 1

IB
T
(
·
w(t)

)
+

1

IB
ΥT

(
·
w(t− 2Γ)

)
(2)

+2Ψ

(
ca

ca +
√
IGJ

)
Ω(t− Γ),

where
·
w(t) is the angular velocity at the bottom extremity,

Υ =
ca −

√
IGJ

ca +
√
IGJ

,Ψ =

√
IGJ

IB
,Γ =

√
I

GJ
L.

For the details of the transformation the reader is referred
to [4].

Torsional drillstring vibrations appear due to downhole
conditions, such as significant drag, tight hole, and formation
characteristics. It can cause the bit to stall in the formation
while the rotary table continues to rotate. When the trapped
torsional energy (similar to a wound-up spring) reaches a
level that the bit can no longer resist, the bit suddenly
comes loose, rotating and whipping at very high speeds.
This stick-slip behavior can generate a torsional wave that
travels up the drillstring to the rotary top system. Because
of the high inertia of the rotary table, it acts like a fixed
end to the drillstring and reflects the torsional wave back
down the drillstring to the bit. The bit may stall again, and
the torsional wave cycle repeats as explained in [3]. The
vibrations can originate problems such as drill pipe fatigue
problems, drillstring components failures, wellbore instabil-
ity. They contribute to drillpipe fatigue and are detrimental
to bit life.

The following switched equation introduced in [3] approx-
imates the physical phenomenon at the bottom hole

T
(
·
w(t)

)
= cbẇ(t) +WobRbµb (ẇ(t)) sgn (ẇ(t)) . (3)

The term cbẇ(t) is a viscous damping torque at the bit which
approximates the influence of the mud drilling and the term
WobRbµbsgn(ẇ(t)) is a dry friction torque modelling the
bit-rock contact. Rb > 0 is the bit radius and Wob > 0 the

weight on the bit. The bit dry friction coefficient µb(ẇ(t))
is modeled as

µb (ẇ(t)) = µcb + (µsb − µcb)e
− γb
vf

·
w(t)

, (4)

where µsb, µcb ∈ (0, 1) are the static and Coulomb friction
coefficients and 0 < γb < 1 is a constant defining the
velocity decrease rate. The constant velocity vf > 0 is
introduced in order to have appropriate units.

The friction torque (3)-(4) leads to a decreasing torque-
on-bit with increasing bit angular velocity for low velocities
which acts as a negative damping (Stribeck effect) and is the
cause of stick-slip self-excited vibrations. The exponential
decaying behavior of T coincides with experimental torque
values.

Due to the stick-slip phenomenon, the angular velocity at
the bottom extremity varies between zero and positive values.
The sgn function in the model of the torque on the bit leads
to represent the neutral type system (2) as a particular class
of switched systems.

Setting

x1 = w, x2 = ẇ, x = (x1 x2)T ,

u(t) = Ω(t), τ1 = 2Γ τ2 = Γ,

we obtain the following equation which describes the behav-
ior of the oilwell drilling system at the bottom extremity:

ẋ(t)− Cẋ(t− τ1) = Ax(t) +Bx(t− τ1) (5)
+Du(t− τ2) + f1σ(t, x2(t)) + f2σ(t, x2(t− τ1)), σ = 1, 2,

x1(t), x2(t) are the angular position and velocity of the drill-
string at the bottom end respectively. The constant matrices
A, B, C and D are given by:

A =

(
0 1
0 −Ψ− cb

IB

)
, B =

(
0 0

0 Υcb
IB
−ΥΨ

)
,

C =

(
0 0
0 Υ

)
, D =

(
0
Π

)
,

with Υ = ca−
√
IGJ

ca+
√
IGJ

, Ψ =
√
IGJ
IB

, Π = 2Ψca
ca+
√
IGJ

and

τ2 =
√

I
GJL, τ1 = 2τ2.

The system (5) is considered as a switched system since
the functions f1σ(t, x2(t)), f2σ(t, x2(t − τ1)), σ = 1, 2
are switched according to the following autonomous state-
dependent rule,

for x2 = 0 :
f11(t, x2(t)) = f21(t, x2(t− τ1)) = 0

for x2(t) > 0 :

f12(t, x2(t)) = −c1 − c2e
− γb
vf
x2(t)

f22(t, x2(t− τ1)) = c1Υ + c2Υe
− γb
vf
x2(t−τ1)

(6)

with c1 = WobRb
IB

µcb, and c2 = WobRb
IB

(µsb − µcb).
In the following section we present the strategy to investi-

gate the stability of switched neutral systems with nonlinear
perturbations.
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III. PROBLEM STATEMENT

Consider the following neutral system with state-
dependent switching and nonlinear perturbations:

ẋ(t)− Cσẋ(t− τ1) = Aσx(t) +Bσx(t− τ1) (7)
+Dσu(t) + f1σ(t, x(t)) + f2σ(t, x(t− τ1))

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−τ1, 0]

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input, τ1 is a positive constant time delay, ϕ is a continuously
differentiable initial function. σ ∈ {1, 2, ..., N} is a piece-
wise constant switching signal. The matrices (Aσ, Bσ, Cσ)
are allowed to take values, at an arbitrary time, in the finite
set (Aσ, Bσ, Cσ) ∈ {(A1, B1, C1), ..., (AN , BN , CN )}. For
simplicity only, we consider one delay, however, the results
of this paper can be easily extended to the case of multiple
constant delays.

We consider that the nonlinear perturbations are bounded
in magnitude, i.e. there exist positive constants α1σ, α2σ

such that

‖f1σ(t, x(t))‖ ≤ α1σ ‖x(t)‖ ∀t ≥ 0, (8)
‖f2σ(t, x(t− τ1))‖ ≤ α2σ ‖x(t− τ1)‖ σ ∈ {1, ..., N}.

Let u(t) be a state-feedback controller in the form u(t) =
Kx(t− τ1). Substituting this control law into (7), we obtain
the following closed loop system:

ẋ(t)− Cσẋ(t− τ1) = Aσx(t) + B̄σx(t− τ1) (9)
+ f1σ(t, x2(t)) + f2σ(t, x2(t− τ1))

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−τ, 0]

where B̄σ = Bσ +DσK.

Definition 1: [6] The system of matrices {Ψi}, i =
1, 2, ..., N, is said to be strictly complete if for every x ∈
Rn\{0} there is i ∈ {1, 2, ..., N} such that xTΨix < 0. Let
us define Ωi = {x ∈ Rn : xTΨix < 0}, i = 1, 2, ..., N. It is
easy to show that the system {Ψi}, i = 1, 2, ..., N, is strictly
complete if and only if

N
i=1Ωi = Rn\{0}. (10)

Remark 2: A sufficient condition for the strict complete-
ness of system {Ψi} is that there exist ξi ≥ 0, i = 1, 2, ..., N,
such that

∑N
i=1 ξi > 0 and

∑N
i=1 ξiΨi < 0. If N = 2,

then the above condition is also necessary for the strict
completeness [6].

IV. MAIN RESULTS

In [8] they analyze the asymptotic stability of switched
neutral systems, following these ideas we extend the result
to a more general class of neutral systems: the switched
neutral systems with bounded nonlinear perturbations. Next,
we derive conditions for the exponential stability of such
systems.

A. Asymptotic stability of the closed-loop system

Theorem 3 (Asymptotic stability): Given a gain matrix K,
the switched neutral system (9) with the nonlinear perturba-
tions bounded as in (8) is asymptotically stable if there are
symmetric positive definite matrices P,Q1, Q2, R1 such that
the set of matrices Ψi, i = 1, N is strictly complete, where

Ψi =


Ψi11

√
2P

√
2α1iW Ψi14 0 Ψi16

∗ −I 0 0 0 0
∗ ∗ −I 0 0 0
∗ ∗ ∗ Ψi44 α2iW Ψi46

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ Ψi66

 ,

(11)

Ψi11 = PAi +ATi P +Q1 +ATi WAi −R1 + α2
1iI

+α2
1iW + 2ATi Ai

Ψi14 = PB̄i +ATi WB̄i +R1 + 2ATi B̄i

Ψi16 = PCi +ATi WCi + 2ATi Ci

Ψi44 = −Q1 + B̄Ti WB̄i −R1 + 2α2
2iI

+α2
2iW + 2B̄Ti B̄i

Ψi46 = B̄Ti WCi + 2B̄Ti Ci

Ψi66 = −Q2 + CTi WCi + 2CTi Ci

B̄i = Bi +DiK

W = Q2 + τ2
1R1.

Proof: As in [8], we consider the energy functional

V (xt) = xT (t)Px(t) +

∫ t

t−τ1
xT (s)Q1x(s)ds

+

∫ t

t−τ1
ẋT (s)Q2ẋ(s)ds

+τ1

∫ 0

−τ1

∫ t

t+θ

ẋT (s)R1ẋ(s)dsdθ.

Taking the derivative of V (xt) along the trajectories of any
subsystem ith of (9), we have

V̇ (xt) = 2xT (t)Pẋ(t)− xT (t− τ1)Q1x(t− τ1) (12)
+xT (t)Q1x(t)− ẋT (t− τ1)Q2ẋ(t− τ1)

+ẋT (t)
(
Q2 + τ2

1R1

)
ẋ(t)

−τ1
∫ t

t−τ1
ẋT (s)R1ẋ(s)ds

using the Jensen’s inequality we can see that

−τ1

∫ t

t−τ1
ẋT (s)R1ẋ(s)ds ≤ −tt−τ1 ẋ

T (s)dsR1
t
t−τ1 ẋ(s)ds

(13)

= −(x(t)− x(t− τ1))TR1(x(t)− x(t− τ1))
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Then, substituting (13) into (12) gives

V̇ (xt) ≤ 2xT (t)P
[
Ciẋ(t− τ1) +Aix(t) + B̄ix(t− τ1)

]
−xT (t− τ1)Q1x(t− τ1) + xT (t)Q1x(t)

−ẋT (t− τ1)Q2ẋ(t− τ1)

+
[
Ciẋ(t− τ1) +Aix(t) + B̄ix(t− τ1)

]T ·W ·
·
[
Ciẋ(t− τ1) +Aix(t) + B̄ix(t− τ1)

]
−(x(t)− x(t− τ1))TR1(x(t)− x(t− τ1)) + Fi

where W := Q2 + τ2
1R1, and

Fi = Fi(xt, fi) := 2xT (t)P [f1i(·) + f2i(·)]
+GTi W [f1i(·) + f2i(·)] (14)

+ [f1i(·) + f2i(·)]T WGi

+ [f1i(·) + f2i(·)]T W [f1i(·) + f2i(·)] ,
Gi = Gi(xt) :=

[
Ciẋ(t− τ1) +Aix(t) + B̄ix(t− τ1)

]
.

We look for an upper bound on Fi. Considering that for
any vectors a, b ∈ Rn, the inequality 2aT b ≤ aTa + bT b is
satisfied, and taking into account the bounds (8), we can see
that

2xT (t)Pf1i(·) ≤ xT (t)PPx(t) + f1i(·)T f1i(·)
≤ xT (t)PPx(t) + α2

1ix
T (t)x(t),

2xT (t)Pf2(·) ≤ xT (t)PPx(t) + f2i(·)T f2i(·)
≤ xT (t)PPx(t) + α2

2ix
T (t− τ1)x(t− τ1),

similarly,

GTi Wf1i(·) + fT1i(·)WG ≤ GTi Gi + fT1i(·)WWf1i(·)
≤ GTi Gi + α2

1ix
T (t)WWx(t),

GTi Wf2i(·) + fT2i(·)WGi ≤ GTi Gi + fT2i(·)WWf2i(·)
≤ GTi Gi

+α2
2ix

T (t− τ1)WWx(t− τ1),

and

[f1i(·) + f2i(·)]T W [f1i(·) + f2i(·)] = f1i(·)TWf1i(·)
+fT2i(·)Wf2i(·) + f1i(·)TWf2i(·) + f2i(·)TWf1i(·)
≤ α2

1ix
T (t)Wx(t) + α2

2ix
T (t− τ1)Wx(t− τ1)

+α2
1ix

T (t)WWx(t) + α2
2ix

T (t− τ1)x(t− τ1).

Substituting the above inequalities into (14) yields

Fi ≤ 2xT (t)PPx(t) + α2
1ix

T (t)x(t)

+2α2
2ix

T (t− τ1)x(t− τ1) + 2GTi Gi

+2α2
1ix

T (t)WWx(t) + α2
2ix

T (t− τ1)WWx(t− τ1)

+α2
1ix

T (t)Wx(t) + α2
2ix

T (t− τ1)Wx(t− τ1).

Then, the derivative of V (xt) along the trajectories of any
subsystem ith of (9) satisfies

V̇ (xt) ≤ 2xT (t)PGi − xT (t− τ1)Q1x(t− τ1)

+xT (t)Q1x(t)− ẋT (t− τ1)Q2ẋ(t− τ1) +GTi WGi

−(x(t)− x(t− τ1))TR1(x(t)− x(t− τ1))

+2xT (t)PPx(t) + α2
1ix

T (t)x(t)

+2α2
2ix

T (t− τ1)x(t− τ1) + 2GTi Gi

+2α2
1ix

T (t)WWx(t) + α2
2ix

T (t− τ1)WWx(t− τ1)

+α2
1ix

T (t)Wx(t) + α2
2ix

T (t− τ1)Wx(t− τ1).

Setting ξ(t) = (xT (t) xT (t− τ1) ẋT (t− τ1)), the above
inequality is written as

V̇ (xt) ≤ ξ(t)Φi(P,Q1, Q2, R1)ξT (t) (15)

where

Φi =

 Φi11 Φi12 Φi13

∗ Φi22 Φi23

∗ ∗ Φi33

 , (16)

Φi11 = PAi +ATi P +Q1 +ATi WAi −R1 + 2PP

+α2
1iI + 2α2

1iWW + α2
1iW + 2ATi Ai

Φi12 = PB̄i +ATi WB̄i +R1 + 2ATi B̄i

Φi13 = PCi +ATi WCi + 2ATi Ci

Φi22 = −Q1 + B̄Ti WB̄i −R1 + 2α2
2iI + α2

2iWW

+α2
2iW + 2B̄Ti B̄i

Φi23 = B̄Ti WCi + 2B̄Ti Ci

Φi33 = −Q2 + CTi WCi + 2CTi Ci

B̄i = Bi +DiK

W = Q2 + τ2
1R1.

By Schur’s complement it follows that Φi < 0 in (16) is
equivalent to Ψi < 0 in (11). Let us set Ωi = {x ∈ R3 :
xTΨi(P,Q1, Q2, R1)x < 0}. Then by strict completeness
of the system of matrices Ψi(P,Q1, Q2, R1), it follows from
(10) that Ni=1 Ωi = R3\{0}. Define the sets Ω̃1 = Ω1, Ω̃i =
Ωi\i−1

j=1Ω̃j , i = 2, 3, ...N. Its clear that Ni=1Ω̃i = R3\{0},
Ω̃i∩ Ω̃j = ∅, i 6= j. Consequently, for any (xT (t) xT (t−
τ1) ẋT (t−τ1))T ∈ R3, t ≥ 0, there exists i ∈ {1, 2, ..., N}
such that (xT (t) xT (t − τ1) ẋT (t − τ1))T ∈ Ω̃i. For
the switching rule σ(x(t)) = i whenever x(t) ∈ Ω̃i, from
(15) we have V̇ (xt) ≤ ξ(t)Ψi(P,Q1, Q2, R1)ξT (t) < 0, this
implies that the system is asymptotically stable.

B. Exponential stability of the closed loop system

The closed loop system (9) is said to be α−stable or
”exponentially stable” with the rate α if there exists a scalar
κ ≥ 1 such that for any continuously differentiable initial
condition ϕ, the solution x(t, t0, ϕ) satisfies:

|x(t, t0, ϕ)| ≤ κ |ϕ| e−α(t−t0).
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Using the change of variable: z(t) := eαtx(t), we can rewrite
the system (9) as

ż(t)− Cσeατ1 ż(t− τ1) = Āσz(t) + eατ1B̄σz(t− τ1)

−αeατ1Cσz(t− τ1) + f1σ(t, z(t)) + f2σ(t, z(t− τ1))

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−τ, 0] (17)

where Āσ = Aσ + αI and B̄σ = Bσ + DσK. Notice that
the condition (8) on the perturbations imply

‖f1σ(t, z(t))‖ ≤ α1σ ‖z(t)‖ ∀t ≥ 0,

‖f2σ(t, z(t− τ1))‖ ≤ α2σ ‖z(t− τ1)‖ σ ∈ {1, ..., N}.

Our proposal is to find conditions for which the solution
z = 0 of the transformed system (17) is stable. Clearly, these
conditions will assure the exponential stability of the original
system (9). Applying Theorem 3 yields the following result.

Theorem 4 (Exponential stability ): Given a gain matrix
K, the switched neutral system (9) with the nonlinear per-
turbations bounded as in (8) is exponentially stable if there
are symmetric positive definite matrices P,Q1, Q2, R1 such
that the set of matrices Ψi, i = 1, N is strictly complete,
where

Ψi =


Ψi11

√
2P

√
2α1iW Ψi14 0 Ψi16

∗ −I 0 0 0 0
∗ ∗ −I 0 0 0
∗ ∗ ∗ Ψi44 α2iW Ψi46

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ Ψi66

 .

(18)
Here

Ψi11 = PĀi + ĀTi P +Q1 + ĀTi WĀi −R1

+α2
1iI + α2

1iW + 2ĀTi Āi

Ψi14 = eατ1P
(
B̄i − αCi

)
+ eατ1ĀTi W

(
B̄i − αCi

)
+R1 + 2eατ1ĀTi

(
B̄i − αCi

)
Ψi16 = eατ1PCi + eατ1ĀTi WCi + 2eατ1ĀTi Ci

Ψi44 = −Q1 + e2ατ1
(
B̄i − αCi

)T
W
(
B̄i − αCi

)
−R1

+2α2
2iI + α2

2iW + 2e2ατ1
(
B̄i − αCi

)T (
B̄i − αCi

)
Ψi46 = e2ατ1

(
B̄i − αCi

)T
WCi + 2e2ατ1

(
B̄i − αCi

)T
Ci

Ψi66 = −Q2 + e2ατ1CTi WCi + 2e2ατ1CTi Ci

Āi = Ai + αI

B̄i = Bi +DiK

W = Q2 + τ2
1R1

V. NUMERICAL RESULT

The behavior of the drilling system at the bottom end
is described by the neutral-type equation (5) in which the
nonlinear part of the function that describes the torque
on the bit: WobRb

(
µcb + (µsb − µcb)e

− γb
vf
x2
)
sgn (x2) , is

considered as a perturbation of the system. This nonlinear
function is a switching function depending on the angular
velocity at the bottom end of the drillstring, x2.

If we approximate the switching rule (6) for the functions
f1σ, f2σ of the system (5) by the following one,

for 0 ≤ x2(t) < 0.1 :
f11(t, x2(t)) = f21(t, x2(t− τ1)) = 0

for x2(t) > 0.1

f12(t, x2(t)) = −c1 − c2e
− γb
vf
x2(t)

f22(t, x2(t− τ1)) = c1Υ + c2Υe
− γb
vf
x2(t−τ1)

(19)

with c1 = WobRb
IB

µcb, and c2 = WobRb
IB

(µsb − µcb), then,
the conditions (8) on f12(t, x2(t)) and f22(t, x2(t − τ1))
are satisfied for some relatively small constants α1, α2. The
approximate switching law (19) means that for small values
of the angular velocity at the bottom end (x2 < 0.1rad/seg)
the nonlinear part of the torque on the bit has no effect (this
actually happens when x2 = 0).

According to (19) we have that for 0 ≤ x2(t) < 0.1

‖f11(t, x2(t))‖ = 0 ≤ α1 ‖x2(t)‖ (20)
‖f21(t, x(t− τ1))‖ = 0 ≤ α2 ‖x2(t− τ1)‖

and for x2(t) ≥ 0.1

‖f12(t, x2(t))‖ =
∥∥∥−c1 − c2e− γb

vf
x2(t)

∥∥∥ (21)

≤ α1 ‖x2(t)‖

‖f22(t, x(t− τ1))‖ =
∥∥∥c1Υ + c2Υe

− γb
vf
x2(t−τ1)

∥∥∥
≤ α2 ‖x2(t− τ1)‖ .

where Υ = ca−
√
IGJ

ca+
√
IGJ

, c1 = WobRb
IB

µcb, and c2 =
WobRb
IB

(µsb − µcb).
The model parameters used in the sequel are:

G = 79.3x109N/m2, I = 0.095Kg ·m, L = 1172m,
J = 1.19x10−5m4 Rb = 0.155575, vf = 1,
Wob = 97347N, IB = 89Kgm2 ca = 2000Nms,
µcb = 0.5, µsb = 0.8, γb = 0.9

cb = 0.03Nms/rad.
(22)

and the simulations are performed using the variable step
Matlab-Simulink solver ode45 (Dormand Prince Method).

Using the above parameters, the matrices A, B, C and D
of the oilwell drilling model (5) take the following values:

A =

(
0 1
0 −3.3645

)
, B =

(
0 0
0 −2.4878

)
,

C =

(
0 0
0 0.7396

)
, D =

(
0

5.8523

)
,

the time delays are τ2 = 0.3719 and τ1 = 2τ2, and the
constants c1 = 85.0829, c2 = 51.0498, Υ = 0.7396. The
conditions (20)-(21) are satisfied for all α1 > 1317.1, α2 >
974.3.

Simulation results for the system (5)-(6) with u(t) =
15rad/s presented in Figure 1 show the stick-slip phe-
nomenon of the drilling system. The vibrations of the
drillstring lead to fatigue and diminish the accuracy of the
drilling process. Thus, control actions are necessary in order
to induce the suppression of this undesirable behavior. We
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propose a stabilizing control law that ensures the exponential
convergence of the trajectory x2(t) of the drilling system (ve-
locity at the bottom end) and consequently the suppression
of the stick-slip phenomenon.

For stability issues the velocity at the bottom end must
track the angular velocity at the upper part.

In [10] the wave equation describing the torsional behavior
of a flexible rod with a mass interpreted as a linear delay
system is analyzed. A formally stable neutral model of the
form ẋ(t)−Cẋ(t−τ1) = Ax(t)+Bx(t−τ1)+Du(t), where
A, B, C, and D are given constant matrices is obtained,
and the stabilizing control law: u(t) = λẋ(t − τ1) + v(t)
is studied. Here λ is a constant matrix of the form λ =(

0 −λ0

)
, with λ0 ∈ (0, 2), and v(t) is designed on

the basis of x(t− τ1).
In order to achieve the velocity tracking we could propose

the control law u(t) = λẋ(t − τ2) + Kx(t − τ1), where
K =

(
0 −λ1

)
. Then, the closed loop drilling system

is:

ẋ(t)− (C +Dλ) ẋ(t− τ1) = Ax(t) + (B +DK)x(t− τ1)

+Dr(t− τ2) + f1σ(t, x2(t)) + f2σ(t, x2(t− τ1)). (23)

We can apply the result of Theorem 4 to analyze the
exponential stability of the closed loop ’switched’ system
(23)-(19). Notice that α1 and α2 satisfying (21) also satisfy
(20). In this case if the matrix (18) is negative definite, then
system (23)-(19) is exponentially stable.

After computing the LMI Ψ < 0 (Ψ given in Theorem
4) for λ0 = 0.05, λ1 = 0.36, α1 = 1320, α2 = 975
and α = 0.6, we can conclude that the closed loop sys-
tem (23) with the switching law (19) where the functions
f1σ(t, x2(t)), f2σ(t, x2(t − τ1)) satisfy the conditions (20)-
(21) is exponentially stable for the parameters values given
in (22).

The simulation results of Figure 2 show the expected
exponential convergence of the variable x2(t) of the system
(5)-(6) in closed loop with the control law

u(t) = λẋ(t− τ2) +Kx(t− τ2) + r(t) (24)

where r(t) is the angular velocity reference.

VI. CONCLUSION

The exponential stability of switched neutral systems with
bounded nonlinear perturbations is investigated in this paper.
The proposal of an energy functional and the property of the
strict completeness of matrices, allowed us to investigate the
stability through the solution of linear matrix inequalities.
This approach lead us to determine the exponential stability
of the response of the drilling system in closed loop with a
proposed control law that reduces substantially the stick-slip
phenomenon.
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[3] E. Navarro, R. Suárez, Practical approach to modelling and controlling
stick-slip oscillations in oilwell drillstrings, Proceedings of the 2004
IEEE International Conference on Control Applications, pp. 1454–
1460.
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