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Abstract— The paper presents a tube model predictive con-
trol (MPC) scheme of continuous-time nonlinear systems based
on robust control invariant set. The optimization problem
considered has a general cost functional rather than the
quadratic one. The scheme has the same online computational
burden as the standard MPC with guaranteed nominal stability.
Robust stability, as well as recursive feasibility, is guaranteed
if the optimization problem is feasible at the initial time
instant. Furthermore, an optimization based control scheme
is proposed, which inherits the robust properties of the tube
MPC scheme. The related optimization problem is solved only
at the initial time instant. In particular, we consider a scheme
to obtain robust control invariant set for Lipschitz nonlinear
systems, and show the effectiveness of the proposed schemes by
a simple example.

I. INTRODUCTION

In order to achieve robustness of the obtained closed-loop

systems, a controller must stabilize the considered system

for all possible realizations of the uncertainty. In model

predictive control (MPC), an intuitive approach is to solve

a min-max optimization problem online in the presence of

disturbance and/or model mismatch [1–3]. In general, such

schemes are computationally intractable since the size of the

resulting optimization problem grows exponentially with the

increase of the prediction horizon [2]. Constraint tightening

approaches, as introduced in [4, 5], avoid computational com-

plexity by using a nominal prediction model and tightened

constraint sets. However, the constraint sets often shrink

drastically because the margin, which reflects the effects

of uncertainties, increases exponentially with the increase

of the prediction horizon. For discrete-time linear systems

subject to persistent but bounded disturbances, [6] provided

a new constraint tightening scheme, namely tube MPC,

which reduces online computational burden while having

fixed tightened sets. The results require linearity of the

considered system, and have been extended by [7] to some

classes of discrete-time nonlinear systems, namely systems

with matched nonlinearity and piecewise affine systems,

and extended by [8] to continuous-time nonlinear systems.

Recently, [9] proposed an improved tube MPC of discrete-

time linear systems which removes the artificial constraint

and has the same computational burden as the standard MPC

with guaranteed nominal stability.
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This paper presents an extension of the improved tube

MPC scheme to general nonlinear system, and provides

a scheme to construct a robust control invariant set for

Lipschitz nonlinear systems. The optimization problem con-

sidered has a general cost functional rather than the quadratic

one. Similar to the improved tube MPC scheme with a

quadratic cost functional [9], both recursive feasibility and

input-to-state stability (ISS) of the system are guaranteed if

the online optimization problem has a feasible solution at the

initial time instant. Furthermore, we discuss an optimization

based control scheme, where the optimization problem is

solved only at the initial time instant. The optimization based

control scheme has the same robustness properties as the

proposed tube MPC scheme.

The paper is structured as follows. In Section II we state

the problem setup and preliminary results. The online opti-

mization problem, the proposed tube MPC scheme and opti-

mization based control scheme are discussed in Section III.

Section IV discusses the construction of a robust control

invariant set for Lipschitz nonlinear systems. A numerical

example is given in Section V.

A. Notations and Basic Definitions

Let R denote the field of real numbers, R
n the n-

dimensional Euclidean space. For a vector v ∈ R
n, ‖v‖∞

denotes the infinity norm, ‖v‖ the 2-norm. For a matrix

M ∈ R
n×n, λmin(M) (λmax(M)) is the smallest (largest)

real part of eigenvalues of the matrix M , σ̄(M) the largest

singular value of M . Moreover, ∗ is used to denote the

symmetric part of a matrix, i.e.,

[

a bT

b c

]

=

[

a ∗
b c

]

. The

operation ⊖ represents Pontryagin difference of two sets

A ⊂ R
n and B ⊂ R

n. Co{·} denotes the convex hull of

a set, and 〈·, ·〉 denotes the inner production of two vectors,

i.e., 〈x, y〉 = xT y.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

Consider a system described by a nonlinear ordinary

differential equation (ODE):

ẋ(t) = f (x(t), u(t), w(t)) , (1)

where x(t) ∈ R
nx is the state of the system, u(t) ∈ R

nu is

the control input. The signal w(t) ∈ R
nw is the exogenous

disturbance or uncertainty, which is unknown but bounded,

and lies in a compact set,

W := {w ∈ R
nw | ‖w‖ ≤ wmax},
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i.e., w(t) ∈ W , for all t ≥ 0. The system is subject to

constraints

x(t) ∈ X , u(t) ∈ U , ∀t > 0. (2)

Remark 2.1: In finite dimensions, the two norm and in-

finity norm induce equivalent metrics, so that the signal

w : R → R
nw is bounded in the infinity norm if and only if

it is bounded in the two norm.

Some fundamental assumptions are stated in the following,

which are similar to the general assumptions of MPC with

guaranteed nominal stability [10], but take the disturbance

input into account.

Assumption 1: f(x, u, w) : X × U ×W → R
nx is twice

continuously differentiable in x, u and w. Furthermore,

f(0, 0, 0) = 0, thus 0 ∈ R
nx is an equilibrium of the

system (1).

Assumption 2: U ⊂ R
nu is compact, X ⊆ R

nx is

connected and the point (0, 0, 0) is contained in the interior

of X × U ×W .

Assume that x(t) can be measured in real time, and define

a nominal system

˙̄x(t) := f (x̄(t), ū(t), 0) , (3)

i.e., w(t) ≡ 0, x̄(t) ∈ X and ū(t) ∈ U .

Denote v(t) := x(t)−x̄(t) as the error (deviation) between

the actual system (1) and the nominal system (3). The

dynamics of the error system is given as

v̇(t) = f(x(t), u(t), w(t)) − f(x̄(t), ū(t), 0). (4)

We will design a control signal which consists of a nominal

input and a state feedback control, i.e.,

u(t) := ū(t) + κ(x(t), x̄(t)),

with κ(x(t), x̄(t)) : X × X → R
nu .

The main objective of this paper is to find an effective

control scheme for constrained continuous-time nonlinear

systems with respect to bounded disturbances, in particular,

for Lipschitz nonlinear systems.

Before proceeding, we introduce the definition of robust

control invariant set, and a way to obtain robust control

invariant set.

Definition 1: A set Ω ⊂ R
n is a robust control invariant

set for the error system (4) if and only if there exists an

ancillary feedback control law κ(·, ·) such that for all v(t0) ∈
Ω and for all w ∈ W , v(t) ∈ Ω for all t ≥ t0.

Furthermore, if the control law κ(·, ·) is chosen, Ω is a

robust invariant set of the closed-loop error system.

The following lemma provides us a way to construct robust

control invariant set for the error system (4).

Lemma 1: [8] Let S : R
nx → [0,∞) be a continuously

differentiable function and α1(‖v‖) ≤ S(v) ≤ α2(‖v‖).
Suppose u : R → R

nu is chosen, and there exist λ > 0
and µ > 0 such that

d

dt
S(v) + λS(v) − µwT w ≤ 0, ∀w ∈ W , (5)

where α1, α2 are class K∞ functions and v ∈ X . Then, the

system trajectory starting from v(t0) ∈ Ω ⊆ X will remain

in the set Ω, where

Ω :=

{

v ∈ R
nx | S(v) ≤

µw2
max

λ

}

. (6)

Assumption 3: Suppose that there exists a robust control

invariant set Ω for the error system (4) with the control law

κ(·, ·), such that Ω lies in the interior of X and κ(x, x̄) lies

in the interior of U for all x − x̄ ∈ Ω.

III. TUBE MPC WITH A GENERAL COST FUNCTIONAL

Tube MPC, proposed originally by [6] for discrete-time

linear systems, uses the repeated online solution to an

optimization problem subject to the nominal dynamics (3)

and the tightened constraints in which the initial state of

the nominal model is a decision variable. Here, we consider

continuous-time nonlinear systems. For this, define the nom-

inal cost functional

J(φ(tk), ϕ(·)) :=

∫ tk+Tp

tk

l (φ(τ), ϕ(τ)) dτ + E (φ(tk + Tp)) ,

where the stage cost l : R
nx×nu → R is uniformly

continuous of φ and ϕ, satisfies l(0, 0) = 0. Furthermore,

l (φ(τ), ϕ(τ)) > 0 for all (φ(τ), ϕ(τ)) 6= (0, 0). The terms

φ(·) and ϕ(·) are piecewise continuous trajectories of t from

time instant tk to tk+Tp. The terminal penalty function E(·)
is positive semidefinite, and the prediction horizon Tp ≥ 0.

For the measured actual state x(tk), the optimization

problem which is solved online is formulated as follows:

Problem 1:

minimize
ū(·;x̄(tk),tk)

J (x̄(tk), ū(·; x̄(tk), tk)) (7a)

subject to

˙̄x(τ) = f (x̄(τ), ū(τ), 0) , (7b)

x̄ (τ ; x̄(tk), tk) ∈ X0, τ ∈ [tk, tk + Tp], (7c)

ū (τ ; x̄(tk), tk) ∈ U0, τ ∈ [tk, tk + Tp], (7d)

x̄ (tk + Tp; x̄(tk), tk) ∈ Xf , (7e)

where X0 := X ⊖ Ω and Xf ⊂ X ⊖ Ω. Define G :=
{κ(x, x̄) ∈ R

nu | x − x̄ ∈ Ω, x ∈ X and x̄ ∈ X0},

U0 := U ⊖ G. The set Xf is a terminal set. Both Ω and Xf

will be suitably derived. We use ū (·; x̄(tk), tk) to emphasis

that the control input is determined with the state x̄(tk) at

time instant tk, and x̄ (·; x̄(tk), tk) is the trajectory of the

nominal system (3) starting from the state x̄(tk) at time

tk and driven by the input function ū (·; x̄(tk), tk). The

term ū∗(·; x̄∗(tk), tk) denotes the optimal solution to the

optimization problem at the time instant tk, and the term

x̄∗ (·; x̄∗(tk), tk) is the trajectory of the nominal system.

Problem 1 is solved in discrete time with a sample time

of δ, and the nominal control during the sample interval δ is

ū(τ) := ū∗ (τ ; x̄∗(tk), tk) , τ ∈ [tk, tk + δ),

and the overall applied control input for the actual system (1)

during the sampling interval δ consequently is

u(τ) := ū(τ)+κ
(

x(τ), x̄∗
(

τ ; x̄∗(tk), tk
))

, τ ∈ [tk, tk + δ).

2651



The nominal controller calculated online generates a nominal

state trajectory, and the ancillary control law κ(·, ·) obtained

offline keeps the trajectories of the error system in the robust

control invariant set Ω centered along the nominal trajectory.

The following definition implies that if the dissipation

and the constraint satisfaction conditions are satisfied in a

compact set, then the compact set can be chosen as the

terminal set of Problem 1.

Definition 2: [10] Set Xf := {x̄ ∈ R
nx | E(x̄) ≤ α} with

α > 0, and function E(x̄) are a terminal set and a terminal

penalty function, respectively, if there exists an admissible

control law π(x̄) such that,

B0. Xf ⊆ X0,

B1. π(x̄) ∈ U0, for all x̄ ∈ Xf ,

B2. E(x̄) satisfies inequalities,

α3(‖x̄‖) ≤ E(x̄) ≤ α4(‖x̄‖) (8a)

∂E(x̄)

∂x̄
f (x̄, π(x̄)) + l (x̄, π(x̄)) ≤ 0, ∀x̄ ∈ Xf , (8b)

where α3(·) and α4(·) are class K∞ functions.

The set Xf is invariant for the nominal system under control

ū = π(x̄) since (8) holds.

Assumption 4: For the nominal system, there exist a lo-

cally asymptotically stabilizing controller ū = π(x̄), a

terminal set Xf ⊆ X0, and a continuously differentiable

positive definite function E(x̄) such that conditions B0-B2

are satisfied for all x̄ ∈ Xf .

A. Tube MPC Algorithm

Associated with Problem 1, consider the algorithm:

Algorithm 1: Step 0. At time t0, set x̄(t0) = x(t0) in

which x(t0) is the current state.

Step 1. At time tk and current state (x̄(tk), x(tk)), solve

Problem 1 to obtain the nominal control action ū(tk) and

the actual control action u(tk) = ū(tk) + κ(x(tk), x̄(tk)).
Step 2. Apply the control u(tk) to the actual system being

controlled, during the sampling interval [tk, tk+1], where

tk+1 = tk + δ.

Step 3. Measure the state x(tk+1) at the next time instant

tk+1 of the system being controlled and compute the succes-

sor state x̄(tk+1) of the nominal system under the nominal

control ū(tk).
Step 4. Set (x̄(tk), x(tk)) = (x̄(tk+1), x(tk+1)), tk = tk+1,

and go to Step 1.

Notice that a similar algorithm was proposed in [9], which

considers a tube MPC scheme of discrete-time linear sys-

tems.

Remark 3.1: Since only the nominal model is used for

prediction and the nominal control action is calculated online

in Problem 1, the scheme has the same online computational

burden as the standard MPC with guaranteed nominal sta-

bility.

The control action ū(t) depends on the initial state x(t0).
Therefore, the control action applied to the system (1)

can not be calculated offline a priori. On the other hand,

Problem 1 is solved online, which depends on the state of the

nominal system rather than the state of actual system. Thus,

Algorithm 1 is not a general MPC scheme. The following

theorem states the properties of the proposed algorithm.

Before it, we will introduce a useful definition.

Definition 3: A system is asymptotically ultimately

bounded if the system converges asymptotically to a bounded

set [11].

Theorem 1: Suppose that Problem 1 is feasible at time

t0 = 0. Then, for a small sample time δ > 0,

(1). it is feasible for all t > 0,

(2). according to Algorithm 1, the trajectory of the sys-

tem (1) under MPC control law is asymptotically ul-

timately bounded,

(3). the closed-loop system is input-to-state stable.

Proof: (1). Since only the “measured” state of the nominal

system and the nominal system dynamics are used to solve

Problem 1 at the next time instant, the online optimization

is not related to the disturbances at all. Thus, recursive

feasibility is guaranteed provided that Problem 1 has a

feasible solution at the initial time instant [10].

(2). and (3). Because of the asymptotic stability of the

nominal system [10], there exists a class KL function

β(x̄, t) [11] such that

‖x̄(t)‖ ≤ β(x̄(t0), t), ∀t ≥ t0.

Due to S (v(t)) ≤
µw2

max

λ
for all t ≥ t0 and v(t) ∈ Ω, there

exists a class K function such that

‖v(t)‖ ≤ γ

(

sup
t0≤τ≤t

‖w(τ)‖

)

, ∀t ≥ t0.

Since x(t) = x̄(t) + v(t) and x̄(t0) = x(t0),

‖x(t)‖ ≤ β(x(t0), t) + γ

(

sup
t0≤τ≤t

‖w(τ)‖

)

, ∀t ≥ t0.

Therefore, the solution of system (1) under the MPC control

law according to Algorithm 1 is asymptotically ultimately

bounded and the closed-loop system is input-to-state sta-

ble [11]. 2

Algorithm 1 can be implemented in a parallel/offline way if

the initial state x(t0) can be known a priori. That is, calculate

ū(ti), i ∈ [0,∞), and store it for future use.

Algorithm 2: (Parallel/Offline)

Step 0. At time t0, set x̄(t0) = x(t0) in which x(t0) is the

current state.

Step 1. At time tk, solve Problem 1 to obtain the nominal

control action ū(tk), and store it.

Step 2. Compute the state x̄(tk+1) of the nominal system

under the nominal control ū(tk), where tk+1 = tk + δ.

Step 3. Set x̄(tk) = x̄(tk+1), tk = tk+1, and go to Step 1.

(Online)

Step a. Apply the control u(tk) := ū(tk)+κ(x(tk)− x̄(tk))
to the system being controlled, during the sampling interval

[tk, tk+1), where tk+1 = tk + δ.

Step b. Measure the state x(tk+1) at the next time instant

tk+1 of the system being controlled.

Step c. Set x(tk) = x(tk+1), tk = tk+1, and go to Step a.

Remark 3.2: In the offline part of Algorithm 2, the symbol

ti, i ∈ [0,∞), is only a virtual time instant.
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B. Optimization based Control Algorithm

As we emphasized in Section III, only the nominal model

is used for prediction, and the nominal control action is

calculated online in the proposed tube MPC scheme. Fur-

thermore, the actual system state lies in a robust invariant set

centered along the nominal trajectory since the error system

is robust invariant in the set Ω. In order to further reduce the

computational burden, Problem 1 can be solved only at the

initial time instant.

Algorithm 3: Step 0. At time t0, set x̄(t0) = x(t0) in

which x(t0) is the current state, and solve Problem 1 to

obtain the nominal control action ū∗(τ ; x̄0, t0), τ ∈ [t0, t0 +
Tp).
Step 1. At time tk and current state (x̄(tk), x(tk)),

• If tk ∈ [t0, t0 + Tp), set ū(tk) = ū∗(tk; x̄0, t0),
• If tk ∈ [t0 + Tp,∞), set ū(tk) = π(x̄(tk)).

Apply the control u(tk) = ū(tk)+κ(x(tk), x̄(tk)) to the sys-

tem being controlled, during the sampling interval [tk, tk+1],
where tk+1 = tk + δ.

Step 2. Measure the state x(tk+1) at the next time instant

tk+1 of the system being controlled and compute the state

x̄(tk+1) of the nominal system under the nominal control

ū(tk).
Step 3. Set (x̄(tk), x(tk)) = (x̄(tk+1), x(tk+1)), tk = tk+1,

and go to Step 1.

The following result follows from Theorem 1.

Corollary 1: Suppose that Problem 1 is feasible at time

t0 = 0. Then, for a small sample time δ > 0,

(1). according to Algorithm 3, the trajectory of the sys-

tem (1) under the control law is asymptotically ulti-

mately bounded,

(2). the closed-loop system is input-to-state stable.

Sketch of the proof: The input ū∗(tk; x(t0), t0) is a feasible

solution to Problem 1 with the initial state x̄∗(tk; x(t0), t0)
at the time instant tk, where tk ∈ [t0, t0 + Tp]. Thus, the

control input

ū(τ) :=

{

ū∗(τ ; x(t0), t0) τ ∈ [t0, t0 + Tp),
π (x(τ ; x(t0), t0)) τ ∈ [t0 + Tp,∞),

drives the nominal system (3) asymptotically stable, and the

state of the actual system is in the robust invariant set Ω
around the nominal trajectory. 2

As it has been shown, robust control invariant set plays

an important role in the tube MPC scheme and in the

optimization based control scheme. In the next section,

we provide sufficient (and conservative) conditions for the

calculation of a quadratic Lyapunov function S(v) = vT Pv
and an ancillary linear feedback control law Kv for Lipschitz

nonlinear systems based on Lemma 1. Note that both the

robust control invariant set and the ancillary feedback control

law are calculated offline.

IV. ROBUST CONTROL INVARIANT SET FOR LIPSCHITZ

NONLINEAR SYSTEMS

Consider the following continuous-time nonlinear system

ẋ(t) = Ax(t) + g(x(t)) + Bu(t) + Bww(t), (9)

where x(t) ∈ R
nx , u(t) ∈ R

nu , w(t) ∈ R
nw , and

g(x) : R
nx → R

nx represents a nonlinear function that is

continuously differentiable in x.

The nonlinear function g(x) is called a Lipschitz function

in the set X with respect to x if there exists a constant L> 0
such that

‖g(x1) − g(x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ X , (10)

where the smallest constant L satisfying (10) is known as

the Lipschitz constant. The associated nominal system is

˙̄x(t) = Ax̄(t) + g(x̄(t)) + Bū(t). (11)

Chosen u(t) := ū(t) + K(x(t) − x̄(t)), K ∈ R
nu×nx , the

dynamics of the error system are

v̇(t) = (A+BK)v(t)+Bww(t)+[g(x(t))−g(x̄(t))]. (12)

Lemma 2: Suppose that there exist positive definite matrix

X ∈ R
nx×nx , non-square matrix Y ∈nu×nx , and scalars

λ0 > λ > 0 and µ> 0 such that
[

(AX + BY )T + AX + BY + λ0X Bw

∗ −µI

]

≤ 0. (13)

and

L ≤
(λ0 − λ)αmin(P )

2‖P‖
. (14)

Then, the error system (12) is robust invariant in the set Ω :=
{

x ∈ R
nx | xT Px ≤

µw2

max

λ

}

, where u(t)− ū(t) := Kv(t),

S(v) := vT Pv, P := X−1 and K := Y X−1.

Proof: First, consider the system

ṡ(t) = (A + BK)s(t) + Bww(t).

Define S̃(s(t)) := s(t)T Ps(t), and denote H(s(t)) :=
˙̃S(t) + λ0S̃(t) − µw(t)T w(t). Then,

H(s(t)) =s(t)T [(A + BK)T P + P (A + BK)]s(t)

+ w(t)T BT
wPs(t) + s(t)T PBww(t)

+ λ0s(t)
T Ps(t) − µw(t)T w(t).

Multiplying (18) from left and right sides with diag{P, I}
and substituting P = X−1, K = Y X−1, we obtain that
[

(A + BK)T P + P (A + BK) + λ0P PBw

BT
wP −µ

]

≤ 0. (15)

Multiplying (15) from both sides with
[

s(t) w(t)
]

and
[

sT (t) wT (t)
]T

, respectively, and (15) is sufficient for

H(s(t)) ≤ 0. Because of Lemma 1, there exists an Ω0 such

that the system ṡ(t) = (A + BK)s(t) + Bww(t) is robust

invariant, where Ω0 := {s ∈ R
nx | sT Ps ≤

µw2

max

λ0

}.

Denote M(v(t)) = Ṡ(t) + λS(t) − µw(t)T w(t), λ < λ0.

For the error system (12),

M(v(t)) =Ṡ(t) + λS(t) − µw(t)T w(t)

=v(t)T [(A + BK)T P + P (A + BK)]v(t)

+ 2w(t)T BT
wPv(t) + λv(t)T Pv(t)

− µw(t)T w(t) + 2[g(x(t)) − g(x̄(t))]T Pv(t),

=H(v(t)) + (λ − λ0)v(t)T Pv(t)

+ 2[g(x(t)) − g(x̄(t))]T Pv(t).
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Since H(v(t)) ≤ 0 and αmin(P )‖v(t)‖ ≤ v(t)T Pv(t) ≤
αmax(P )‖v(t)‖,

M(v(t)) ≤(λ − λ0)v(t)T Pv(t)

+ 2[g(x(t)) − g(x̄(t))]T Pv(t)

≤(λ − λ0)αmin(P )‖v(t)‖2

+ 2[g(x(t)) − g(x̄(t))]T Pv(t),

Due to (10) and (14), we have

M(v(t)) ≤(λ − λ0)αmin(P )‖v(t)‖2 + 2L‖P‖‖v(t)‖2

=(2L‖P‖ + (λ − λ0)αmin(P )) ‖v(t)‖2 ≤ 0.

Because of Lemma 1, this is sufficient to the error system (12)

being robust invariant in the set Ω. 2

Remark 4.1: Consider linear systems with norm-bounded

uncertainty,

ẋ(t) = (A + △A)x(t) + Bu(t) + Bww(t). (16)

Suppose that σ̄(△A) ≤ L, where

σ̄(△A) := sup
x(t1),x(t2)

‖△Ax(t1) −△Ax(t2)‖

‖x(t1) − x(t2)‖
(17)

is the largest singular value of △A and x(t1) 6= x(t2) [12].

Compared (17) with (10), we know that Lemma 2 also holds

for the system (16).

The admissible Lipschitz constant L is always small

since αmin(P ) ≤ ‖P‖, see (14). In order to reduce the

conservativeness, we can resort to the concept of one-sided

Lipschitz continuity.

Definition 4: A nonlinear function φ(x) : R
nx → R

n is

said to be one-sided Lipschitz continuous in a set D if there

exists a ρ ∈ R such that for all x1, x2 ∈ D,

〈φ(x1) − φ(x2), x1 − x2〉 ≤ ρ‖x1 − x2‖
2,

where ρ is called a one-sided Lipschitz constant.

Any Lipschitz function is a one-sided Lipschitz function,

since

|〈φ(x1) − φ(x2), x1 − x2〉| ≤‖φ(x1) − φ(x2)‖‖x1 − x2‖

≤|ρ|‖x1 − x2‖
2.

However, the converse is not true in general.

Corollary 2: Suppose that there exist a positive definite

matrix X ∈ R
nx×nx , a non-square matrix Y ∈nu×nx , and

scalars λ0 > λ > 0 and µ> 0 such that
[

(AX + BY )T + AX + BY + λ0X Bw

∗ −µI

]

≤ 0, (18)

and Pf(x(t)) is one-sided Lipschitz continuous, i.e.,

〈Pg(x(t))−Pg(x̄(t)), x(t)− x̄(t)〉 ≤ ρ‖x(t)− x̄(t)‖2 with

P := X−1.

If ρ ≤ (λ0−λ)αmin(P )
2 , where αmin(P ) is the smallest

eigenvalue of the positive definite matrix P . Then, the

error system (12) is robustly invariant in the set Ω :=
{

v ∈ R
nx | vT Pv ≤

µw2

max

λ

}

, where u(t)− ū(t) := Kv(t),

S(v) := vT Pv and K := Y X−1.

Sketch of the proof:

M(v(t))≤(λ − λ0)v(t)TPv(t)+2[g(x(t))−g(x̄(t))]TPv(t)

≤(λ − λ0)αmin(P )‖v(t)‖2 + 2ρ‖v(t)‖2,

=(2ρ + (λ − λ0)αmin(P )) ‖v(t)‖2.

Since ρ ≤ (λ0−λ)αmin(P )
2 , M(v(t)) ≤ 0. Because of Lemma

1, the error system (12) is robust invariant in the set Ω. 2

In the next section, we exemplify the derived results consid-

ering a numerical example.

V. ILLUSTRATIVE EXAMPLE

Consider the system described by

ẋ(t) =

[

−1 2
−3 4

]

x(t) + g(x(t)) +

[

0.5
−2

]

u(t) +

[

0
1

]

w(t),

with g(x) =
[

0 −0.25x3
2

]T
. The origin of this system is

open-loop unstable and its linearized system is stabilizable.

Assume that x1 and x2 can be measured instantaneously, and

the control constraint is

−2 ≤ u(t) ≤ 2, ∀t ≥ 0.

The disturbance is bounded by w(t) ∈ W := {w ∈
R | ‖w‖ ≤ 0.1}. Choose the stage penalty function as

l(x, u) = xT Qx + uT Ru, where the penalty matrices Q =
diag(0.5, 0.5) and R = 1.

According to the Mean-value theorem, g(x) is a region

Lipschitz function with a Lipschitz constant L = 0.75x2
2,max

provided that x2 ∈ [−x2,max, x2,max]. Since the admissible

Lipschitz constant is very small if Lemma 2 is adopted to

obtain a robust control invariant set, we resort to the one-

sided Lipschitz constant.

The following remark will be used in the example.

Remark 5.1: [13] If a scalar function h(x) : R
n → R is

differentiable with respect to x, then, for any x, x̄ ∈ R
n there

exists ξ ∈ Co(x, x̄) such that

h(x) − h(x̄) =

(

∂h

∂x1
(ξ),

∂h

∂x2
(ξ), · · · ,

∂h

∂xn

(ξ)

)

(x − x̄).

According to the remark, for any P0 = diag(α1, α2)
with α1> 0 and α2> 0, there exists a non-zero ξ ∈
(min(x2, x̄2), max(x2, x̄2)) such that

〈P0 (g(x) − g(x̄)) , x − x̄〉

=α2(−0.25x3
2 + 0.25x̄3

2)(x2 − x̄2)

= − α2 · 0.75ξ2(x2 − x̄2)
2 < 0

that is, P0g(x) is a one-sided Lipschitz nonlinearity with

the one-sided Lipschitz constant ρ = 0. In this case, the

robust control invariant set for the linear system ẋ(t) =
(A + BK)x(t) + Bww(t) is also a robust control invariant

set for the system (12). The ancillary control law Kx =
[

−1.3693 5.1273
]

x guarantees that the set Ω is robustly

invariant for the error system (12), where Ω = {x ∈
R

n2 | xT Px ≤ 1} with P = diag(39.0251, 486.0402).
Both the terminal control law and the terminal penalty

matrix are yielded by the solution of a convex optimiza-

tion problem, see [14], π(x) =
[

−1.1456 1.3925
]

x and
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Fig. 1. Time profiles for the closed-loop system from [0.6 − 0.6]T , solid line: trajectory of real system, dashed line: trajectory of nominal system.

E(x) = xT

[

7.9997 −12.2019
−12.2019 27.0777

]

x. The terminal set of

the optimization problem is Xf = {x ∈ R
n2 | E(x) ≤ 10}.

The open-loop optimization problem described by Problem 1

is solved in discrete time with a sample time of δ = 0.1
time units and a prediction horizon of Tp = 1.5 time units.

Here, only Algorithm 1 is adopted. Figure 1 shows the

state trajectory of the considered system starting from state

[0.6 −0.6]T with the disturbances w(t) ≡ 0.1, for all t ≥ 0.

The dashed line shows the trajectory of the nominal system,

and the solid line shows the trajectory of the actual system.

As it can be seen, the trajectory of the actual system under

persistent but bounded disturbances remains in the “robust

control invariant sets” centered along the nominal trajectory.

Furthermore, the system state remains in the robust control

invariant set around the origin while the time approaches to

infinity.

VI. CONCLUSIONS

In this paper, we proposed a tube MPC scheme for

continuous-time nonlinear systems subject to bounded dis-

turbances based on robust control invariant sets. An ancillary

control law is determined off-line which keeps the error

system, which is the deviation of the actual system from the

nominal system, robust invariant in a set. An optimization

problem, which has the same computational burden as the

standard MPC with guaranteed nominal stability, is solved

online, and its solution defines the nominal trajectory. The

actual trajectory of the system under the proposed tube MPC

control law is in the sets centered along the nominal trajec-

tory. Furthermore, it had been shown that both feasibility

and input-to-state stability of the closed-loop system are

guaranteed if the considered optimization problem is initially

feasible. In order to reduce further the online computational

burden, an optimization based scheme was discussed where

the considered optimization problem is solved only at the

initial time instant. In particular, we considered a way to

obtain the robust control invariant set for Lipschitz nonlinear

systems and illustrated the proposed schemes by a simple

example.
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