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Abstract— We address optimal path planning in three di-
mensional space for an unmanned aerial vehicle (UAV) in the
stationary risk environment. We separate the task into two
stage, in the first one we determine the risk optimal 2D path
for fixed time problem. Then we solve the series of BVPs
(Boundary Value Problems) with different UAV speeds and
determine the admissible 2D path, which satisfies the time and
risk constraints. In the last step one takes into account the
relief along the chosen path and determine the approximated
3D path, which minimizes 2D threat along the path and satisfies
other constraints.

I. INTRODUCTION

Problem of the path planning in a threat environment is
well known but stills to be in the focus of research related
particularly to the mission planning of autonomous UAV.
The main difficulty of the problem is the absence of exact
information about the probabilities distributions of risks, such
as possibility of detection of the UAV by the enemy sensor
or/and radars, hitting the UAV by means of air defense,
collision with obstacles, which are rather difficult to identify
in exact mathematical terms. Meanwhile all these problems
have to be solved by a mission planer usually in short time
of the operation planning. One can mention the article [7],
where authors search for the optimal 2D path of the minimal
risk of the UAV detection in the presence of multiple radars.
Their approach is based on the search for on-line solution
with the aid of the spline trajectoty approximation. So, the
idea of our work is to join together exact mathematical tools
and interactive approaches. In the first stage one have to
take into account the spatial distribution of the risks centers
and to find the path which comes from initial to terminal
point at given speed and minimizes the total specific risk
of the mission failure. Then the choice of the speed will
change the flight time, real value of the probability of the
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mission failure, and dynamic parameters such as the angular
and linear accelerations along the paths. This is enough for
the mission planer to make a decision and get the optimal
2D path of UAV.

Then he has to take into account the relief along the path.
Of course, it would be nice to design the path in 3D imme-
diately, taking into account the relief as a threat, distributed
along the altitude, but this 3D optimal control problem be-
comes rather unstable and gives rather sophisticated solutions
which don’t have the real physical meaning [15]. So the
easy approach is to get the altitude curve along the desired
path and manually put some values of the altitudes desired
from the planner point of view, afterwards the trajectory may
be represented as some polynomial, approximating the 3D
path and used by autopilot for UAV control. Our approach
is focused on numerical procedures, so in the next Section 2
we consider the different threats’ description and the problem
statement. In Section 3 we consider the decomposition of the
general problem into series of more simple, but realistic from
applied point of view problems. At first stage we discuss the
solution of the optimal control problem which leads to 2D
BVP (Boundary Value Problem). In Section 4 we use this
solution to get the admissible path and calculate 3D path and
to approximate it by polynomial or spline. Discussion of the
results are given in Section 5.

II. PROBLEM STATEMENT. DESCRIPTION OF THREATS’
RELIEF.

Problem of the trajectory planning is known long ago
[8], [16] and is still in the focus of researchers’ efforts
[1], [5], [6], [12], [17], [18] particularly with respect to the
autonomous UAV mission planning.

From the very beginning [8], the problem is stated as
a problem of determining the path satisfies given initial
and terminal conditions, which minimizes some integral
functional (the integral of the hazard rate along the path),
which corresponds to the probability of the mission failure
in the case of Markov hazard model [4].

A. Models for threats’ relief

Application of the optimal control methods requires the
hazard relief and its derivatives. Typical risk distribution is
described by following parameters:

• coordinates of threats’ centers (xi, yi), i = 1, ...,M
• spatial distribution of the hazard rate fi(x, y), where

(x, y) are the coordinates in the plane.
In the literature one can find different functions fi used

for the description of the risk distribution:
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• gaussian: [4]

fi(x, y) = αi exp
{
−[βi(x− xi)2 + γi(x− xi)2]

}
,

αi, βi, γi > 0, unfortunately the rate of decrement
of this function does not corresponds any physical
phenomenon;

• rational: [6]

fi(x, y) = αi
V mi

ρi(x, y)
,

where αi > 0, Vi is a relative velocity of the UAV, and
i − th center of threat, m > 0, ρi(x, y) is a distance
between the UAV and i−th center of threat. This model
is much more realistic from physical point of view, and
even gives the possibility to solve the problem of the
optimal control explicitly [6] for one center of threat.
However, the case of multiple threats’ centers needs
numerical solution and the singularity of fi at the i−th
threats’ center, creates very serious difficulties;

• modified rational: [18]

fi(x, y) = αi(θ)
V mi

(ρi(x, y))n
,

where the coefficient αi(θ) depends the UAV orientation
and is equivalent to the effective reflection coefficient
and n = 2 corresponds to a passive sensor, and n = 4
corresponds to a radar.
The last model is rather difficult for explicit solution,
however in some cases admits it [18]. Meanwhile gen-
erally it has to be treated numerically with the same
singularity problems as the ordinary rational model.

• rational smooth: basing on our research [12], [15]
we choose a smoothed threats’ rate distribution in the
following form

fi(x, y) =
ai

(bi + ci(x− xi)2 + di(y − yi)2)n
,

with all ai, bi, ci, di positive. This model is smooth
enough to be treated numerically and has a real physical
rate of decrease for different n, (see the case of modified
rational risk distribution above).

The general stationary threats’ relief is taken in the form

f(x, y) =

M∑
i=1

fi(x, y), (1)

which reflects the independence of threats’ sources [4]. We
assume also that the height relief is also given either as some
function

h = h(x, y), (2)

or in the form of digital map, giving the value of heights
hj = h(xj , yj) in some set of points (xj , yj), j = 1, .., N.

B. Model of motion and the cost function

We assume the motion with constant speed. This prob-
lem, named as Markov-Dubins problem in 3D [14], and is
described by the following equations

ẋ(t) = V cos γ(t) cos θ(t)
ẏ(t) = V sin γ(t) cos θ(t)
ż(t) = V sin θ(t),

(3)

where V is a constant speed, and the controls γ(t) ∈ [−π, π],
θ(t)[−π/2, π/2] are the yaw and pitch angles, respectively.
In some works [5] the controls are the derivatives of yaw and
pitch angles, however, such optimal control problem becomes
very difficult for numerical solution. Meanwhile the value of
speed V is still to be a control parameter as well and gives the
possibility to adjust the angular velocities and acceleration
in reasonable limits.

The purpose of the optimal control problem, is to find the
path, satisfying the initial and terminal conditions

A = (x(0), y(0)) = (x0, y0),
B = (x(T ), y(T )) = (xT , yT )

(4)

conditions, the height constraints z(t) ≥ h(x(t), y(t)), and
perhaps another side constraints

z(t) ≤ h̃(x(t), y(t)),

and providing the minimum to the cost function

J [x(·), y(·)] =

T∫
0

f(x(t), y(t))dt→ min
x(·),y(·),T,V

. (5)

Here T and V are the flight time and speed, respectively,
and play role of control parameters.

So even in this very simple statement the problem be-
longs to the class of free boundary optimal control problem
with phase constraints. From theoretical viewpoint it would
be rather challenging to treat this problem numerically in
general statement, however, the real world applications need
more simple and realistic approach.

One can assume various simplifications of the problem,
for example, the using of penalization approach to take into
account the terminal conditions and the height constraints.
We used this methodology in [15], where we take the cost
function in the form

J [x(·), y(·)] =

T∫
0

[f(x(t), y(t)) + φ(x(t), y(t), z(t)]dt+

k[(x(T )− xT )2 + (y(T )− yT )2 + (z(T )− zT )2]

→ min
x(·),y(·),z(·),T,V

,

(6)
with k � 1 and function

φ(x, y, z) = β

[
1

z − h(x, y)
+

1

h(x, y) + h0 − z

]
, (7)

which penalizes the inclination from the given height limits.
However, the corresponding boundary value problem was
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rather unstable and the numerical procedure usually fails to
converge [15].

III. REDUCTION TO 2D OPTIMAL CONTROL PROBLEM

We decompose the problem by solving at the first stage
the 2D optimal control problem with only yaw angle as a
control and not taking into account the altitude constraints.
So the reduced optimal control problem is:

A. Statement of 2D Optimal control problem

Dynamical model:

ẋ(t) = V cos γ(t)
ẏ(t) = V sin γ(t).

(8)

Control: γ(t) ∈ [−π, π].
Parameters: V ∈ [V1, V2], T ∈ [T1, T2].
Cost function:

J [x(·), y(·)] =

T∫
0

f(x(t), y(t))dt→ min
T,V,x(·),y(·)

. (9)

Initial and terminal conditions:

(x(0), y(0)) = (x0, y0), (x(T ), y(T )) = (xT , yT ). (10)

However, even this problem is difficult for solution since
the free boundary (non fixed values of (T, V )) implies
the additional terminal condition in the from of nonlinear
equation [2] §2.7, §2.8.

B. Reduction to the auxiliary problem in the fixed time
interval

Assume that the initial and terminal conditions (4), the
relief of the hazard rate (1), the time of flight T ∈ [T1, T2],
and admissible speed V ∈ [V1, V2] are given and satisfy the
constraints

L =
√

(xT − x0)2 + (yT − y0))2 ≤ V2T1,

L =
√

(xT − x0)2 + (yT − y0))2 ≤ V1T2,

which are necessary for the existence of admissible solution.
For given (T, V ), corresponding to admissible path, make

a change of variable s = t/T, in (9), which gives

J = T

1∫
0

f(x(sT ), y(sT ))ds = T

1∫
0

f(x̃(s), ỹ(s))ds,

(11)
where

x̃(s) = x(sT ), ỹ(s) = y(sT )

satisfy the same terminal conditions

(x̃(0), ỹ(0)) = (x(0), y(0))
(x̃(1), ỹ(1)) = (x(T ), y(T )),

(12)

and the system of equations

˙̃x(s) = TV cos γ(sT ) = Ṽ cos γ̃(s),
˙̃y(s) = TV sin γ(sT ) = Ṽ sin γ̃(s).

(13)

Here the specified speed Ṽ (indeed the length of the curve
joining points A and B) and the time T satisfy the constraints

Ṽ ∈ [V1T, V2T ], where T ∈ [T1, T2], (14)

and the new control

γ̃(s) ∈ [−π, π]. (15)

So one can state the auxiliary control problem of minimizing
the auxiliary performance criterion

Jaux =

1∫
0

f(x̃(s), ỹ(s))ds, (16)

with dynamic equations (13), (15), where the specified speed
Ṽ satisfies the constraints (14).

C. Optimal path in the original problem

The minimal value of Jaux depends on specified speed
Ṽ which have to be chosen from constraints (14). For given
real speed V we have the following relation

J [V, T, x(·), y(·)] =
Ṽ

V
Jaux[Ṽ , x̃(·), ỹ(·)],

which gives the following relation between the solutions of
auxiliary and original problems.

Proposition 1:

min
V,T,x(·),y(·)

J [V, T, x(·), y(·)] =

min
V

[
min

Ṽ ,x̃(·),ỹ(·)

Ṽ
V J

aux[Ṽ , x̃(·), ỹ(·)]

]
=

min
V

[
1
V min

Ṽ

[
Ṽ min
x̃(·),ỹ(·)

Jaux[Ṽ , x̃(·), ỹ(·)]
]]
.

(17)

Remark 1: In (17) Ṽ must satisfy (14).
Remark 2: Proposition 1 gives the following algorithm for

the solution of the Problem III-A.
Description of the algorithm

1) Step 1: for given admissible (T, V ) determine the
limits of possible values of Ṽ .

2) Step 2: choose some admissible Ṽ and solve the
problem of Jaux → min

x̃(·),ỹ(·)
and determine the product

Ṽ min Jaux(Ṽ ).
3) Step 3: repeat the step 2 for other admissible values of

Ṽ , obtain the set of the BVP solutions and determine

min
Ṽ

[
Ṽ min

(x̃,ỹ)
Jaux(Ṽ )

]
.

4) Take the corresponding

x̃(s), ỹ(s), γ̃(s), Ṽ

and determine the optimal path in Problem III-A as
follows

x(t) = x̃(t/T ), y(t) = ỹ(t/T ), γ(t) = γ̃(t/T ),

where

T = Ṽ /V, min J = T min Jaux.
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D. Solution of the auxiliary problem with the aid of the
maximum principle

We solve the auxiliary problem with the aid of penalization
approach, so we consider the performance criterion

J̃aux =

1∫
0

f(x̃(s), ỹ(s))ds+ Φ(x̃(1), ỹ(1))

=

1∫
0

f(x̃(s), ỹ(s))ds+ k
[
(x̃(1)− xT )2 + (ỹ(1)− yT )2

]
,

(18)
with sufficiently large k � 1, this permits to solve the
problem without terminal conditions.

Introduce a Hamiltonian

H(x̃, ỹ, γ̃, ψx, ψy) = ψxṼ cos γ̃+ψyṼ sin γ̃−f(x̃, ỹ). (19)

The optimal trajectory satisfies the following necessary
optimality condition

Proposition 2: Maximum principle. Suppose that
(x̃, ỹ, γ̃) is the optimal path and the corresponding control
in the problem (13), (15),(18). Then there exist the set of
adjoint variables ψx(s), ψy(s), such that ψ2

x(s)+ψ2
y(s) 6= 0,

and satisfying the system of equations

ψ̇x(s) =
∂f(x, y)

∂x

∣∣∣∣
(x̃(s),ỹ(s))

,

ψ̇y(s) =
∂f(x, y)

∂y

∣∣∣∣
(x̃(s),ỹ(s))

,

(20)

with terminal conditions

ψx(1) = −k(x̃(1)− xT ), ψy(1) = −k(ỹ(1)− yT ), (21)

such that for almost all s ∈ [0, 1] the optimal control provides
the maximum to the Hamiltonian (19)

γ̃(s) = argmax
γ̃

H(x̃(s), ỹ(s), γ̃, ψx(s), ψy(s)), (22)

which gives

cos γ̃(s) =
ψx(s)√

ψ2
x(s) + ψ2

y(s)
,

sin γ̃(s) =
ψy(s)√

ψ2
x(s) + ψ2

y(s)
.

Boundary Value Problem
So the optimal path is the solution of the boundary value

problems (BVP) for the system of ODE

˙̃x(s) =
Ṽ ψx(s)√

ψ2
x(s) + ψ2

y(s)
, ˙̃y(s) =

Ṽ ψy(s)√
ψ2
x(s) + ψ2

y(s)
,

(23)
and (20) for adjoint variables (ψx(s), ψy(s)) with initial
(x(0), y(0)) = (x0, y0) and terminal conditions (21).

We find the solution of this BVP with the aid of MathLab
numerically.

Fig. 1. Set of solutions of BVP for the paths from A = (−3,−4) to
B = (3, 3) corresponding to different values of the specified speed Ṽ ∈
[9.2, 14.56]

Fig. 2. Description of solutions of BVP for the path from A = (−3,−4)
to B = (3, 3) corresponding to different values of the specified speed

E. Example od the solution of 2D BVP

The family of the BVP solutions corresponding to various
values of specified speed Ṽ is shown in Fig. 1. The best
path, corresponding to the minimum value of risk is the path
corresponding to the minimum value of the product Ṽ Jaux,
which gives Ṽ = 13.289, Jaux = 0.466, Ṽ Jaux = 6.192.
In this example the hazard rate has the following distribution

f(x, y) = 4.0
(x+ 1.3)2 + (y + 1.3)2 + 1.0

+ 2.0
(x− 1.9)2 + (y − 1.6)2 + 1.0

+ 1
(x− 0.4)2 + (y − 0.1)2 + 1.0

+ 1
(y − 0.1)2 + (x− 0.6)2 + 0.5

.

Since Ṽ is the length of the curve, then, for example, with
V = 2 we get T ≈ 6.6 and the risk integral J = TJaux ≈
3.1. In the Markov hazard rate model the probability of the
mission successful accomplishment is a function of a type
P = exp {−J} [4], so one can evaluate this probability as
P ≈ 0.045. Increasing of the speed up to V = 4 gives the
probability P ≈ 0.21.

Fig. 2 gives the description of various solutions of BVP,
corresponding to different velocities.

6867



Fig. 3. Set of triangles (yellow color) corresponding to choosen path
connecting points A = (−3,−4) and B = (3, 3).

IV. CALCULATION OF 3D TRAJECTORY

A. Delaunay triangulation for relief representation

Calculation of 3D trajectory needs the knowledge of the
terrain relief. One can imagine that in the real situation
of the path planning the digital map, giving the values of
the terrain heights for some set of points will be given.
However, for calculation of the height distribution along
some 2D trajectory one need to know the height value in
some intermediate points. Typical and well known approach
is based on so called Delaunay triangulation DT (P ) for a
set P of points in the plane. By definition the triangulation
is such that no point in P is inside the circumcircle of
any triangle in DT (P ). Delaunay triangulations maximize
the minimum angle of all the angles of the triangles in
the triangulation; they tend to avoid skinny triangles. The
triangulation was invented by Boris Delaunay in 1934 [3].
The Delaunay triangulation permits to design the relief
approximation even in the case of nonuniform distribution
of points P, however, for our example we use the DT (P )
for uniformly distributed set of points P in the vertexes
of rectangular mesh. There exists MatLab program which
design the DT (P ) for an arbitrary set of of points in the
plane.

For given 2D curve (x(t), y(t)) and designed triangulation
for the set of points (xi, yi) one need to determine such i
that x(t) ∈ [xi, xi+1] and y(t) = [yi, yi+1]. At the next step
it is necessary to determine the appropriate triangle for any
give point (x(t), y(t)). For any given (x(t), y(t)) there is
MatLab procedure which gives the triplet A = (XA, YA),
B = (XB , YB) and C = (XC , YC) such that (x(t), y(t)) ∈
∆ABC.

We use the approximation of the height as a convex combi-
nation of the heights in the appropriate triangle vertexes. That
is for given point (x(t), y(t)) and corresponding DT(P) we
determine the coefficients of the convex combination from

Fig. 4. The finally calculated 3D trajectory with heights above given
terrain relief (• − • − •..) and the original trajectory along given relief
(×−×−×..)

Fig. 5. The finally calculated 3D trajectory in given threats’ relief

the system

(x(t), y(t)) =
α1(t)(xA, yA) + α2(t)(xB , yB) + α3(t)(xC , yC),
α1(t) + α2(t) + α3(t) = 1

Then approximated height is calculated as follows

h̃(x(t), y(t)) =
α1(t)h(xA, yA) + α2(t)h(xB , yB) + α3(t)h(xC , yC).

B. 3D trajectory in given relief

For practical realization of this trajectory we defined
heights above the relief along the 2D trajectory and approx-
imate the resulting 3D trajectory by polynomial. Resulting
3D trajectory in model terrain relief

h(x, y) = 1
1 + 0.5x2 + (y + 1)2

and in threats’ relief are shown in Fig. 4 and Fig. 5,
respectively.
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C. Polynomial approximation of 3D trajectory

To calculate the trajectory we use the polynomial ap-
proximation of 3D curve. The equation of motion with the
constant speed is given by the following system of equations

˙̄x(t) =
V ẋ(µ(t))√

(ẋ(µ(t)))2 + (ẏ(µ(t)))2 + (ż(µ(t)))2
,

˙̄y(t) =
V ẏ(µ(t))√

(ẋ(µ(t)))2 + (ẏ(µ(t)))2 + (ż(µ(t)))2
,

˙̄z(t) =
V ż(µ(t))√

(ẋ(µ(t)))2 + (ẏ(µ(t)))2 + (ż(µ(t)))2
,

µ̇(t) =
V√

(ẋ(µ(t)))2 + (ẏ(µ(t)))2 + (ż(µ(t)))2
.

(24)

In (24) V = L/T, where T is a given time of flight from A
to B,

L =

1∫
0

√
(ẋ(s))2 + (ẏ(s))2 + (ż(s))2ds

is the path length and x(s), y(s), z(s) is a polynomial
approximation of 3D trajectory.

V. CONCLUSIONS

So in this article we present a way of calculation of
the nominal trajectory of UAV in real terrain and threats’
relief. The work is motivated by necessity of the develop-
ment simple methods applicable in real field path planning.
Moreover, the path planning in dangerous environment is
the necessary step, preceeding the development of the tra-
jectory admissible from the point of view of the maximal
acceleration values, which can be easily adjusted by the
choice of the speed. Moreover, this admissible or reference
trajectory is necessary for development of the stabilization
system. Further works will be devoted to the realization of
such trajectory under random perturbations. The problem of
stabilization of the UAV at the chosen path needs the solution
of hybrid stochastic control problem, where it is necessary
to identify the type of atmospheric perturbation, evaluate the
perturbation magnitude and design the corresponding control
law. We are going to describe the perturbation in terms of
rarely appearing zones, appearing as changes of the state of
Markov chain, such that it changes the stochastic model of
the UAV motion. The estimation procedure must includes
the mode estimation (in terms of conditional probabilities)
and the states-velocities estimation which are used for the
control law design. For small UAVs the most important
types of such perturbations zones are: the zone of turbulence
and/or the wind shift. These perturbations need the fast
in-flight identification and using the corresponding control
algorithm. One can assume that appearence of such zones
can be described by a controlled Markov chain, there the
role of control is not only the compensation of perturbation,
but also selection of the speed, which from one side can help
to overcome the perturbation zone faster, but at the same time
increases the perturbation magnitudes and its influence. We
are going to investigated these topics in further works. The

basic approach to this class of problem is the using of general
filtering scheme for the system driven by Markov chains
[11] and then the application of the suboptimal estimation
with the sub-optimal estimation of the change of state. Some
successful examples of the application of this methodology
has been presented in [9], [10].
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