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Abstract— In the last two decades, a boom of fractional
calculus applications started in many technical areas including
automation and process control. The generalization of integrals
and derivatives to arbitrary real order (FO – Fractional Order)
simplifies solution of many problems especially in frequency
domain. Unfortunately, switching into time domain is always
quite difficult due to the necessity to approximate fractional
elements by integer-order ones. For this purpose, often a high
order zero/pole transfer function is employed. This paper ex-
tends the authors’ previous work and summarizes the results of
numerical optimization of zero/pole positions for two important
fractional elements: fractional integro-differential operator and
fractional pole. The optimization is done on a limited frequency
band up to four decades. The quadratic difference between
the frequency response of ideal FO element and its zero/pole
approximation was taken as an optimality criterion. It is shown,
that the optimization decreases markedly the criterion value
compared to traditional methods. The paper main results are
provided in a form of analytical functions parametrizing the
zero/pole positions dependent on element order. Additionally,
prospective applications of presented fractional elements are
discussed from both controller synthesis and process modeling
point of view.

I. INTRODUCTION

A. Fractional calculus

Fractional Calculus is an interdisciplinary and emerging

research area [10], [4]. In the last two decades, a boom

of fractional calculus (FC) applications started in many

technical areas including automation and process control.

It was studied from both controller synthesis [14], [8] and

process modeling point of view [18], [3]. The growing

scientific effort resulted into number of practical applications

[15], [16]. The generalization of integrals and derivatives to

arbitrary real order (FO – Fractional Order) leads to more

flexible transfer functions F (s) with non-integer power of

complex variable s. It is worth noting that such approach

may reduce significantly the complexity of many problems

especially when working in frequency domain. However, for

simulation or even real-time implementation purposes one

needs an integer-order (IO) time domain realization of FO

element. It can be shown, that the ’ideal’ realization always

leads to infinite order filter [9], [7]. Hence, several limitations

must be taken into account and we will speak further

only about approximation. Remind that the fractional-order

systems are still linear and their frequency response may

be simply computed by substituting s = j!. Consequently,
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finding IO approximation may be regarded as a frequency

domain filter design where the specifications are defined by

the reference FO element.

In this paper, the idea of global continuous approxima-

tion is followed. It is based on assumption that one can

usually specify the filter order or required approximation

precision on a defined frequency band. Traditionally, the

quality of approximation is measured by the quadratic differ-

ence between frequency response of ideal FO element and

its corresponding IO equivalent. Charef’s and Oustaloup’s

methods together with their modifications are typical repre-

sentatives of such approach [3], [11], [7]. They approximate

the fractional elements by classical transfer function with

zeros and poles spread equidistantly in the logarithmic space.

Unfortunately, the quality obtained is not sufficient namely

for approximating filters with low order up to five. Often also

the methods based on continued fraction expansion (CFE) are

used [20]. The bad control of frequency band and approxi-

mation precision is their main disadvantage. In this paper,

it is shown that the numerical optimization of zero/pole

locations decreases markedly the criterion value compared to

mentioned traditional methods. The optimization is done on

two, three and four frequency decades for filters with order

three, four and five, respectively. Next, the lower frequency

boundary is normalized to the frequency !L = 1. However,

it is shown how to recompute the filter parameters for

arbitrary value of !L. Afterwards, all zero/pole positions are

approximated by analytical functions which can be simply

evaluated for given order of fractional element. Note, that

to obtain a discrete filter from the low order continuous

approximation one can use any discretization method for

specified sampling period. This ’two-step’ technique is often

called indirect discretization. Finally remark that the low

order approximations eliminate a lot of numerical problems

and are important especially for FO element implementation

on compact or embedded devices with limited computational

power.

The rest of the paper is organized as follows: Section I

continues with brief introduction of two fractional elements.

Their optimal continuous approximation is described in Sec-

tion II. Possible applications of obtained filters are outlined

in Section III. Conclusions and ideas for further work are

summarized in Section IV.
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B. Fractional integro-differential operator

The fractional integro-differential operator is described by

the transfer function

F (s) =
1

sm
, m ∈ ℝ (1)

and corresponding frequency response

F (j!) =
1

(j!)m
, m ∈ ℝ. (2)

It is called fractional integrator (m > 0) or derivator

(m < 0). It is easy to check that the frequency response

(2) is a straight line crossing the origin of the complex

plane. Thus the fractional-order integrator (1) may be called

also a constant-phase filter (or filter with the constant phase

response). Point out, that in the filter synthesis field this

term often denotes filters with constant phase delay which

have in our context linear phase response. Also some relation

to Hilbert transformer may be observed [12]. The constant

phase response requirement is not so obvious and even in

newest filter design tools (f.e. Matlab signal processing tool-

box [6]) there is no straightforward way to design such filter.

Although one can use the invfreqs() Matlab function [6]

to design filter with reference frequency model, the quality

obtained is also not satisfactory1. The fractional integrator is

most often used in electrochemistry as a model of capacitive

elements [17]. Another applications may be found in [2]. In

Section III, the utilization of FO integrator in process control

applications will be explored.

C. Fractional pole

Fractional-order poles described by the transfer function

F (s) =
1

(�s+ 1)m
, �,m ∈ ℝ

+ (3)

and frequency response

F (j!) =
1

(� j! + 1)m
, �,m ∈ ℝ

+ (4)

are basic building elements in process modeling as shown in

[3]. Their series connection

F (s) =
n∏

i=0

1

(�is+ 1)mi

, �i, mi ∈ ℝ
+, i = 1, 2, . . . , n

(5)

allows to shape a frequency response F (j!) by only few

parameters �i,mi. The model (5) may be used for ap-

proximation of transcendent transfer functions describing

real physical systems with distributed parameters (like heat

transfer [1]). It also approximates very well processes with

stable zeros. Compared to classical integer-order transfer

functions, the number of parameters is markable lower while

the approximation precision remains the same.
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Fig. 1. Example of fractional pole approximation by alternating zeros
and poles (equidistant zeros and poles positions); ideal response (blue),
asymptotic zero/pole characteristic (black)

II. FILTER OPTIMIZATION

Our aim is to find a ’best’ low-order IO approximation

of basic fractional elements (1) and (3). Without loss of

generality one can restrict to the case where ∣m∣ < 1. For

m outside this limit the fractional element may be modeled as

a series connection of classical integer part and fractional part

with order inside the limit. Note that both elements generate

the amplitude slope of −20m [dB/dec].
Assumption 1: The zero/pole positions of an optimal filter

are not ’far’ from those given by Charef’s or Oustaloup’s

method, e.g. almost equidistant around logarithmic frequency

axes (see Fig. 1).

Hence, the IO approximation filter form is chosen as

F̂ (s) = 10K0

N∏
i=1

(10−!Zi s+ 1)

N∏
i=1

(10−!Pi s+ 1)

. (6)

Our task is to find for each m the set of parameters

x = [K0, !P1
. . . !PN

, !Z1
. . . !ZN

] which minimizes the

criterion

J =

!H∫

!L

∣F̂ (j!)− F (j!)∣2d!, (7)

where F (j!) is defined by (2) or (4). The standard Mat-

lab fmincon [5] procedure was used for this constrained

numerical optimization. One can check in Fig. 1, that to

follow the −20m [dB/dec] slope, the zeros and poles must

be orderly alternating.

Assumption 2: The optimal solution for 1 > m > 0
satisfies the condition

!P1
< !Z1

< !P2 < ⋅ ⋅ ⋅ < !PN
< !ZN

. (8)

1The quality of known methods is not satisfactory namely in the case
when one needs to hold the constant phase property.
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Corollary 1: Its suitable to define the initial parameter

vector x0 according to Oustaloup’s method which satisfies

the condition (8). Such starting vector speeds up the opti-

mization and ensures that the global minimum will be found.
Both fractional elements are approximated by IO filters with

order three, four and five on the bandwidth two, three and

four decades, respectively.
Remark 1: The filter order N and the bandwidth

(!L, !H) were chosen experimentally to ensure that the

maximal phase response error will be less than 1 degree

in the worst case (m = 0.5). Naturally, the filters may be

recomputed for arbitrary bandwidth and filter order.
Finally, the zero/pole positions computed for discrete values

of order m are approximated by analytical functions in the

form

f1(m) = a0 + a1m+ a2m
2, (9)

f2(m) = a0e
a1m+a2m

2+a3m
3+a4m

4

(10)

allowing to evaluate the filter parameters for arbitrary value

of m. Let us point out that this step is necessary for practical

implementation.

A. Fractional integro-differential operator

The filter zero/pole positions are computed for m =
−0.95,−0.9,−0.85, . . . , 0.9, 0.95. The optimization results

for all filter orders are summarized in Fig. 2. It can be

observed that the zero/pole positions are symmetrical in

the logarithmic frequency space around both the central

frequency and the m axes. After selecting the order m one

can find in the figure the positions of all filter poles (marked

by ’+’) and zeros (marked by ’o’). However these positions

for m > 0 may be computed simply from approximating

functions summarized in Table I.
Remark 2: It is evident that the fractional derivator of

given order may be obtained from the integrator of the same

order simply by substituting poles by zeros and vice versa.
Next, the optimal approximating filter is compared to the

others obtained by well known methods. It can be verified

in Fig. 4 that the proposed filter is the only one whose phase

response lies for m = 0.5 in 1 deg band around the nominal

value 45 deg. Moreover, the phase response is composed by

regular waves known from Chebyshev polynomials.
Remark 3: The value m = 0.5 was chosen for all com-

parisons as it is the worst case. For m ∕= 0.5, the phase

response wave amplitude (phase error) is always lower.
The proposed filter has a lowest value of criterion (7) as it

is demonstrated in Table II. Definitely, it is useful to test the

filter behavior also in time domain. The theoretical fractional

integrator step response ℎ(t) may be computed as [13]

ℎ(t) =
tm

mΓ(m)
, (11)

where the Γ function is the generalization of factorial [13].

The comparison of theoretical and filter step response is

shown in Fig. 3.
Remark 4: Integrating with a time constant not equal to

one (e.q. 1/(�is)
m) needs just to multiply the filter gain by

1/(�i)
m.

TABLE I

FRACTIONAL INTEGRATOR: APPROXIMATION FUNCTIONS (m > 0)

2 decades (3-th order filter)

K0 = 2.0299 e−0.0164m+1.4952m2
−2.7888m3

+1.8795m4

Z = 1.9373 e−0.0057m+1.5584m2
+2.8336m3

+1.8859m4

P = 1.9088 e−0.2936m+0.0341m2
−0.0348m3

+0.0063m4

!Z1 = Z

!Z2 = 1.0000 + 0.4281m
!Z3 = −P + 2
!P1 = P

!P2 = 1.0000− 0.4281m
!P3 = −Z + 2

3 decades (4-th order filter)

K0 = 2.0301 e−0.0274m+1.5077m2
−2.8068m3

+1.8906m4

Z = 2.9158 e0.0272m+1.2249m2
+2.2259m3

+1.4754m4

P = 2.8822 e−0.1987m+0.0310m2
−0.0254m3

+0.0060m4

!Z1 = Z

!Z2 = 1.0599 + 0.4435m− 0.0050m2

!Z3 = 1.9401 + 0.4436m+ 0.0049m2

!Z4 = −P + 3
!P1 = P

!P2 = 1.0599− 0.4435m− 0.0050m2

!P3 = 1.9401− 0.4436m+ 0.0049m2

!P4 = −Z + 3
4 decades (5-th order filter)

K0 = 2.0304 e−0.0380m+1.5210m2
−2.8258m3

+1.9021m4

Z = 3.8982 e0.0358m+1.0075m2
+1.8306m3

+1.2101m4

P = 3.8610 e−0.1491m+0.0230m2
−0.0150m3

+0.0026m4

!Z1 = Z

!Z2 = 1.0993 + 0.4539m− 0.0062m2

!Z3 = 2.0000 + 0.4508m− 0.0001m2

!Z4 = 2.9006 + 0.4539m+ 0.0060m2

!Z5 = −P + 4
!P1 = P

!P2 = 1.0994− 0.4539m− 0.0062m2

!P3 = 2.0000− 0.4508m− 0.0001m2

!P4 = 2.9006− 0.4539m+ 0.0060m2

!P5 = −Z + 4

TABLE II

FRACTIONAL INTEGRATOR CRITERION VALUES (m = 0.5, N = 4)

method value of J

Oustaloup / Charef 0.0229
modified Oustaloup 0.0233
invfreqs() 0.0081
CFE 0.127
proposed filter 0.0057
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Fig. 3. Comparison of step responses of ideal fractional integrator (red)
and its 4-th order IO approximation (blue).
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Fig. 2. Fractional integrator optimization results: zeros (o) and pole (+) positions for (a) two, (b) three, (c) four decades; approximating functions – green
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Fig. 4. Comparison of optimal 4-th order approximation at 3 decades for
m = 0.5 (worst case) with well-known methods. Results are shifted to the
central frequency !C = 1.

B. Fractional-order pole

Similarly to previous Section II-A, the filter zero/pole

positions were computed for discrete values of m =
0.05, 0.1, . . . , 0.95. The optimization results for m > 0 are

shown in Fig. 5 and the approximating functions are sum-

marized in Table III. Furthermore, the frequency responses

of reference model (4) are compared to those obtained from

approximating filter in Fig. 6. The step response of fractional

pole (3) may be computed by numerical integration of its

impulse response g(t) given by

g(t) =
tm−1

Γ(m)
e−t. (12)

The comparison of ideal step response and 4-th order ap-

proximation step response is depicted in Fig. 7.

TABLE III

FRACTIONAL POLE: APPROXIMATION FUNCTIONS (m > 0)

2 decades (3-th order filter)

K0 = 1
!Z1 = 0.3678 + 0.3558m− 0.0265m2

!Z2 = 1.1191 + 0.3766m− 0.0054m2

!Z3 = 1.9912 e−0.0100m+1.5423m2
−2.8039m3

+1.8684m4

!P1 = 0.3691− 0.3692m− 0.0022m2

!P2 = 1.1175− 0.3752m− 0.0411m2

!P3 = 1.9590− 0.5019m+ 0.0365m2

3 decades (4-th order filter)

K0 = 1
!Z1 = 0.4035 + 0.3878m− 0.0428m2

!Z2 = 1.2099 + 0.4057m− 0.0321m2

!Z3 = 2.0290 + 0.4071m− 0.0057m2

!Z4 = 2.9535 e−0.0345m+1.2173m2
−2.2135m3

+1.4686m4

!P1 = 0.4056− 0.4036m− 0.0050m2

!P2 = 1.2088− 0.3997m− 0.0598m2

!P3 = 2.0276− 0.4029m− 0.0401m2

!P4 = 2.9165− 0.5178m+ 0.0350m2

4 decades (5-th order filter)

K0 = 1
!Z1 = 0.3607 + 0.3830m− 0.0395m2

!Z2 = 1.2020 + 0.4295m− 0.0437m2

!Z3 = 2.0732 + 0.4315m− 0.0266m2

!Z4 = 2.9468 + 0.4332m− 0.0032m2

!Z5 = 3.9206 e−0.0381m+1.0022m2
−1.8237m3

+1.2066m4

!P1 = 0.3641− 0.4106m+ 0.0428m2

!P2 = 1.2013− 0.4314m− 0.0658m2

!P3 = 2.0723− 0.4297m− 0.0538m2

!P4 = 2.9456− 0.4310m− 0.0354m2

!P5 = 3.8804− 0.5346m+ 0.0339m2

Remark 5: The time constant � is equal to the lower

frequency limit, thus !L = � = 1. Shifting to other

frequency or time constant can be done simply by adding a

proper value to the logarithmic zero/pole positions obtained

from Table III.

III. APPLICATIONS

It this section, several promising applications of developed

filters are briefly described2.

2The detailed description exceeds the page limit of this paper
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Fig. 5. Fractional pole optimization results: zeros (o) and poles (+) positions for (a) two, (b) three, (c) four decades; approximating functions – green

10
−1

10
0

10
1

10
2

10
3

10
4

−60

−40

−20

0

a
m

p
lit

u
d
e

 [
d

B
]

10
−1

10
0

10
1

10
2

10
3

10
4

−80

−60

−40

−20

0

frequency ω [rad/s]

p
h

a
s
e

 φ
 [
d

e
g

]

m=0.9

m=0.1

Fig. 6. Fractional-order pole: blue – approximation filter frequency
responses for N = 5 and 4 decades frequency band !L = 100, !H = 104;
red – ideal response

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

time [s]

s
te

p
 r

e
s
p

o
n

s
e

 a
m

p
lit

u
d

e

m=0.25

m=1

m=0.5

m=0.75

Fig. 7. Comparison of step responses of ideal fractional pole (red) and its
4-th order IO approximation (blue).

A. Improvement of the relay identification experiment
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Im

Re

P(jw)

relay

Fig. 8. Fractional integrator in the relay autotuner allows identifying points
with arbitrary phase shift defined by m

Traditionally, in PID relay autotuners a sample with phase

shift 180 degrees is identified. Such phase shift is usually

not optimal. When one does not have additional information

about the process gain, the phase shift should be decreased

to 135 degrees. On the contrary, when the gain is known and

the noises are low one can make faster identification at higher

frequencies with the phase shift more than 200 degrees. In

the past, an adaptive filter was used to get the point with

arbitrary phase shift. Unfortunately, the adaptation makes

the identification experiment very time consuming. Joining

fractional integrator (constant-phase filter) to the relay (Fig.

8) provides the same feature without adaptation. Therefore

the experiment is speed up significantly. The filter phase

shift is independent on frequency in the large band (3–4

decades). The user can specify the required phase shift by

one parameter m.

B. Fractional PID controller

The three-parameter PID controller is the most popular

industrial controller thanks to its simplicity. Only two more

parameters �, � arise after considering the integrator and

derivator of arbitrary real order. Such a generalized controller
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is called fractional PID controller (FPID) and has a form

(with filtered derivative part)

C(s) = K

(
1 +

1

Tis�
+

Tds
�

Td

N
s+ 1

)
. (13)

Moreover, these two parameters � and � still have a clear

physical interpretation. Such controller is applicable in the

case when the frequency domain specifications are well de-

fined and cannot be fulfilled by the classical PID controller3.

The presented filters are suitable for implementation of

fractional integrator and derivator inside the FPID controller.

However, the astatic property must be ensured for zero steady

state error. Therefore it is better to implement the fractional

integrator part as s(1−�)/s.

C. Process modeling and identification

The fractional pole is essential element in process identifi-

cation based on model set approach described in [18], [19].

It is shown there that a class of all processes in the form

(5) with unlimited order (n → ∞) is wide enough to cover

almost all real monotone processes (temperature, pressure,

concentration, flow, etc.) even with time delay. Hence such

class is a sort of a priori assumption about the process. As the

real processes are often very slow one can get only their few

characteristic numbers from simple identification experiment

(rectangle pulse, relay). Amplitude, phase and frequency of

one frequency response sample is a good example of those

numbers. Our aim is always to find all a priori admissi-

ble processes consistent with measured experimental data.

Naturally, the so called model set obtained contains infinite

number of processes. Fortunately, they create after mapping

into frequency domain a compact area which boundary is

created by processes – called extremal – with quite low

count of fractional poles up to three. When n → ∞,

also the dead time appears in the extremal process transfer

function. These bounding processes are significant for robust

controller design where one needs to fulfill common design

specifications (gain and phase margins, sensitivity functions

limits, proper bandwidth) for all processes from the model

set. Consequently, the presenting filters are usable for final

time domain simulation of the designed closed loop.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper the new low order IO filters approximating

two basic fractional elements were presented. They parame-

ters (zero/pole positions) were optimized on frequency band

up to four decades using Matlab fmincon() procedure.

It was shown, that this optimization gives better results

compared to traditional well established methods. As a final

step, the analytical functions allowing direct evaluation of

zero pole positions for any order of the element were

computed using least squares method. Additionally, several

practical applications of fractional elements were sketched.

The authors believe that the presented results may help to

3Remind that the design specifications are contradictory in principle.
Hence the closed loop tuning is always a trade-off.

increase the number of industrial applications of fractional

systems.

In the future a huge effort will be put to practical imple-

mentation of presented filters on embedded real-time devices.

It is the prerequisite for making the mentioned application

ideas alive in practice.
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