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Abstract— This paper proposes an angular position and speed
estimation scheme that is based on a direct evaluation of the
angle of the voltage induced by the spinning rotor (back-
EMF) of a permanent-magnet synchronous motor (PMSM). It
is an inverse parallel-model estimation method, meaning the
rotor position and speed are directly calculated based on stator
current measurements and the stator voltage commands. In
contrast to existing schemes, no observer, no integration and
no speed or flux estimation is necessary. The estimators are ex-
tended with filters to cope with measurement noise, and directly
used for field-oriented control. It is shown algebraically and
experimentally that parametric robustness is outstanding. The
resulting estimated angle is driftless even under uncertainties.
The scheme is suitable for encoderless control of a PMSM
at high and low speeds. The performance of the scheme is
confirmed by experimental results.

I. INTRODUCTION

For field-oriented control of a permanent-magnet syn-
chronous motor (PMSM), the mechanical rotor position as
well as information on the current components are required.
In contrast to the current measurement, which is done
directly at the inverter, the position information has to be
measured at the motor, inheriting a strong disadvantage if
for instance a high distance to the power electronics is
necessary. The position measurement is very expensive and
fault sensitive. Sensorless methods avoid the need for a
mechanical sensor, bringing considerable advantages in cost
and robustness.

Two principles for sensorless control can be divided,
separated by their applicable operational domain. The first
one is based on evaluation of the voltage induced by the
spinning rotor (back-EMF), first presented in [1]. Further
developments of this method are shown in [2]. As the
induced voltage is proportional to the speed, the information
obtained by the method vanishes at low speed. In the low
speed domain, saliency-based methods dominate [3] [4].
This scheme offers disadvantages in high speed and requires
special magnetic characteristics of the motor. To cover the
whole speeed range, usually, hybrid methods are used which
combine both principles [5], or feedforward control is ap-
plied at low speed if accuracy is not that important [6].

From control theoretical standpoint, back-EMF methods
are more interesting as theoretical developments can improve
behavior, while injection schemes are based on the given
physics of a PMSM. Still, in-depth theoretical studies are
quite rare, even though the results give important insight [6]
[7]. A major reason for misfunction are paramter deviations,
several back-EMF methods aim at reducing this impact. [8]
shows an adaptive sliding mode approach with a parameter
compensation method, the effect of parameter deviations is
also shown.

Furthermore, a look at the induction motor is also very
interesting, even though the problem of sensorless control is
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different. Asymptotic observers have problems in the low-
speed area, the integration results in a drift, and a filter is
used as solution. This results in a speed offset at low speed.
Only relatively fast speed reversals with low load are possible
with the conventional asymptotic observers. However, as
motivation to research on estimators, it was shown that it is
well possible to operate an estimator at low and zero speed
[9] [10] [11]. The key to this result is the avoidance of an
integration of the stator model, the current measurements are
derived instead.

In this contribution, a back-EMF-based position estimation
scheme is introduced that is based on a parallel-model
estimator. The control structure is changed to avoid some
disadvantages. With the new estimation structure, the impact
of parametric uncertainties is reduced, and dynamical oper-
ation is improved.

The scheme presented in this paper combines two recent
improvements proposed for back-EMF methods for PMSMs.
The first is the estimation of the position without speed esti-
mation [7]. The position can be estimated with the back-EMF
angle, whereas the speed is proportional to the back-EMF
magnitude, which is, however, very sensitive to uncertainties.
This way, parametric robustness is improved. The second
is the direct estimation of the position without the use of
an asymptotic observer [12] [13]. Then, there is no more
need for observer gain tuning. As further development of this
paper, which is the complete avoidance of the integration, the
mentioned drift problems do not appear and do not require
any consideration. Preliminary results were presented in [14]

II. PARALLEL MODELS: AN ALTERNATIVE STATE

ESTIMATION TECHNIQUE

Usually, for a linear control system, described by the
dynamical equations

ẋ = Ax + Bu, (1)

an asymptotic observer is applied if some of the states x are
required for control, but not measurable. On the underlying
example of a permanent-magnet motor, the currents are
measured, as these measurements are also required for safe
operation of the power conversion stage. The position and
speed are not measured in sensorless control. The conven-
tional method is to design an asymptotic observer, consisting
of a state-space system

˙̃x = Âx̃ + B̂u + K(xm − x̃), (2)

where x̃ is the observed state, xm are the measured states,
Â and B̂ the model parameters and u the (commanded)
control input. There are feedback gains K which are to be
tuned. Furthermore, as the dynamics of the complete system
are augmented (i.e. the order of the system is increased by
the number of observed states), it must be guaranteed that
these additional dynamics are not destabilizing, even under
model parameter offsets. For the underlying application, this
is quite difficult, as the model parameters are uncertain:
the inductances vary with the operation point because of
magnetic saturation, while the resistance and the permanent
magnet flux vary with temperature. As a general result,
K must be designed quite small such that these errors do
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not destabilize the system, inheriting quite slow observer
convergence and therefore less dynamical operation.

An alternative to asymptotic observers are parallel-model
estimators. The state vector x is decomposed into the
measured states xm and the unmeasured states xu (to be
estimated), therefore x = (xm,xu)T. Only the relevant rows
of the system description (1) are used, denoted by Am resp.
Bm. Then, the dynamical equation

ẋm = Âmx + B̂mu, (3)

follows directly from (1). The next task is to extract the
unmeasured states x̂u to obtain the estimator equation(s)

x̂u = α(Âm, B̂m,u,xm, ẋm) (4)

which is a so-called inverse parallel-model estimator. This
estimator is based on (physical) model parameters, measure-
ments and control input commands, and does not require
tuning of any feedback gain. It can therefore be assumed
simpler to implement and represents a drastic design change
compared to an asymptotic observer. However, some prob-
lems become obvious:

• The measured state derivatives ẋm must be calculated.
As this is noncausal and as the measurements are usu-
ally noisy, this requires extensive filtering and inherits
phase lag, resulting in poor performance.

• How can x̂u be extracted? This is not easy, even if
the unmeasured states are observable. There are usually
several ways to obtain some function α(·).

• What is the impact of parameter offsets in Â and B̂?

The questions can be answered with some results from con-
trol theory, notably from flatness-based control. It is shown
that the conventional state representation for PMSMs is
problematic, but that for instance a polar state representation
makes calculation of ẋm quite easy. Extraction of x̂u is
then also simplified, two nice and independent equations
are found for the position and the speed. The robustness
towards parameter offsets can be shown to be very good,
and the scheme is driftless, unlike integration schemes. It can
therefore be implemented without tuning, a simplification to
the state of the art.

III. DIRECT BACK-EMF ESTIMATION IN POLAR

STATOR-CURRENT COORDINATES

A. Transformed Fundamental Model

A coordinate transformation of the current space vector to
polar coordinates is proposed [15] with vector length

ρ =
√

i2α + i2β (5)

as well as the vector angle

φ =

{

arctan
iβ

iα
iα ≥ 0

arctan
iβ

iα
+ π iα < 0

, (6)

which is in the domain φ ∈ [0, 2π]. This transformation is
not based on motor parameters, and is valid for a nonzero
current vector length ρ > 0. One can show that at the points
iα = 0 the transformation is continuous, as

lim
iα→0−

φ = lim
iα→0+

φ (7)

for both cases iα < 0 and iα > 0. The inverse transformation
is

iα = ρ cos φ, (8)

iβ = ρ sin φ. (9)

The motor model in transformed coordinates is given as


















Lρ̇ = −Rρ + KωM sin(npϕM − φ) + uP

Lρφ̇ = −KωM cos(npϕM − φ) − uO

Jω̇M = −Kρ sin(npϕM − φ) − τL

ϕ̇M = ωM

, (10)

where the voltage space vector is transformed to

uP = uα cos(φ) + uβ sin(φ), (11)

uO = uα sin(φ) − uβ cos(φ), (12)

for a concise notation. The voltage vector components uP

and uO are the parallel respectively orthogonal projections to
the current vector (iα, iβ)T . It is noted that the transformed
model is only valid for ρ 6= 0, inherited from the coordinate
transformation.

B. Direct Position Estimation

Extraction of ϕM is possible in a straightforward manner
with the differential equations in the current

KωM sin(npϕM − φ) = Lρ̇ + Rρ − uP , (13)

KωM cos(npϕM − φ) = −Lρφ̇ − uO, (14)

with the definition of the tan = sin
cos function. From the

transformed model, it can be seen that npϕM − φ 6= 0 if
the motor torque τM is nonzero, and npϕM −φ 6= π

2 if there
is a nonzero field-generating d-current.

The term KωM is extracted from these equations

KωM =
Lρ̇ + Rρ − uP

sin(npϕM − φ)
=

−Lρφ̇ − uO

cos(npϕM − φ)
, (15)

which, in contrast to the corresponding equation in the
previous section, is valid over the whole angular range ϕM

if the current magnitude ρ is nonzero. To ensure ρ 6= 0 in
all operation points, it is set id = i∗d0 = 0.05 p.u.

The estimation equation of the electrical angle ϕe =
npϕM is based on measurements on φ, ρ, uP and uO, on the

derivatives φ̇ and ρ̇, as well as on the uncertain parameters

L̂ and R̂

ϕ̄e = − arctan

(

L̂ρ̇ + R̂ρ − uP

L̂ρφ̇ + uO

)

+ φ, (16)

and the case differentiation

ϕ̂e =

{

ϕ̄e if (−L̂ρφ̇ − uO) ≥ 0

ϕ̄e + π if (−L̂ρφ̇ − uO) < 0
, (17)

which is the main equation of this contribution. The motor
constant K and the speed ωM are eliminated, and the
estimation is based exclusively on stator parameters and
stator variable measurements.

C. Direct Speed Estimation

In same manner a speed estimator can be realized. The
trigonometric terms are extracted from the current equations
in (10), and with sin2(x) + cos2(x) = 1, the speed ωM is
found by

ω̄M =
1

K

√

(L̂ρ̇ + R̂ρ − uP )2 + (L̂ρφ̇ + uO)2, (18)

and the case differentiation

ω̂M =







ω̄M if L̂ρ̇+R̂ρ−uP

sin(npϕM−φ) ≥ 0

−ω̄M if L̂ρ̇+R̂ρ−uP

sin(npϕM−φ) < 0
. (19)
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An alternative to this algebraic estimator would be an
approximated derivative of the estimated position, for in-
stance by an asymptotic filter [7]. Combined with this
position estimator, however, the resulting signal is very noisy,
especially in low speed.

IV. ANALYSIS: SENSITIVITY, NOISE AND STABILITY

For the underlying robustness analysis, the estimated angle
is compared to the real angle. The flatness property is ex-
ploited and the estimated angle, determined by the estimation

equation with the unsafe parameters L̂ and R̂, is subtracted
from the original angle, determined by the exact parameters
and the original current.

A. Impact of Parametric Uncertainties

The inductance L̂ is not exactly known, therefore in the
estimator, an approximated value

L̂ = L + ∆L (20)

is applied. The value ∆L represents the absolute uncertainty
of the parameter. The offset of the estimated angle ϕM

∆ϕM = ϕ̂M − ϕM (21)

can be directly evaluated using the flatness parameterization.
With arctan(x) − arctan(y) = arctan((x − y)/(1 + xy))
and some further developments, the result simplifies to

∆ϕM =
1

np

arctan

(

∆LcL1

∆LcL2 + cL3

)

, (22)

with

cL1 = −uOρ̇ + ρφ̇(Rρ − uP ), (23)

cL2 = ρφ̇(Lρφ̇ + uO) + ρ̇(Lρ̇ + Rρ − uP ), (24)

cL3 = (Lρφ̇ + uO)2 + (Lρ̇ + Rρ − uP )2. (25)

The same procedure is repeated to compute the influence
of stator resistance uncertainty

R̂ = R + ∆R, (26)

which affects the estimated angle by

∆ϕM =
1

np

arctan

(

∆R cR1

∆R cR2 + cR3

)

, (27)

with

cR1 = ρ(Lρφ̇ + uO), (28)

cR2 = ρ(Lρ̇ + Rρ − uP ), (29)

cR3 = (Lρφ̇ + uO)2 + (Lρ̇ + Rρ − uP )2. (30)

Thus the impact of parametric uncertainties are explicitly
known.

B. Position Offset in Steady-State

In steady-state, the position error can be explicitly com-
puted. The sensitivity equations (22) and (27), with the
results of the previous paragraph, simplify to

∆ϕe = arctan

(

npρ sin(npϕM − φ)∆L

npρ cos(npϕM − φ)∆L − K/np

)

, (31)

∆ϕe = arctan

(

−ρ cos(npϕM − φ)∆R

ρ sin(npϕM − φ)∆R − KωM

)

, (32)

which in field-oriented coordinates can be further simplified
with (npϕM − φ) = arctan(iq/id).

Eqs. (31) and (32) are now verified by measurements. The
results are shown on Fig. 1. It is remarked that 300 rpm is a
quite low speed, and that for all higher speeds the estimation

offset regarding ∆R is lower. Furthermore, the estimation
error is naturally dependent on the current magnitude ρ and
therefore also of the load torque. It is seen that the open-loop
measurements confirm the equations quite well. The closed-
loop measurements are, however, different, as the current
vector (id, iq) used for the equation is only a reference value
and as the real values are influenced by the estimation error
∆ϕe.

As a result, the proposed estimation scheme is very robust
towards parametric uncertainties. A parametric deviation of
a multiple of the rated value is necessary until a significant
offset appears.
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Fig. 1. Top: Sensitivity towards resistance uncertainty ∆R. Bottom:
Sensitivity towards inductance uncertainty ∆L. Blue line: calculated value,
black circles: measured results in open-loop, red cross: measured results
in closed-loop operation. Operating conditions: steady state ωM = 0.1
p.u. (300 rpm), 0.5 rated torque, reference (i∗

d
, i∗q) = (0.05, 0.5) p.u.,

Rrated = 0.86Ω, Lrated = 7 mH.

C. Measurement Noise

As the position and speed are estimated directly from
measurement signals, the impact of measurement noise must
be analyzed.

A model in polar stator-current coordinates (10) was cho-
sen which is advantageous regarding the required derivatives.
In steady-state, the mechanical speed ωM and the load torque
τL are constant. Furthermore, if the system is assumed
stable, the currents in field-oriented coordinates id and iq
are constant, and thus

ρ̇ = 0. (33)

Then, as follows from the torque equation in (10), the
expression sin(ϕe − φ) is constant too and

φ̇ = ϕ̇e = ωe. (34)

Therefore, the current derivatives that are required for po-
sition and speed estimation are both constant in steady
state. Only in transient operation, these derivatives vary.
Therefore, regarding steady-state operation, it is acceptable
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to apply first-order low-pass filters along with approximated
differentiation of the current signals

ρ̇ ≈
s

TLP s + 1
ρ, (35)

respectively

φ̇ ≈
s

TLP s + 1
φ, (36)

where s is the Laplace operator. The time constant of the low-
pass filters TLP has to be lower than the time constant of
the currents, otherwise the back-EMF estimation is affected.
The time constant of the closed current control loop is τi ≈

L
R+KP

, where KP is the gain of the P controller, thus, the
controllers must be set moderate. In most electrical drives,
however, the sampling rate of the control system is much
higher than the current time constants. For instance, in the
experimental setup, the uncontrolled time constant is L

R
≈ 5

ms, the closed-loop time constant is L
R+KP

≈ 1 ms and
the sampling interval is ∆T = 0.0625 ms, thus they have a
ratio of 80 respectively 16. For example, it can be chosen
TLP = 0.5 ms.

As a result, low-pass filters will be sufficient to remove the
greatest part of the measurement noise whilst only marginally
affecting the accuracy in transient phase, and not affecting
the accuracy at all in steady-state.

D. Filters for the Estimator Outputs

For closed-loop encoderless field-oriented control of the
synchronous motor, further filtering is necessary. The es-
timator outputs position and speed vary much slower than
the electrical variables, thus, low-pass filters can be used to
reduce the noise sensitivity.

For the estimated position, a second order tracking-type
filter is applied. It has the characteristic that a constantly
increasing signal is not subjected to a phase lag, thus in
steady state, as ϕM = ωM t, this filter will not affect the
position information. It significantly reduces the influence of
the noise and the current controller jerk. The equations are

d

dt
z = −v1(ϕ̃e − ϕ̂e), (37)

d

dt
ϕ̃e = z − v2(ϕ̃e − ϕ̂e), (38)

with z as intermediate variable. The feedback gains are
chosen as v1 = 16000 and v2 = 253, such that the poles are
real and both time constants are 8 ms. The time constant is
designed to limit the worst-case phase shift. If the maximum
system acceleration c is known, the maximum phase shift
will be

∆ϕe ≈ np

c

v1
, (39)

which is to be considered as the maximum error is limited.
For the estimated speed ω̂M , a first-order low-pass filter

with a time constant of 2 ms is sufficient.

E. Stability of estimation/control scheme

Foremost, from (16) it can be seen that the estimated and
unfiltered position signal ϕ̂e is not based on any previous
estimation results. The position estimate is available almost
immediately, except for the very small phase lag caused by
the current derivative calculation. For stability consideration,
therefore, only the tracking filter (42), (43) and the current
and speed controllers are relevant. A misestimation, caused
for instance by missing initial rotor position information,
does not affect ϕ̂e. One major reason for this is also that
position and speed are estimated independently.

The angular error is given as

eϕ = ϕe − ϕ̃e. (40)

For simplicity assume P control to reduce the order of dy-
namics, the current controllers which operate in the estimated

(d̃, q̃) frame is then given as

ud̃q̃ = KP (i∗dq − id̃q̃). (41)

The voltage commands are related to the real frame by

udq =

(

cos(eϕ) − sin(eϕ)

sin(eϕ) cos(eϕ)

)

ud̃q̃ = Qud̃q̃. (42)

By replacing the voltage commands in the (d, q) model,
one obtains

L
d

dt
idq =

(

−R npωML

−npωML −R

)

idq −

(

0

KωM

)

+ Q−1KP (i∗dq − Qidq). (43)

The angular error eϕ therefore does not affect the char-
acteristics of the current dynamics. The only impact of eϕ

is that the current references i∗dq are applied to the (d̃, q̃)
frame, rotated by eϕ around the intended current references.
Therefore stability is not affected by an error eϕ. It results in
a performance loss, however, as less torque is generated due
to the misalignment. In the next section, current reference
compensation is proposed to attenuate this problem.

Now the speed control loop is analyzed. The tracking filter
will generate an error eϕ during acceleration. If this error is
opposed to the real acceleration the scheme could possibly
destabilize. Assuming that the current references are well

tracked in the (d̃, q̃) frame, the mechanical equation of the
rotor is

J
d

dt
ωM = Kiq − τL (44)

= K(i∗q cos(eϕ) + i∗d sin(eϕ)) − τL. (45)

As simplification, the phase lag of the tracking filter is
assumed proportional to the acceleration eϕ =

np

v1

d
dt
ωM .

With a Taylor approximation of cos and sin by cos(x) =
1 − x2 resp. sin(x) = x for small position errors, and
assuming proportional control i∗q = Kω(ω∗

M − ωM ), one
obtains

d

dt
ωM (J −

np

v1
i∗d) = −KKω(ωM − ω∗

M )

+ KKω

n2
p

v2
1

ω̇2(ωM − ω∗

M ) − τL. (46)

The condition for stability is therefore d
dt
ωM < v1

np
which is

satisfied whenever v1 is chosen high enough, for instance,
according to (44) such that ∆ϕe < 1 rad. This result shows
that the impact of phase lag does not destabilize the speed
controller. With τL = 0, the sign of d

dt
ωM is always opposed

to the control error (ωM −ω∗

M ) and the controller converges
well, for any parameters.

F. Comparison to asymptotic observers

The first claimed advantage is robustness to parametric
uncertainties. In our comparison, which opposes the pre-
sented scheme to a reduced-order observer without parameter
adaptation, it was found that the resulting estimation error is
similar for given parameter deviations. However, the control
scheme with estimator is not destabilized, errors of up to 30◦

are acceptable in steady state (stability with reduced perfor-
mance). The observer, however, destabilized itself when such
a large position error was present, as result, three to four
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times lower errors are tolerable. Therefore, while open-loop
robustness is similar, closed-loop robustness is better.

The second claimed advantage is dynamics. This im-
plies the maximum possible acceleration before the scheme
destabilizes. Giving comparative results is hard, see that,
if the feedback gain of the observer is increased, higher
accelerations can be tracked. This inherits drawbacks con-
sidering robustness and also the lowest possible speed. As
advantage compared to our our scheme, an observer does not
necessarily show a phase lag during acceleration, however,
the presented drive operates well at its maximum acceleration
(for instance, maximum torque without any additional inertia
or load). The phase lag during acceleration could be removed
by using a different filter, it is not directly related to the
estimation scheme.

V. HIGHLY DYNAMICAL OPERATION

The position estimator itself only produces a small phase
shift in transient operation, only depending on the time
constant of the low pass filters for the current derivatives.
In contrast, the phase shift produced by the filter (38)
dominates. The maximum possible acceleration of the rotor
ω̇M is known as

cmax =
Kρmax

J
, (47)

where cmax is the maximal acceleration, ρmax the maximum
current magnitude (the rated current in the testbench) and J
is the rotor inertia of the synchronous machine. As soon as
a load is attached to the machine, the inertia will be higher
and the acceleration c lower. The parameter v1 is designed
according to (39) such that the phase shift caused by the
second order tracking filter during acceleration is limited to
20◦ to guarantee stability.

This phase shift, however, will deteriorate the dynamical
behavior as the current is not completely orthogonal to
the flux, reducing the torque-per-ampere ratio. Assuming
knowledge of the filter phase shift, it is possible to improve
the dynamics. The rotor acceleration c is estimated from the
speed reference ramp by c = d

dt
ω∗

M , assuming that the ramp
is tracked, and the d−current is adapted to compensate for
the misalignment. The feedforward compensation is

i∗d = tan (∆ϕe) i∗q + i∗d0 = tan

(

np
d
dt
ω∗

M

v1

)

i∗q + i∗d0, (48)

where i∗d0 is the reference current to avoid zero d−current
as described in sec. III.B. The measurements on Fig. 5
demonstrate the performance of this method. The machine
can then operate at its maximum acceleration. Sensorless
control is realized with the best possible dynamics.

VI. EXPERIMENTAL RESULTS

The proposed sensorless control scheme is validated ex-
perimentally. A surface-mounted permanent magnet syn-
chronous motor is used, whose parameters are shown on
table I. The motor is powered by an industrial inverter.
Furthermore, a load drive is attached. The sampling rate of
the system is 16 kHz and the current is measured by closed-
loop current transducers.

The field-oriented control scheme, consisting of cascaded
PI control, the two estimators and the two filters, is shown
in Fig. 2.

The current magnitude and angle derivatives ρ̇ and φ̇ are
low-pass filtered with a time constant of 0.5 ms. The current
is limited to 6.3 A by the controllers and the d−current is
i∗d0 = 0.3 A for all measurements except Fig. 5 (top).

For the estimation equation, the reference voltages given
by the current controllers are applied. With the given config-
uration, speeds as low as 100 rpm in full load can be reliably
reached.

i∗q

idqωM

i∗d
ω∗

M

iαβ

uαβ
motor

estimator

estimator

(23)

(25)

filter

filter
(56)

low-pass

ctrl
ctrl

dq

dq

αβ

αβ

ϕM

ϕ̂e

ω̂M

ϕ̃e

ω̃M

Fig. 2. Field-oriented encoderless control with the proposed estimators.

TABLE I

NOMINAL PARAMETERS OF THE SYNCHRONOUS MOTOR

Manufacturer & Model Merkes MT5 1050

Rated Power PN 2760 W

Rated Torque τMN 8.8 Nm

Rated Current 6.3 A

Rated Speed ωMN 3000 rpm

Pole Pairs np 3
Rated Voltage UN 400 V

Stator Inductance Ld, Lq 4.8, 7.2 mH

Stator Resistance R 0.86 Ω
Motor Constant K 0.236 Vs

In Fig. 3, steady-state is shown at ωM = 100 rpm resp.
ωM = 3000 rpm and at nominal load τM = 8.8 Nm. The
estimated angle is well conditioned and only has an offset of
about 7◦ from the measured angle. In steady-state, the error
is proportional to the load. In low speed, the stator slotting
can be seen, which is 20 slots per revolution.

Fig. 4 shows an acceleration from 300 to 3000 rpm at half
nominal load τL = 4.4 Nm. This setpoint change takes about
230 ms, and the current controller quickly reaches the motor
current limit of 6.3 A. During this transient, the estimation
error, mainly caused by the second-order filter (38), does
not exceed the error limit of 10◦ as specified in the v1, v2
parameter design.

A similar scenario is shown on Fig. 5 (top), but here
the acceleration is performed without load. The setpoint
change is performed faster (150 ms) and has a max. slope
of 31500 rpm/s. The estimation error becomes about 20◦

as the acceleration is doubled compared to Fig. 4 (see the
time scale). The motor again operates at the current limit.
The d−current feedforward compensator (52) generates a
negative d-current of id = −2.25A during the transient. It
can be shown that the slope is 17% faster than without error
compensation.

To confirm the good encoderless performance, Fig. 5
(bottom) shows the same setpoint change with an encoder.
The dynamic behavior is about the same as in Fig. 5 (top).
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Fig. 3. Experimental results: Top: Encoderless control at 100 rpm and
nominal load τL = 8.8 Nm. Bottom: Encoderless control at 3000 rpm and
nominal load τL = 8.8 Nm. Cyan: estimated electrical angle ϕ̃e (π rad/div),
Green: estimation error ϕ̃e−ϕe (0.01π rad/div), Magenta: estimated speed
ω̃M (300 rpm/div), Blue: current iq in estimated frame (3.15 A/div).
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Fig. 4. Experimental results: Acceleration from 300 to 3000 rpm at half
nominal load τL = 4.4 Nm. Blue: current iq in estimated frame (3.15
A/div), Green: estimation error ϕ̃e−ϕe (0.01π rad/div), Magenta: estimated
speed ω̃M (900 rpm/div), Cyan: measured speed (900 rpm/div).

VII. CONCLUSION

A very fast and robust position estimator based on a
parallel-model estimator was introduced. The advantages of
the use of a polar state representation were pointed out.
The parametric robustness of the estimator, improved by
avoiding asymptotic observers and speed estimation, was
confirmed analytically and experimentally. Furthermore the
scheme convinces by its high dynamic properties, which
are presented in measurement results. The scheme is well
suited for encoderless control of PMSMs at nonzero speed,
especially as it is quite easy to implement.
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