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Abstract— This paper presents a speed-gradient-based in-
verse optimal control approach for the asymptotic stabilization
of discrete-time nonlinear systems. With the solution presented,
we avoid to solve the associated Hamilton-Jacobi-Bellman equa-
tion, and a meaningful cost function is minimized. The proposed
stabilizing optimal controller uses the speed-gradient algorithm
and is based on the proposal of what is called a discrete-time
control Lyapunov function. This combined approach is referred
to as the speed-gradient inverse optimal control. An example
is used to illustrate the methodology. Several simulations are
provided.

I. INTRODUCTION

In optimal nonlinear control, we deal with the problem of

finding a stabilizing control law for a given system such that

a criterion, which is a function of the state variables and the

control inputs, is minimized. The major drawback for this

is the need to solve the associated Hamilton-Jacobi-Bellman

(HJB) equation [1], [2]. The HJB equation, as far as we are

aware, has not been solved for general nonlinear systems. It

has been only solved for the linear regulator problem, for

which it is particularly well-suited [3].

In this paper, we treat the discrete-time nonlinear version

of the inverse optimal control problem, which was proposed

originally by Kalman [4] for linear systems using quadratic

cost functions. The aim of the inverse optimal control is

to avoid to find the solution of the HJB equation [5]. In

the inverse approach, we distinguish two main steps. First, a

stabilizing feedback control law, based on an a priori known

control Lyapunov function (CLF), is designed. Second, it is

ensured that the stabilizing control law optimizes a mean-

ingful cost functional.

An integral characteristic of the inverse optimal control

problem is that the meaningful cost function is determined a

posteriori once the stabilizing feedback control law is estab-

lished. For the inverse optimal control in the continuous-time

setting, we refer the reader to the results presented in [2], [3],

[4], [5], [6], [7], [8], [9]. Although the inverse optimal control
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has been solved for continuous-time systems, the discrete-

time case has not been widely analyzed. This is surprising,

if we take into account the need of discrete-time schemes for

the efficient implementation of real-time control systems.

As far as we are aware, there are very few results for the

discrete-time nonlinear inverse optimal control [10]. Another

example is [11], here, an inverse optimal control scheme

is proposed based on passivity-related concepts, where a

storage function is used as the Lyapunov function and the

output feedback is used as the stabilizing control law.

In this paper, we propose a CLF which depends on a

time-variant parameter. A CLF implies stabilizability [2].

This parameter is adjusted by means of the speed-gradient

(SG) algorithm [12] in order to establish the stabilizing

control law and to minimize a cost functional. We refer this

combined approach to as the SG inverse optimal control.

The use of the SG algorithm within the control loop is

other novel contribution of this paper. Although the SG

has been successfully applied in the control synthesis for

continuous-time systems, there are very few results of the

SG algorithm application for stabilization purposes in the

nonlinear discrete-time setting [13].

This paper is organized as follows. Section II gives a brief

review on optimal control, Lyapunov stability, the inverse

optimal control problem and the SG algorithm. Section III

establishes the SG algorithm application for the proposed

control law. In Section IV, the SG inverse optimal control

and its solution by means of a quadratic CLF are established.

Section V illustrates the applicability of the proposed method

by means of an example.

II. MATHEMATICAL PRELIMINARIES

A. Optimal Control

This section is devoted to briefly discuss the optimal

control methodology and their limitations.

Consider the affine-in-the-input discrete-time nonlinear

system:

x(k + 1) = f(x(k)) + g(x(k))u(k) (1)

where x ∈ R
n is the state of the system, u ∈ R

m is

the control input, f(x) and g(x) are smooth maps with

f(x) ∈ R
n, g(x) ∈ R

n×m, k ∈ Z+ = {0, 1, 2, . . .}. We

consider that x is an isolated fixed point of f(x) + g(x)u
with u constant, that is, f(x) + g(x)u = x. Without loss of

generality, we consider x = 0 for some u constant, f(0) = 0
and rank{g(x)} = m ∀xk 6= 0.

From now on, we will write system (1) as:
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xk+1 = f(xk) + g(xk)uk (2)

and the subscript k will stand for the value of the functions

and/or variables at the time step k.

The following meaningful cost functional is associated

with system (2):

V (xk) =
∞
∑

n=k

(

l(xn) + uT
n R(xn)un

)

(3)

where V (x) : R
n → R

+; l(x) : R
n → R

+ is a

positive semidefinite1 function and R(x) : R
n → R

m×m

is a real symmetric positive definite2 weighting matrix. The

meaningful cost functional (3) is a performance measure

[14]. The entries of R can be functions of the system state

in order to vary the weighting on control efforts according to

the state value [14]. Considering the state feedback control

design problem, we assume that the full state xk is available.

Equation (3) can be rewritten as

V (xk) = l(xk) + uT
kR(xk)uk

+

∞
∑

n=k+1

l(xn) + uT
n R(xn)un

= l(xk) + uT
kR(xk)uk + V (xk+1) (4)

where we require the boundary condition V (0) = 0 so that

V (xk) becomes a Lyapunov function.

From Bellman’s optimality principle [15], [16], it is known

that, for the infinite horizon optimization case, the value

function V (xk) becomes time invariant and satisfies the

discrete-time Hamilton-Jacobi-Bellman (DT HJB) equation

[16], [17], [18]

V (xk) = min
uk

{

l(xk) + uT
kR(xk)uk + V (xk+1)

}

(5)

where V (xk+1) depends on both xk and uk by means of

xk+1 in (2). Note that the DT HJB equation is solved

backward in time [17].

In order to establish the conditions that the optimal control

law must satisfy, we define the discrete-time Hamiltonian H
([19], pages 830–832) as

H(xk, uk) = l(xk)+uT
kR(xk)uk+V (xk+1)−V (xk). (6)

A necessary condition that the optimal control law uk

should satisfy is ∂H
∂uk

= 0 [14], which is equivalent to

calculate the gradient of (5) right-hand side with respect to

uk, then

0 = 2R(xk)uk +
∂V (xk+1)

∂uk

= 2R(xk)uk + gT (xk)
∂V (xk+1)

∂xk+1

. (7)

1A function l(z) is positive semidefinite (or nonnegative definite) function
if for all vectors z, l(z) ≥ 0. In other words, there are vectors z for which
l(z) = 0, and for all others z, l(z) > 0 [14].

2A real symmetric matrix R is positive definite if zTRz > 0 for all
z 6= 0 [14].

Therefore, the optimal control law is formulated as

u∗

k = −
1

2
R−1(xk) g

T (xk)
∂V (xk+1)

∂xk+1

(8)

with the boundary condition V (0) = 0; u∗

k is used when we

want to emphasize that uk is optimal.

Moreover, if H has a quadratic form in uk and R(xk) > 0,

then
∂2H

∂u2
k

> 0

holds as a sufficient condition such that optimal control law

(8) (globally [14]) minimizes H and the performance index

(3) [15].

Substituting (8) into (5), we obtain

V (xk) = l(xk) +

(

−
1

2
R−1(xk) g

T (xk)
∂V (xk+1)

∂xk+1

)T

×R(xk)

(

−
1

2
R−1(xk) g

T (xk)
∂V (xk+1)

∂xk+1

)

+V (xk+1)

= l(xk) + V (xk+1) +
1

4

∂V T (xk+1)

∂xk+1

g(xk)×

R−1(xk)g
T (xk)

∂V (xk+1)

∂xk+1

(9)

which can be rewritten as

l(xk) + V (xk+1)− V (xk) +
1

4

∂V T (xk+1)

∂xk+1

g(xk)×

R−1(xk)g
T (xk)

∂V (xk+1)

∂xk+1

= 0. (10)

The problem of solving the HJB partial-differential equa-

tion (10) for V (xk) is not straightforward. This is one of

the main disadvantages in discrete-time optimal control for

nonlinear systems. To overcome this problem, we propose to

solve the inverse optimal control problem.

B. Lyapunov Stability

Due to the fact that the inverse optimal control is based on

a Lyapunov function, we establish the following definitions.

Definition 1 (Radially Unbounded Function [20]). A

function V (xk) satisfying the condition V (xk) → ∞ as

‖xk‖ → ∞ is said to be radially unbounded.

Definition 2 (Control Lyapunov Function [21]). Let V (xk)
be a radially unbounded function, with V (xk) > 0, ∀xk 6= 0
and V (0) = 0. If for any xk ∈ R

n, there exist real values

uk such that

∆V (xk, uk) < 0

where the Lyapunov difference ∆V (xk, uk) is defined as

V (xk+1)− V (xk) = V (f(xk) + g(xk)uk)− V (xk). Then

V (·) is said to be a “discrete-time control Lyapunov func-

tion” (CLF) for system (2).

In order to establish stability, let recall the following result.

Theorem 1 (Global Asymptotic Stability [22]). The equi-

librium xk = 0 of (2) is globally asymptotically stable if
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there is a function V : Rn → R such that (i) V is a positive

definite function, decrescent and radially unbounded, and

(ii) −∆V (xk, uk) is a positive definite function.

C. Inverse Optimal Control

Definition 3 (Inverse Optimal Control Law). Let define

the control law

u∗

k = −
1

2
R−1(xk)g

T (xk)
∂V (xk+1)

∂xk+1

(11)

to be inverse optimal (globally) stabilizing if:

(i) it achieves (global) asymptotic stability of x = 0 for

system (2);

(ii) V (xk) is (radially unbounded) positive definite func-

tion such that inequality

V := V (xk+1)− V (xk) + u∗T
k R(xk)u

∗

k ≤ 0 (12)

is satisfied.

When we select l(xk) := −V , then V (xk) is a solution for

(10).

As it is established in Definition 3, the inverse optimal

control problem is based on the knowledge of V (xk). Thus,

we propose a CLF, V (xk), such that (i) and (ii) are guaran-

teed. That is, instead of solving (10) for V (xk), we propose

a control Lyapunov function Vc(xk) with the form:

Vc(xk) =
1

2
xT
k Pk xk, Pk = PT

k > 0 (13)

for control law (11) in order to ensure stability of the fixed

point of system (2). This will be achieved by defining an

appropriate matrix Pk. Moreover, it will be established that

the control law (11) with (13), which is referred to as the

inverse optimal control law, optimizes a meaningful cost

functional of the form (3).

Consequently, by considering V (xk) = Vc(xk) as in (13),

the control law (11) takes the following form:

u∗

k = −
1

2

(

R(xk) +
1

2
gT (xk)Pk g(xk)

)−1

×

gT (xk)Pk f(xk). (14)

It is worth to point out that Pk and R are positive definite

and symmetric matrices; thus, the existence of the inverse in

(14) is ensured.

To compute Pk, which ensures stability of the fixed point

of system (2) with (14), we will use the speed-gradient (SG)

algorithm.

D. Speed-Gradient Algorithm

In [12], a discrete-time application of the SG algorithm

is formulated as finding a control law uk which ensures the

control goal:

Q(xk+1) ≤ ∆, for k ≥ k∗, (15)

where Q is a control goal function, a constant ∆ > 0,

and k∗ ∈ Z+ is the time step at which the control goal

is achieved. Q ensures stability if it is a positive definite

function.

III. SPEED-GRADIENT ALGORITHM FOR THE INVERSE

OPTIMAL CONTROL

Digressing from the SG application proposed by [12], in

this paper, the control law is given by (14), and ∆ in (15),

is a state dependent function ∆(xk).
Control law (14) at every time step depends on the matrix

Pk. Let define the matrix Pk at every time step k as:

Pk = pk P
′

where P ′ = P ′T > 0 is a given constant matrix and pk is a

scalar parameter to be adjusted by the SG algorithm. Then,

(14) is transformed into:

u∗

k = −
pk
2

(

R(xk) +
pk
2

gT (xk)P
′ g(xk)

)−1

×

gT (xk)P
′ f(xk). (16)

The SG algorithm is now reformulated for the inverse

optimal control problem.

Definition 4 (SG Goal Function). Consider a time-varying

parameter pk ∈ P ⊂ R
+, with pk > 0 for all k, and P is the

set of admissible values for pk. A nonnegative C1 function

Q : Rn × R → R of the form

Q(xk, pk) = Vsg(xk+1), (17)

where Vsg(xk+1) =
1

2
xT
k+1

P ′ xk+1 with xk+1 as defined in

(2), is referred to as SG goal function for system (2). We

define Qk(p) := Q(xk, pk).

Definition 5 (SG Control Goal). Consider a constant p∗ ∈
P . The SG control goal for system (2) with (16) is defined

as finding pk so that the SG goal function Qk(p) as defined

in (17) fulfills:

Qk(p) ≤ ∆(xk), for k ≥ k∗, (18)

where

∆(xk) = Vsg(xk)−
1

pk
uT
k R(xk)uk (19)

with Vsg(xk) =
1

2
xT
k P ′ xk and uk as defined in (16); k∗ ∈

Z+ is the time step at which the SG control goal is achieved.

Remark 1. Solution pk must guarantees that Vsg(xk) >
1

pk

uT
kR(xk)uk in order to obtain a positive definite function

∆(xk).

To conclude, the SG algorithm is used to compute pk in

order to achieve the SG control goal defined above.

Proposition 1. Consider a discrete-time nonlinear system of

the form (2) with (16) as input. Let Q be a SG goal function

as defined in (17), and denoted by Qk(p). Let p̄, p∗ ∈ P
be positive constant values, ∆(xk) be a positive definite

function with ∆(0) = 0 and ǫ∗ be a sufficiently small positive

constant. Assume that:

• A1. There exist p∗ and ǫ∗ such that

Qk(p
∗) ≤ ǫ∗ ≪ ∆(xk) (20)
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• A2. For all pk ∈ P due to convexity of the SF Goal

Function (17) for pk:

(p∗ − pk)
T ∇pQk(p) ≤ ǫ∗ −∆(xk) < 0 (21)

where ∇pQk(p) denotes the gradient of Qk(p) with

respect to pk.

Then, for any initial condition p0 > 0, there exists a k∗ ∈
Z
+ such that the SG Control Goal (18) is achieved by means

of the following dynamic variation of parameter pk:

pk+1 = pk − γd,k∇pQk(p), (22)

with

γd,k = γc δk |∇pQk(p)|
−2

, 0 < γc ≤ 2∆(xk)

and

δk =

{

1

0

for Qk(p) > ∆(xk)

otherwise.
(23)

Finally, for k ≥ k∗, pk becomes a constant value denoted

by p̄ and the SG algorithm is completed.

Proof: We follow similar arguments as the ones given

for the SG discrete-time version [12]. Let us consider the

positive definite Lyapunov function Vp(pk) = |pk − p∗|
2
.

Then, the respective Lyapunov difference is given as

∆Vp(pk) = |pk+1 − p∗|
2
− |pk − p∗|

2

= (pk+1 − pk)
T [(pk+1 − pk) + 2(pk − p∗)]

= −γd,k ∇pQk(p) [−γd,k ∇pQk(p) +

2(pk − p∗)]

≤ −2 γd,k (∆(xk)− ǫ∗) + γ2
d,k |∇pQk(p)|

2

≤ −2 γc δk (∆(xk)− ǫ∗) |∇pQk(p)|
−2

+

γ2
c δ

2
k |∇pQk(p)|

−4
|∇pQk(p)|

2

= −
γc

[

2∆(xk)
(

1−
(

ǫ∗/∆(xk)
))

− γc
]

|∇pQk(p)|
2

.

From (20), 1−
(

ǫ∗/∆(xk)
)

≈ 1, hence

∆Vp(pk) ≈ −
γc [2∆(xk)− γc]

|∇pQk(p)|
2

< 0

for Qk(p) > ∆(xk), δk = 1 and boundness of pk is

guaranteed if 0 < γc ≤ 2∆(xk). Finally, when k ≥ k∗,

then δk = 0, which means the algorithm concludes; hence,

Qk(p) ≤ ∆(xk) and pk becomes a constant value denoted

by p̄ (pk = p̄).

Since the parameter pk is a scalar value, the gradient

∇pQk(p) in (22) is reduced to be the partial derivative of

Qk(p) with respect to pk, i.e., ∂
∂pk

Qk(p).

Remark 2. Parameter γc in (22) is selected such that solu-

tion pk ensures the requirement Vsg(xk) >
1

pk

uT
kR(xk)uk

in Remark 1. Then, we have a positive definite function

∆(xk).

Remark 3. With Q(xk, pk) as defined in (17), the dynamic

variation of parameter pk in (22) results in

pk+1 = pk + 8 γd,k
fT (xk)P

′ g(xk)R(xk)
2 gT (xk) f(xk)

(

2R(xk) + pk gT (xk)P ′ g(xk)
)3

which is positive for all time step k if p0 > 0. Therefore

positiveness for pk is ensured and requirement Pk = PT
k > 0

for (13) is guaranteed.

When SG Control Goal (18) is achieved, then pk = p̄ for

k ≥ k∗. Thus, matrix Pk in (14) is considered constant and

Pk = P where P is computed as P = p̄ P ′, with P ′ a design

positive definite matrix. Under these constraints, we obtain:

α(xk) := u∗

k

= −
1

2

(

R(xk) +
1

2
gT (xk)P g(xk)

)−1

×

gT (xk)P f(xk). (24)

IV. SG INVERSE OPTIMAL CONTROL

Once the control law (24) has been established, we de-

monstrate that it ensures stability and optimality for (2)

without solving the HJB equation (10). Thus, the main

contribution of this paper is stated as the following theorem.

Theorem 2. Consider that system (2) with (16) has achieved

the SG control goal (18) by means of (22). Let V (xk) =
1

2
xT
k P xk be a Lyapunov function candidate with P =

P T > 0. Then, control law (24) is an inverse optimal

control law, in accordance with Definition 3, which makes the

fixed point xk = 0 of system (2) be globally asymptotically

stable. Moreover, with V (xk) = 1

2
xT
k P xk as CLF and

P = p̄ P ′, control law (24) is inverse optimal in the sense

that it minimizes the meaningful functional given by

J =
∞
∑

k=0

(

l(xk) + uT
k R(xk) uk

)

(25)

where

l(xk) := −V (26)

with V defined as

V = V (xk+1)− V (xk) + αT (xk)R(xk)α(xk).

Proof: Considering that system (2), (16) and (22) has

achieved the SG Control Goal (18) for k ≥ k∗, then (18)

can be rewritten as:

Vsg(xk+1)− Vsg(xk) +
1

p̄
αT (xk)R(xk)α(xk)

=
1

2
xT
k+1 P

′ xk+1 −
1

2
xT
k P ′ xk +

1

p̄
αT (xk)R(xk)α(xk)

≤ 0. (27)

Multiplying (27) by the positive constant p̄, we obtain

V :=
p̄

2
xT
k+1 P

′ xk+1 −
p̄

2
xT
k P ′ xk +

αT (xk)R(xk)α(xk)
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=
1

2
xT
k+1 P xk+1 −

1

2
xT
k P xk +

αT (xk)R(xk)α(xk)

= V (xk+1)− V (xk) + αT (xk)R(xk)α(xk)

≤ 0 (28)

and condition (12) is fulfilled. From (28), obviously

V (xk+1) − V (xk) < 0 for all xk 6= 0 with V (xk) a

positive definite and radially unbounded function, then global

asymptotic stability is achieved in accordance with Theorem

1.

When function −l(xk) is set to be the (28) right-hand side,

then:

l(xk) := −V (29)

= −(V (xk+1)− V (xk))− αT (xk)R(xk)α(xk)

> 0, ∀xk 6= 0.

Consequently, V (xk) =
1

2
xT
k P xk as CLF is a solution of

the HJB equation (10) for k ≥ k∗.

In order to obtain the optimal value function for the

meaningful cost functional (25), we substitute l(xk) given

in (29) into (25), and we obtain:

J =
∞
∑

k=0

(

l(xk) + uT
k R(xk)uk

)

=
∞
∑

k=0

(

−V + uT
k R(xk)uk

)

= −

∞
∑

k=0

[

V (xk+1)− V (xk)
]

+

∞
∑

k=0

[

uT
k R(xk)uk

−αT (xk)R(xk)α(xk)
]

. (30)

After evaluating (30) for k = 0, then it can be written as

J = −

∞
∑

k=1

[

V (xk+1)− V (xk)
]

− V (x1) + V (x0)

+

∞
∑

k=0

[

uT
k R(xk)uk − αT (xk)R(xk)α(xk)

]

= −

∞
∑

k=2

[

V (xk+1)− V (xk)
]

− V (x2) + V (x1)

−V (x1) + V (x0) +

∞
∑

k=0

[

uT
k R(xk)uk

−αT (xk)R(xk)α(xk)
]

. (31)

For notation convenience in (31), the upper limit ∞ will be

considered as N → ∞, and therefore

J = −V (xN ) + V (xN−1)− V (xN−1) + V (x0)

+

N
∑

k=0

[

uT
k R(xk)uk − αT (xk)R(xk)α(xk)

]

= −V (xN ) + V (x0) +
N
∑

k=0

[

uT
k R(xk)uk

−αT (xk)R(xk)α(xk)
]

.

Letting N → ∞ and noting that V (xN ) → 0 for all x0, then

J (xk) = V (x0)+

∞
∑

k=0

[

uT
kR(xk)uk − αT (xk)R(xk)α(xk)

]

.

(32)

Thus, the minimum value of (32) is reached with uk =
α(xk), with α(xk) as in (24). Hence, the control law

(24) minimizes the cost functional (25). The optimal value

function of (25) is J ∗(x0, α(xk)) = V (x0) for all x0.

We can establish the main conceptual differences between

optimal control and inverse optimal control as:

• For optimal control, the cost functions l(xk) ≥ 0 and

R(xk) > 0 are given a priori. Then, they are used

to calculate u(xk) and V (xk) by means of DT HJB

equation solution.

• For inverse optimal control, the control Lyapunov func-

tion V (xk) and the cost function R(xk) are given a

priori. Then, these functions are used to compute u(xk),
and l(xk) with function V as defined in (12).

The optimal control will in general be of the form (11)

and the minimum value of the performance index will be

function of the initial state x0, that is, V (x0).

V. EXAMPLE

The proposed methodology is illustrated in an example.

We design an inverse optimal control law for a discrete-time

second order nonlinear system (unstable for uk = 0) of the

form (2) with:

f(xk) =

[

x1,k x2,k − 0.8x2,k

x2
1,k + 1.8x2,k

]

(33)

and

g(xk) =

[

0
−2 + cos(x2,k)

]

. (34)

According to (24), the inverse optimal control law is

formulated as

u∗

k = −
1

2

(

R(xk) +
1

2
gT (xk)Pk g(xk)

)−1

×

gT (xk)Pk f (xk)

where the positive definite matrix Pk = pk P
′ is calculated

by the SG algorithm with P ′ as the identity matrix, that is

Pk = pk P
′

= pk

[

1 0
0 1

]

and R(xk) is a constant matrix selected as R(xk) = 0.5.

The state penalty term l(xk) in (25) is calculated according

to (26).

Fig. 1 shows the solution xk of this system with initial

conditions x0 = [2 − 2]T ; this figure also includes

the applied inverse optimal control law, which achieves

asymptotic stability.

Fig. 2 displays both the SG algorithm solution pk with

initial condition p0 = 2.5 and final value p̄ = 3.4613.
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Fig. 2. pk and J time evolution.

Evaluation of the cost functional J is also shown in this

figure.

Notice that the open-loop system (33), had an unstable

fixed point for uk = 0. In this example, according to

Theorem 2, the optimal value function is calculated as

J ∗(x0, α(xk)) = V (x0) = 1

2
xT
0 P x0 = 13.8452, which

is reached as shown in Fig. 2.

VI. CONCLUSIONS

This paper has established the inverse optimal control

problem for a class of discrete-time nonlinear systems. To

avoid the solution of the Hamilton-Jacobi-Bellman equa-

tion, we propose a discrete-time control Lyapunov function

(CLF) in a quadratic form adjusted by means of the speed-

gradient algorithm. Based on this CLF, the inverse optimal

control strategy is synthesized. Stability and the correspon-

ding conditions for the inverse optimal control solution are

established. Simulation results illustrate that the proposed

controller ensures stabilization of a nonlinear system and

minimizes a meaningful cost functional.
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