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Abstract— In this paper exponential stabilizability
of continuous-time positive switched systems is in-
vestigated. It is proved that, when dealing with two-
dimensional systems, exponential stabilizability can
be achieved if and only if there exists an Hurwitz
convex combination of the (Metzler) system matrices.
However, for systems of higher dimension this is not
true.

In general, exponential stabilizability corresponds
to the existence of a (positively homogeneous, concave
and co–positive) control Lyapunov function, but this
function is not necessarily smooth. The existence of
an Hurwitz convex combination is equivalent to the
stronger condition that the system is not only expo-
nentially stable, but it also admits a smooth control
Lyapunov function. These two conditions, in turn, are
equivalent to the fact that the stabilizing switching
law can always be based on a linear co–positive control
Lyapunov function. Finally, the characterization of
exponential stabilizability is exploited to provide a
description of all the “switched equilibrium points”
of a positive affine switched system.

I. Introduction

Continuous-time positive switched systems are
dynamic systems that switch among a family of
(continuous-time) positive state-space models, each of
them characterized by a Metzler matrix. The interest
in this class of systems is relatively recent and strongly
motivated by the possibility of employing them in
system biology and pharmacokinetic [11], [12]. These
systems represent quite a challenge from a theoretical
point of view. Indeed, properties like reachability and
controllability cannot be investigated as special cases of
the analogous properties for standard switched systems,
due the positivity constraint on their system matrices
and on the soliciting inputs [22]. On the other hand,
properties like stability and stabilizability, meanwhile
inheriting the general results derived for non-positive
switched systems, offer new tools and new testing
criteria that find no equivalent in the general case.
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Most of the literature on positive switched systems
has focused on the stability problem, namely on the
possibility of ensuring a good asymptotic behavior to the
system trajectories, independently of the switching law
[10], [14], [17]. On the other hand, there are situations
when stability property can not be ensured (this is the
case when modeling viral mutation and escape in patients
affected by HIV [11], [12]), but we are interested in deter-
mining switching strategies that ensure the convergence
to zero of the state trajectories. Stabilizability of positive
switched systems is a topic only partially explored [2], [8],
[11], [16], [24], that offers a wide range of interesting open
problems.

In this paper we focus on the exponential stabiliz-
ability of continuous-time positive switched systems. For
two-dimensional systems this property is equivalent to
the existence of an Hurwitz convex combination of the
(Metzler) system matrices1. For systems of higher di-
mension the existence of such an Hurwitz combination
represents a stronger property. Indeed, while exponential
stabilizability corresponds to the existence of a (pos-
itively homogeneous, concave and co–positive) control
Lyapunov function, the existence of an Hurwitz combina-
tion is equivalent to the existence of a control Lyapunov
function that, in addition to the previous properties, is
also smooth. These conditions are, in turn, equivalent,
to the possibility of designing a stabilizing switching law
based on a linear co–positive control Lyapunov function.
It is worthwhile to underline that these results are not
only interesting by themselves, but they also enlighten
that stabilizability characterization in the continuous-
time and in the discrete-time cases are significantly
different [8]. Finally, the characterization of exponential
stabilizability is exploited to provide a description of
all the “switched equilibrium points” of a positive affine
switched system.

Before proceeding we introduce some basic notation.
The set of nonnegative real numbers is R+. A matrix (in
particular, a vector) A with entries in R+ is a nonnegative
matrix. The matrix A is positive (A > 0) if nonnegative
and nonzero, and strictly positive (A� 0) if all its entries

1In [23] a detailed analysis of the stabilizability of second order
non-positive switched systems is given. Necessary and sufficient ge-
ometric conditions are provided, depending on whether the origin is
an unstable focus, saddle point or node for the various subsystems.
Based on these conditions, stabilizing switching laws are proposed.
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are positive. A positive n × n matrix A, with n > 1, is
reducible if there exists a permutation matrix P such that

P ′AP =

[
A11 A12

0 A22

]
,

where A11 is a k × k matrix, 1 ≤ k ≤ n − 1. A positive
matrix which is not reducible is called irreducible. For an
irreducible positive matrix A it is know that the spectral
radius max{|λ| : λ ∈ σ(a)} is a simple eigenvalue of A,
called the Perron-Frobenius eigenvalue and denoted by
λf , and that the corresponding eigenspace is generated
by a strictly positive eigenvector, called Perron-Frobenius
eigenvector. A square matrix A = [aij ] is said to be
Metzler if its off-diagonal entries are nonnegative, namely
aij ≥ 0 for every i 6= j.

1n is the n-dimensional vector with all entries equal
to 1. The suffix n will be omitted when the vector size
is clear from the context. The convex polytope of the
nonnegative M -tuples, M ∈ N, that sum up to 1 will be
denoted by:

A .
=

{
α ∈ RM+ :

M∑
i=1

αi = 1

}
=
{
α ∈ RM+ : 1′α = 1

}
.

A function V : Rn → R is said to be co–positive if
V (x) > 0 for every x > 0 and V (0) = 0. A linear co–
positive function takes the form V (x) = c′x, for some
c ∈ Rn, c� 0.

II. Exponential stabilizability of
two-dimensional positive switched systems

In this paper we consider n-dimensional continuous-
time positive switched systems described by the following
equation

ẋ(t) = Aσ(t)x(t), (1)

where σ(t) is a switching sequence, defined on R+ and
taking values in the finite set {1, 2, . . . ,M}. For every
value i taken by the switching sequence σ, ẋ(t) = Aix(t)
is a continuous-time positive system, which amounts
to saying that Ai is an n × n Metzler matrix. For
these systems, we introduce the concept of exponential
stabilizability. This definition requires the existence of
a switching law whose value at each time t depends on
the value of the state at that time, and hence a state–
feedback switching law.

Definition 1: System (1) is exponentially stabilizable if
there exist a switching control law σ(t) = u(x(t)) and
real parameters C > 0 and β > 0 such that every
trajectory (generated from any x(0) > 0, according to the
aforementioned state-feedback switching law) satisfies

‖x(t)‖ < Ce−βt‖x(0)‖, ∀t ≥ 0.

In this paper we investigate exponential stabilizability
and its relationship with other important conditions,
which are known to be sufficient for exponential stabi-
lizability. To this end, we introduce the following:

Assumption 1: All the matrices Ai, i = 1, 2, . . . ,M,
are irreducible, and hence have a strictly positive Perron-
Frobenius eigenvector.

This assumption allows to simplify the calculations but it
is not really restrictive. Indeed, all the results can be eas-
ily extended to arbitrary positive matrices by resorting
to standard techniques (replace the matrices Ai with the
irreducible matrices Ai+ ε11′, with ε > 0, and obtain all
the results as limit for ε→ 0+). Notice, in particular, that
this is possible because the Perron Frobenius eigenvalue
is a continuous function of the coefficients, see [15].

It is a well known fact that the existence of an Hurwitz
convex combination of the system matrices represents
a sufficient condition for the exponential stabilizability
[13], [20].

Proposition 1: If there exists an Hurwitz convex com-
bination of the system matrices Ai’s, namely there exists
α ∈ A such that A(α)

.
=
∑M
i=1 αiAi is Hurwitz, then

system (1) is exponentially stabilizable.

When dealing with two-dimensional systems (i.e., sys-
tems (1) of dimension n = 2), this condition is also
necessary.

Theorem 1: A two-dimensional system (1) is exponen-
tially stabilizable if and only if there exist indices i1, i2 ∈
{1, 2, . . . ,M} and nonnegative numbers α1, α2 ∈ [0, 1],
with α1 + α2 = 1, such that α1Ai1 + α2Ai2 is Hurwitz.

Proof: The proof of this result is quite long and
hence it is omitted. The interested reader is referred to
[3].

Remark 1: It is worth to comment on the meaning of
this result. For two-dimensional systems (1), exponential
stabilizability not only ensures that a convex Hurwitz
combinations of the system matrices can be found, a
condition which was known to be only sufficient for
exponential stabilizability, but also that among all such
combinations at least one can be found involving only two
of the matrices Ai, i ∈ {1, 2, . . . ,M}. This implies that
the system can be stabilized by resorting to switching
sequences that take only two of the available M values.

The proof of Theorem 1 is based on geometric ar-
guments that do not find an obvious extension to the
general case, and indeed the result is not true for expo-
nentially stable systems of higher dimension, as shown
by the following example.

Example 1: Consider the three-dimensional positive
switched system (1), switching among three subsystems
characterized by the matrices:

A1 =

−0.99 0 0
0 0.01 0
0 1 0.01

A2 =

0.01 0 1
0 −0.99 0
0 0 0.01


A3 =

0.01 0 0
1 0.01 0
0 0 −0.99

 .
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It is a matter of simple computation to show that no
convex Hurwitz combination of the three matrices can be
found, however the matrix product eA1eA2eA3 is Schur,
and hence the periodic switching law

σ(t) =


3, t ∈ [3k, 3k + 1),

2, t ∈ [3k + 1, 3k + 2),

1, t ∈ [3k + 2, 3k + 3),

k ∈ Z+,

makes the resulting system exponentially stable. Con-
sequently, the system is exponentially stabilizable. A
state-feedback stabilizing switching rule can be found as
follows:

• Introduce

c1 =
[

1 1.1 1
]

c2 =
[

1 1 1.1
]

c3 =
[

1.1 1 1
]
.

• Define I(x) := {i ∈ {1, 2, 3} : c′ix ≤ c′jx,∀ j}.
• The stabilizing switching law is

σ(t) = u(x(t)) = arg min
k

( min
i∈I(x)

c′iAkx).

See [3] for more details.

III. Exponential stabilizability and control
Lyapunov functions

To investigate what is the relationship between expo-
nential stabilizability and the existence of an Hurwitz
convex combination of the matrices Ai’s, we need to
introduce the concept of control Lyapunov function. This
definition is the same as the one used for standard
switched systems, with the exception that instead of im-
posing that the Lyapunov function takes positive values
everywhere, but in the origin, we only require it to be
co–positive, namely to take positive values in the positive
orthant (again, except for the origin).

Definition 2: We say that a co–positive function V (x)
is a Lyapunov function for the system (1) corresponding
to a given sequence σ(·), if there exists a co–positive
function φ(x) such that condition

V (x(t+ h)) ≤ V (x(t))−
∫ t+h

t

φ(x(τ))dτ, ∀ h, t ≥ 0 (2)

holds. We say that V (x) is a control Lyapunov function
if it is a Lyapunov function for every sequence σ(·)
generated by some state–feedback law σ(t) = u(x(t)).

Note that the previous definition is quite generic as
it does not require V (x) to be differentiable. If this is
the case, then (2) becomes equivalent to the standard
condition: V̇ (x) ≤ −φ(x).

The existence of a co–positive control Lyapunov func-
tion for (1) ensures the exponential stabilizability of the
system. This is true in particular when the function is
convex. When dealing with linear (i.e., not necessarily
positive) switched systems, exponential stabilizability

does not imply the existence of a convex control Lya-
punov function [5]. On the other hand, it has been
shown [11] that exponential stabilizability of discrete–
time positive switched systems implies the existence of
a concave co–positive control Lyapunov function. This
result extends to continuous–time positive switched sys-
tems described as in (1).

Proposition 2: System (1) is exponentially stabilizable
if and only if it admits a positively homogeneous, concave
and co–positive control Lyapunov function.

Proof: Sufficiency is known, so we only need to prove
the necessity. Given any positive initial state x0, consider
the cost function

J(x0, σ(·)) =

∫ ∞
0

1′x(t)dt,

where x(t) is the state trajectory generated from x(0) =
x0 corresponding to σ, and let V (x0) be its optimal value
w.r.t all possible switching sequences, i.e.

V (x0) = inf
σ(·)

J(x0, σ(·)).

We want to prove that this is the control Lyapunov
function we are searching for. Clearly, V (0) = 0 and
V (x0) > 0 for x0 > 0, and hence V is a co–positive
function.

By the exponential stabilizability assumption, V (x0) <
+∞ for all x0 ≥ 0. Let ε be an arbitrarily small positive
number, and let σ̃(·) be a switching sequence which cor-
responds to the ε–optimal cost, by this meaning that the
system trajectory x̃(t) generated from x0, by switching
according to σ̃, corresponds to a value of the cost function
equal to J(x0, σ̃(·)) = V (x0)+ε. Express x0 as the convex
combination of two nonnegative vectors x1 and x2, i.e.
x0 = γx1 + (1 − γ)x2 for some γ ∈ [0, 1]. If we denote
by x1(t) and x2(t) the trajectories starting from the
initial conditions x1 and x2, respectively, and achieved
through the same switching sequence σ̃(·), clearly x̃(t) =
γx1(t) + (1− γ)x2(t). We have

V (x0) + ε = J(x0, σ̃(·)) =

∫ ∞
0

1′x̃(t)dt =

γ

∫ ∞
0

1′x1(t)dt+ (1− γ)

∫ ∞
0

1′x2(t)dt

≥ γV (x1) + (1− γ)V (x2).

Since, ε can be arbitrarily small, it follows that

V (x0) ≥ γV (x1) + (1− γ)V (x2),

which ensures the function concavity.

The fact that the function V (x0) is positively homo-
geneous of order one is a trivial consequence of the way
V is defined.

Function V is non–differentiable. However, being con-
cave, it is locally Lipschitz, so we can resort to the
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generalized Dini derivative

D+V (x(t))
.
= lim sup

h→0+

V (x(t+ h))− V (x(t))

h
,

to claim that the optimal trajectory satisfies

D+V (x(t)) = −1′x(t)

almost everywhere [19]. The corresponding state feed-
back switching law is then implicitly defined by the
following optimization problem

σ(t) = u(x(t)) = arg min
σ
D+V (x(t))

IV. Main result

As we have seen in section II, the existence of an
Hurwitz convex combination of the system matrices is
only a sufficient condition for the exponential stabiliz-
ability of a positive switched system (1). This latter,
in turn, is equivalent to the existence of a positively
homogeneous and co–positive control Lyapunov function.
Such a Lyapunov function, however, is not necessarily
smooth, and indeed the one we resorted to within the
proof of Proposition 2 is not.

On the other hand, when such an Hurwitz combination
can be found, it is well-known that stabilizing switching
laws σ(t) = u(x(t)) can be designed, based on linear co–
positive (and hence smooth) control Lyapunov functions.
So, the intuitive idea arises that, in order to ensure that
the convex combination A(α) is Hurwitz for some α ∈ A,
system (1) should not only be exponentially stable, but
also endowed with a smooth control Lyapunov function.
This intuition proves to be correct and indeed these two
conditions prove to be equivalent, as well as equivalent
to the existence of a linear co–positive control Lyapunov
function.

To derive our main theorem, we need the following
technical result regarding the existence of an Hurwitz
convex combination A(α), α ∈ A.

Theorem 2: Assume that system (1) is exponentially
stabilizable and it admits a positively homogeneous, co–
positive and smooth control Lyapunov function V (x)
satisfying:

∃ β > 0 : min
i
∇V (x)Aix ≤ −βV (x), ∀x ≥ 0. (3)

Then there exists α ∈ A such that A(α) =
∑M
i=1 αiAi is

Hurwitz.

Proof: Assume that system (1) is exponentially
stabilizable and there exists a positively homogeneous,
co–positive and smooth control Lyapunov function V (x)
satisfying (3), or, equivalently such that

∃ β > 0 : min
α∈A
∇V (x)A(α)x ≤ −βV (x), ∀x ≥ 0. (4)

Clearly, condition (4) holds, in particular, for all the
nonnegative vectors x with unitary norm, i.e. in

S .
= {x ≥ 0 : 1′x = 1}.

By the continuity of the involved functions and the
compactness of S, it is not difficult to show that there
exists a small perturbation ε > 0 such that (β − ε > 0
and), for every x ∈ S, the set

Ω(x)
.
= {α ∈ A : ∇V (x)A(α)x ≤ −(β − ε)V (x)}, (5)

has non-empty relative interior.
We first associate with each x ∈ S the vector α ∈ Ω(x)

of smallest Euclidean norm:

Φα(x)
.
= arg min

α∈Ω(x)
‖α‖2.

On the other hand, we associate with each α ∈ A, the
(right) eigenvector of A(α) of unitary norm, and hence
belonging to S, corresponding to the Perron-Frobenius
eigenvalue λf,α. Notice that this eigenvalue is unique
thanks to the assumption that matrices in A are irre-
ducible. Formally, the corresponding map is

Φv(α) = v,

where v is the only solution in S of the equation A(α)v =
λf,αv. Finally, we define the composite map Φ : S → S
given by

v = Φ(x)
.
= [Φv � Φα](x)

The following considerations are in order:

1) The set-valued map Ω(x) is convex-valued and con-
tinuous with non empty relative interior.

2) The function Φα(x) is the minimal selection map
and it is continuous in view of Michael’s selection
theorem [1], [9].

3) The function Φv(α) is continuous in view of the
continuity of the Perron-Frobenius eigenvector with
respect to parameter variations of positive matrices,
see [15]. Actually, the result holds for positive ma-
trices, so to prove continuity in our case, we just
note that the eigenvectors of a Metzler matrix A(α)
coincide with those of A(α) + τI, for any τ > 0.

By the above considerations, we can conclude that Φ(x)
is a continuous map from the compact set S into itself.
Consequently, by the well known Brouwer Kakutani fixed
point result (see for instance [1], pag. 84), the equation
Φ(x) = x has a solution, say x̄ ∈ S. Set ᾱ

.
= Φα(x̄). By

construction we have

∇V (x̄)A(ᾱ)x̄ ≤ −(β − ε)V (x̄).

On the other hand, A(ᾱ)x̄ = λf,ᾱx̄ implies

∇V (x̄)A(ᾱ)x̄ = λf,ᾱ∇V (x̄)x̄,

and hence

λf,ᾱ∇V (x̄)x̄ ≤ −(β − ε)V (x̄).

The right hand-side of the previous inequality is negative,
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and hence so is the left hand-side. Being V (x) positively
homogeneous, it readily follows that ∇V (x̄)x̄ = µV (x̄),
for a suitable positive µ. Hence, ∇V (x̄)x̄ > 0 implies
λf,ᾱ < 0, and this ensures that A(ᾱ) is Hurwitz.

We are now in a position to provide a complete
characterization of the existence of an Hurwitz convex
combination of the system matrices Ai, i = 1, 2, . . . ,M .

Theorem 3: The following statements are equivalent:
(i) System (1) admits a positively homogeneous, smooth
for x 6= 0, co–positive control Lyapunov function such
that

min
i
∇V (x)Aix ≤ −φ(x), ∀x ≥ 0, (6)

for some co–positive continuous function φ(x).
(ii) System (1) is exponentially stabilizable and admits
a positively homogeneous, smooth for x 6= 0 and co–
positive control Lyapunov function which satisfies (4).
(iii) There exists α ∈ A such that A(α) is Hurwitz.
(iv) System (1) is exponentially stabilizable and admits
a linear co–positive control Lyapunov function VL(x) =
c′x, with c� 0.

Proof: We prove the statements in circular order.

(i)→ (ii). Assume that (6) is true for some homogeneous
smooth co–positive V (x) and some co–positive continu-
ous function φ(x). Set

β
.
= min
x≥0:V (x)=1

φ(x) > 0.

Since V is homogeneous, by scaling we immediately have
for every x ≥ 0

min
i
∇V (x)Aix ≤ −βV (x).

In turn this condition implies V̇ (x) ≤ −βV (x), if one
chooses as switching law σ = u(x) = arg mini∇V (x)Aix,
and hence exponential stabilizability (see for instance
[4]).

(ii)→ (iii) It follows from Theorem 2.
(iii)→ (iv) Given the convex combination A(ᾱ), let c′

be a left strictly positive dominant eigenvector associated
with it. Then

c′A(ᾱ) = −βc′

for some positive β. We have

min
σ
c′Aσx ≤ c′A(ᾱ)x = −βc′x, (7)

and therefore VL = c′x is a control Lyapunov function,
in the sense of Definition 2, for φ(x) = βc′x.

(iv)→ (i) Obvious.

V. Switched equilibria of affine systems

The results of section IV are now used to cope with the
case of continuous-time positive affine switched systems,
i.e. systems described by

ẋ(t) = Aσ(t)x(t) + bσ(t), (8)

where σ(·) is a switching sequence, defined on R+ and
taking values in the finite set {1, 2, . . . ,M}, and for every
value i taken by σ, Ai is an n × n Metzler matrix and
bi a nonnegative vector. We assume that system (8)
is exponentially stabilizable, which amounts to saying
that when all the bi’s are set to zero in (8) the state
trajectories can be driven to zero (by resorting to some
state feedback switching law). For the sake of simplicity,
we assume that all input vectors bi are strictly positive.

We say that a state x̄ > 0 is a switched equilibrium
point of (8) if the origin is included in the convex hull
of Aix̄+ bi (see [1] pag. 101 for details on discontinuous
differential equations). Notice that, in general, x̄ is not
an equilibrium point of any of the affine subsystems.
However, if x̄ > 0 is a switched equilibrium point, then
[6] there exists α ∈ A such that

0 = A(α)x̄+ b(α), (9)

where b(α)
.
=
∑M
i=1 αibi, and α can be seen as the

“equivalent derivative” of our discontinuous system [21].
By exploiting the proof of the main theorem, we

want to provide a characterization of all the switched
equilibria that can be reached under some state-feedback
stabilizing switching law σ(t) = u(x(t)).

Theorem 4: Suppose that system (8) satisfies any of
the equivalent conditions of Theorem 3 and assume bi �
0 for every i ∈ {1, 2 . . . ,M}. Then the set of all switched
equilibria of system (8) that can be achieved by resorting
to some state feedback switching law σ(t) = u(x(t)) is
given by

E = {x̄ : x̄ = −A(α)−1b(α),∃ α ∈ AH},

where AH
.
= {α ∈ A : A(ᾱ) is Hurwitz}.

Proof: We preliminary notice that, by Theorem 3,
the set AH is not empty, and hence E 6= ∅. We have
already seen that if x̄ is an equilibrium point, then (9)
holds. But then A(ᾱ)x̄ = −b(α)� 0 which implies that
A(ᾱ) is Hurwitz. Note that if b(α) is strictly positive, the
x̄ must be strictly positive since no equilibrium exists on
the boundary of the orthant. This ensures that x̄ ∈ E .

Conversely, we want to prove that all points in E are
equilibria achievable by means of some state-feedback
stabilizing switching law. Let A(α), α ∈ AH , be an Hur-
witz matrix and let P = P ′ be a positive definite matrix
such that A′(ᾱ)P +PA(ᾱ) is negative definite. Let x̄ be
the element of E corresponding to A(α), and consider the
control Lyapunov function V (x− x̄) = (x− x̄)′P (x− x̄)
and the control strategy

u(x) = arg min
σ
V̇ (x− x̄),

where

V̇ (x− x̄) = (Aσx+ bσ)′P (x− x̄) + (x− x̄)′P (Aσx+ bσ)

= 2(x− x̄)′P (Aσx+ bσ). (10)
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Bearing in mind that A(ᾱ)x̄ = −b(ᾱ), we have for x 6= 0

V̇ (x− x̄)

2
= (x− x̄)′PA(ᾱ)(x− x̄)︸ ︷︷ ︸

<0

+

+ (x− x̄)′P [(Aσx+ bσ)− (A(ᾱ)x+ b(ᾱ))]

By construction, the vector A(ᾱ)x+ b(ᾱ) belongs to the
convex hull of the vectors Aix+ bi, and hence

min
σ

(x− x̄)′P [(Aσx+ bσ)− (A(ᾱ)x+ b(ᾱ))] ≤ 0.

This ensures that the minimum of (10) is negative.

Concluding remarks

In this paper exponential stabilizability of continuous-
time positive switched systems has been investigated.
For two-dimensional systems, exponential stabilizability
proves to be equivalent to the existence of an Hurwitz
convex combination of the (Metzler) system matrices.
Even more, Hurwitz convex combinations involving only
two of the M system matrices can be found. For higher
order systems these results are not true. Exponential
stabilizability is equivalent to the existence of a (posi-
tively homogeneous and co–positive) control Lyapunov
function, however only when a smooth control Lyapunov
function can be found an Hurwitz combination exists.
These two conditions turn out to be equivalent to the
existence of a special class of co–positive and smooth
control Lyapunov function, namely linear ones.

Finally, based on these results, a description of all the
“switched equilibrium points”of a positive affine switched
system has been provided.
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