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Abstract— The conditions for structure preserving feedback
of controlled contact system are studied. It is shown that only a
constant feedback preserves the canonical contact form, hence
a structure preserving feedback implies a contact system with
respect to a new contact form. A necessary condition is stated
as a matching equation in the feedback, the contact vector
fields, the canonical contact form and the closed-loop contact
form. Furthermore, for the case of strict contact vector fields
a set of solutions is characterized for a particular class of
feedback and the relation with classical results on feedback
control of Hamiltonian control systems is established. The
control synthesis is briefly addressed and illustrated on a simple
example.

I. INTRODUCTION

Geometric control theory has over the past years been ori-
ented to take advantage of the special structure that arises in
specific applications. Among those applications are the ones
defined by controlled Hamiltonian systems over symplectic
manifolds [1]–[3]. It is well known that the symmetries
arising from the symplectic structure of Hamiltonian systems
can be used to solve a great number of control problems.

A contact structure is the analogue of a symplectic struc-
ture for odd-dimensional manifolds. The contact structure
arises naturally in the geometric representation of thermody-
namic systems [4]–[6]. This kind of representation has been
extended to a class of systems called conservative contact
systems used to model simple and complex irreversible ther-
modynamic processes [7]–[9]. Controlled contact systems
have recently been proposed in [7]. In this work the contact
vector field is equipped with an input map and conjugated
inputs and outputs are defined in the sense of port variables
and energy balance. Some preliminary results on constant
interconnection of contact systems where given in [10], and
necessary conditions for the stability of the linearization
of contact vector fields where presented in [11]. Recently
in [12], the framework of conservative controlled contact
systems has been used to propose a control design method,
where state and co-state variables can be seen as independent
variables. However, the closed-loop system is not longer
a contact system and hence the structure is not preserved.
In [4] a simple example of structure preserving isothermal
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interaction of two thermodynamic systems is presented in
the frame of contact systems.

Inspired by the work performed on controlled Hamiltonian
systems, the aim of this paper is to show the conditions under
which it is possible to conserve the geometric structure of
a controlled contact system subject to state feedback. The
condition for structure preserving feedback is formally stated
in the form of a matching equation. It is shown that only
a constant feedback preserves the canonical contact form,
hence a structure preserving feedback implies a contact sys-
tem with respect to a new contact form. For strict controlled
contact systems we show that, for a particular class of closed-
loop contact form, a set of admissible feedback is given as
the solution of a quasi-linear partial differential equation.
The solutions to the matching equation and the closed-loop
contact form have physical interpretation since they may be
associated with a thermodynamic potential and cast in the
framework of passivity based control [13]. Furthermore, the
relation of the closed-loop contact vector field and contact
Hamiltonian function with classic results on Hamiltonian
control systems is addressed.

The paper is organized as follows, in section II the
preliminaries of controlled contact systems are given; sec-
tion III presents the conditions for feedback equivalence
with respect to a different contact form; in section IV the
matching condition is characterized for a particular class of
feedback and the relation with structure preserving feedback
of controlled Hamiltonian system is established; in section
V the control synthesis is addressed and a simple example
is used to illustrate the results; finally some closing remarks
are given in section VI.

II. CONTROLLED CONTACT SYSTEMS

We shall in the following recall briefly the main definitions
and properties of the control contact systems considered
in this paper and the reader is referred to [7], [14], [15]
for details. Consider some 2n+ 1-dimensional manifold M
equipped with a contact form denoted by θ.

Definition 1: [14] A contact structure on M is deter-
mined by a 1-form θ of constant class (2n + 1). The pair
(M, θ) is then called a contact manifold, and θ a contact
form.
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According to Darboux’s theorem for Pfaffian forms of
constant class [14] there exists a set of canonical coordinates
(x0, x, p) ∈ R × Rn × Rn of M where the contact form θ
is given by

θ = dx0 −
n∑
i=1

pidxi

where d denotes the exterior derivative. In the following we
shall use the Reeb vector field E associated with the contact
form θ which is the unique vecor field satisfying

iEθ = 1 and iEdθ = 0 (1)

where iE denotes the contraction by the vector field E of
differential forms. In canonical coordinates the Reeb vector
field is expressed as E = ∂

∂x0
. Contact vector fields are

vector fields which leave the contact distribution invariant.
Definition 2: A (smooth) vector field X on the contact

manifoldM is a contact vector field with respect to a contact
form θ if and only if there exists a smooth function ρ ∈
C∞(M) such that

LXθ = ρθ, (2)

where LX · denotes the Lie derivative with respect to the
vector field X .

It may be shown that the vector space of contact vector
fields and the space of smooth real functions are isomorphic
[14] which is stated in the following proposition.

Proposition 3: [7] The map Φ(X) = iXθ defines an
isomorphism from the vector space of contact vector fields
in the space of smooth real functions on the contact manifold.

The function K = Φ(X) is called contact Hamiltonian
generating the contact vector field denoted by X = Φ−1(K),
where Φ−1 is the inverse isomorphism. Finally the function
ρ of equation (2) is given by ρ = iEdK where E is the
Reeb vector field. A contact system on M is then defined
by d

dt

[ x0
x
p

]
= X which, in any set of canonical coordinates,

is expressed by the dynamic equation

d

dt

x0x
p

 =

K0
0

+

0 0 −p>
0 0 −In
p In 0

 ∂K
∂x0
∂K
∂x
∂K
∂p

 (3)

where In denotes the identity matrix of order n. Controlled
contact systems are defined by contact Hamiltonians which
depend not only on the state variables (x0, x, p) but also
on a time dependent input function u(t) ∈ Lloc

1 (R+) [7].
In this paper we shall consider the particular case when the
controlled contact system is affine in the input

X = XK0 +XKcu (4)

where K0 ∈ C∞(M) is the internal contact Hamiltonian
and Kc ∈ C∞(M) is the interaction (or control) contact
Hamiltonian and where XK0 and XKc are contact vector
fields with respect to the canonical contact form θ. Now
we study the problem of structure preserving feedback of a
controlled contact system, i.e. which class of state feedback
u = α(x0, x, p), with α ∈ C∞(M), generates a closed-
loop vector field X that is again a contact vector field with

respect to the contact form θ, which is given in the following
proposition.

Proposition 4: Consider the controlled contact system (4)
with the condition that Kc vanishes on a submanifold of
measure 0 (that is, is fully actuated) and the feedback u =
α(x0, x, p) being a smooth function of the state variables.
The closed loop vector field X is a contact vector field
with respect to the canonical contact form θ if and only if
α(x0, x, p) = αcte is constant.

Proof: Recall Cartan’s formula: LX · = iXd · +diX ·.
Then one may compute, using (4),

LXθ = LXK0
+αXKc

θ

= i(XK0
+αXKc )

dθ + di(XK0
+αXKc )

θ

= iXK0
dθ + αiXKc

dθ + d (K0 + αKc)

=
(
iXK0

dθ + dK0

)
+ α

(
iXKC

dθ + dKc

)
+Kcdα

= LXK0
θ + αLXKc

θ +Kcdα

= (ρ0 + αρc) θ +Kcdα

(5)

where ρ0 = iEdK0 and ρc = iEdKc. Hence the vector field
X = XK0

+ XKc
α is a contact vector field if and only if

there exists a function φ ∈ C∞(M) such that: Kcdα = φθ.
Using the definition of θ in local coordinates, θ = dx0 −∑n
i=1 pidxi, we may write

Kc

(
∂α
∂x0 dx

0 +

n∑
k=1

∂α
∂xk dx

k +

n∑
k=1

∂α
∂pk

dpk

)
=

φ
(
dx0 −

n∑
k=1

pkdx
k
)
,

which by the assumption of smoothness of the functions and
under the condition that Kc vanishes on a submanifold of
measure 0 leads to ∂α

∂xk = − ∂α
∂x0 pk and ∂α

∂pk
= 0, which

implies that α is constant.
In summary the only feedback control of an affine con-

trolled contact system which leads to a contact vector field
equipped with contact form θ is the constant control. The
resulting contact system is the sum of two contact vector
fields with global contact Hamiltonian K0 + KCαcte. It
is interesting to note that this is precisely the case in the
definition of the interconnection of port-contact systems
as defined in [10]. It is also interesting to note that this
result differs from the case of feedback control of input-
output Hamiltonian systems where the feedback leading to
a closed-loop Hamiltonian system are characterized as the
composition of any function with the control Hamiltonian
functions [2], [3].

III. FEEDBACK EQUIVALENCE WITH A CONTACT VECTOR
FIELD WITH RESPECT TO A DIFFERENT CONTACT FORM.

Proposition 4 shows that by using non constant state
feedback of a controlled contact vector field it is not possible
to obtain a contact vector field with respect to the same
contact form. In this section the feedback conditions under
which the closed-loop contact vector field X in (4), is again
a contact vector field with respect to a new contact form are
studied.
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A. Matching conditions for feedback equivalence to closed-
loop contact structure

In the following we shall derive the conditions for the
existence of a new contact form θd for which X is a contact
vector field. Therefore we shall consider the equivalent
condition of the existence of a function ρd ∈ C∞(M) such
that

LXθd = ρdθd. (6)

Denote Kd = iXθd the contact Hamiltonian generating X
with respect to the contact form θd, then ρd = iEd

dKd where
Ed denotes the Reeb vector field associated with θd. Using
the result in (5) applied to θd, one has

LXθd = LXK0
+αXKc

θd

= i(XK0
+αXKc )

dθd + d(i(XK0
)+αXKc )

θd

= (iXK0
dθd) + α(iXKc

dθd) + d(iXK0
θd) + d(αiXKc

θd)

= (iXK0
dθd) + α(iXKc

dθd) + d(iXK0
θd) + αd(iXKc

θd)

+ (iXKc
θd)dα

=
[
(iXK0

dθd) + d(iXK0
θd)
]
+ α

[
(iXKC

dθd) + d(iXKc
θd)
]

+ (iXKC
θd)dα

= LXK0
θd + αLXKc

θd + (iXKC
θd)dα

(7)

which leads by subtraction with (6), to the following problem
formulation.

Problem 5: Under which conditions there exist a contact
form θd, a function ρd ∈ C∞(M) and a feedback u = α ∈
C∞(M) in (4) such that the following matching equation is
satisfied

ρdθd = LXK0
θd + αLXKc

θd + (iXKC
θd)dα. (8)

In this section, and in order to simplify the matching
equation (8), the following assumption is made.

Assumption 6: The controlled contact Hamiltonian and
the closed-loop contact Hamiltonian are strict contact Hamil-
tonians, i.e., ρd = ρ0 = ρc = 0.

This assumption implies that X , and respectively XK0

and XKc
, leave invariant the contact form itself θd (re-

spectively θ). In canonical coordinates this means that they
do not depend on the coordinate x0 associated with the
Reeb vectorfield. This is not a restrictive assumption since
for contact systems arising from the modelling of physical
systems, the contact Hamiltonian indeed do not depend on
the x0 coordinate representing the energy (or more generally
a thermodynamic potential) [7]. Under this assumption the
matching equation (8) is reduced to a relation on the feedback
α and the closed-loop contact structure θd

LXK0
θd + αLXKc

θd + (iXKC
θd)dα = 0. (9)

B. Matching to a contact form obtained by adding an exact
form

In the following, in order to ease the solution of this
matching equation, we shall restrict the closed-loop contact
form θd as follows.

Assumption 7: The 1-form θd is defined as

θd = θ + dF, (10)

with F ∈ C∞(M) satisfying iEdF = 0.
Note that the condition iEdF = 0 is equivalent in

canonical coordinates to assume that the function F depends
only on (x, p) and not on x0.

Proposition 8: The 1-form defined by (10) is a contact
form.

Proof: Recall that θd is a contact form if it is a Pfaffian
form of class 2n+ 1, satisfying [14],

θd ∧ (dθd)
n 6=0, (11)

θd ∧ (dθd)
n+1 =0. (12)

Consider first the inequality (11). Note that using d2F = 0
one has that

θd ∧ (dθd)
n = (θ + dF ) ∧ (d(θ + dF ))n

= (θ + dF ) ∧ (dθ)n

Now proceed by contradiction and assume that θd∧(dθd)
n =

0. Then, using the fact that iE is a ∧ antiderivation and the
properties (1) of the Reeb vector field:

iE [θd ∧ (dθd)
n]

= iE [(θ + dF ) ∧ (dθ)n]

= iE(θ + dF ) ∧ (dθ)n + (−1) (θ + dF ) ∧ iE ((dθ)n)

= (1 + iEdF ) ∧ (dθ)n

and iEdF = 0, implies that (dθ)n = 0 which is contradicting
the fact that θ is of class 2n+ 1. To check (12) notice that
(dθ)n+1 is full rank, hence dF ∧ (dθ)n+1 = 0 no matter the
choice of F and

θd ∧ (dθd)
n+1 = θ ∧ (dθ)n+1 + dF ∧ (dθ)n+1

= θ ∧ (dθ)n+1 = 0

Notice that it has been assumed that F satisfies iEdF = 0.
However, from the proof of Proposition 8 it is clear that it is
only required that iEdF 6= 1. In this sense the assumption
iEdF = 0 is restrictive, but is justified since it has a clear
physical interpretation. The closed-loop contact form (10) is
thus given by

θd = θ + dF =
(
dx0 −

n∑
i=1

pidxi

)
+ dF,

= d(x0 + F )−
n∑
i=1

pidxi.

The closed-loop contact structure can be seen as the original
one changed in the direction of the Reeb vector field (the x0

coordinate). Recall that the contact structure appears in the
differential-geometric representation of thermodynamic sys-
tems [4], [5], where x0 is associated with a thermodynamic
potential, such as the energy U or the entropy S. Hence θd
can be interpreted as changing the energy of the system. In
[4, pp. 273] it is shown that a similar contact structure is
obtained through the isothermal interaction of two different
thermodynamic systems, each one defined with respect to
a different contact structure. From a control perspective it
is possible to think that the system defined by the internal
contact Hamiltonian is interacting with a control system,
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defined by the controller, through the control vector field.
The resulting contact structure θd is then the result of
the interaction of system and controller. The relation with
passivity based control [16] is also quite evident. In that case
the aim is to add a certain function to the open-loop storage
(energy) function such that the resulting closed-loop storage
function is a Lyapunov function for the controlled system.
From a geometric point of view, the fact that the geometry of
a system is preserved after feedback with respect to a new
geometric structure is not uncommon. For instance in the
case of port-controlled Hamiltonian systems (PCHS) [17],
the interconnection and damping assignment passivity based
control (IDA-PBC) method [18], renders after feedback a
PCHS with respect to a set of new structure matrices and
storage function. Let us express the matching equation (9)
with θd defined by (10) in terms of a matching equation in
the function F and the feedback α. The Lie derivatives in
(9) may be developed as

LXK0
(θ + dF ) = LXK0

θ + LXK0
dF = ρθ + LXK0

dF

with

LXK0
dF = iXK0

d(dF ) + d(iXK0
dF ) = d (XK0

(F )) .

Recalling that ρd = ρ0 = ρc = 0, we have that LXK0
θd =

d (XK0
(F )) and LXKc

θd = d (XKc
(F )). Furthermore

iXKC
θd = iXKC

(θ + dF ) = Kc + XKC
(F ). Hence, the

matching equation (9) becomes

d (XK0
(F )) + αd (XKc

(F )) + [Kc +XKC
(F )] dα = 0.

(13)
Since X = XK0

+XKc
α, it follows that

d(X(F )) = d(XK0(F )) + αd(XKc(F )) +XKc(F )dα.

Equation (13) may finally be rewritten as the following
matching equation in the feedback α and the function F

d (X(F )) +Kcdα = 0. (14)

Remark 9: Notice that if dα = 0 (i.e. α is constant),
then (13) is satisfied if d (X(F )) = 0, or equivalently
if X(F ) is constant. This in turn is satisfied if dF ∈
ann (Span {XK0

, XKc
}), i.e X(F ) = 0. Two special cases

may be identified, namely when dF = 0 i.e. θd = θ
(Proposition 4) and when F is an invariant of X .

C. Closed-loop contact Hamiltonian function and vector
field

The closed-loop contact Hamiltonian function is given by
the contraction of the closed-loop contact Hamiltonian vector
field and the closed-loop contact form

K = iXθd.

Computing this last expression yields

K = iXK0
(θ + dF ) + αiXKc

(θ + dF )

= K0 + iXK0
dF + α(Kc + iXKc

dF )

= K0 +XK0(F ) + α(Kc +XKc(F )).

(15)

Now, if X is a contact vector field with respect to θd (i.e.
LXθd = ρdθd), then it is generated by K = iXθd with
respect to the canonical coordinates of the contact form θd.
Hence, X may be equivalently defined as

X = XK0
+ αXKc

= X̂K (16)

where X̂K denotes the contact vector field generated by K
with respect to the contact form θd.

IV. DECOUPLING THE MATCHING EQUATION

In order to solve the matching equation (13) we shall
consider a particular class of feedback and thereby reduce
the problem to a condition on the function F . Therefore
observe that by taking the exterior derivative of (14) we get
dKc ∧ dα = 0. This leads to consider a candidate feedback
function of the interaction contact Hamiltonian function Kc

α = ϕ ◦Kc. (17)

where ϕ ∈ C∞(R), ϕ : R → R. Note that this control law
solves the equation dKc∧d(ϕ◦Kc) = dKc∧(ϕ′◦Kc)dKc =
0, where ϕ′(λ) = d

dλ (ϕ(λ)). Replacing this control law in
(13), the equation is reduced to a matching equation in F
and ϕ ◦Kc

d(XK0
(F )) + (ϕ ◦Kc)d(XKc

(F ))

+ (XKc
(F ) +Kc)(ϕ

′ ◦Kc)dKc = 0.

This equation may be written as

d [XK0
(F ) + (ϕ ◦Kc)XKc

(F )] +Kc(ϕ
′ ◦Kc)dKc = 0.

By defining Ψ(λ) =
∫ λ

0
χ(ϕ′◦χ)dχ, the previous expression

may be rewritten as

d [XK0
(F ) + (ϕ ◦Kc)XKc

(F ) + Ψ ◦Kc] = 0.

Furthermore, by integration by parts of Ψ(λ) it is possible
to rewrite the previous expression as

d [XK0(F ) + (ϕ ◦Kc)XKc(F ) +Kc(ϕ ◦Kc)− Φ ◦Kc] = 0.

where Φ(λ) =
∫ λ

0
(ϕ ◦ χ)dχ. This means that there is a

constant cF ∈ R such that

XK0
(F ) + (ϕ ◦Kc)[Kc +XKc

(F )]− Φ ◦Kc = cF . (18)

Note that the matching condition is parametrized by ϕ ◦Kc

and F . The previous development leads to the following
characterization of the closed-loop contact Hamiltonian func-
tion and vector field in terms of the selected feedback.

Proposition 10: Define X̃ a 2n-dimensional manifold,
(x, p) ∈ X̃ . If K0,Kc, F ∈ C∞(X̃ ), θd = θ + dF and
α = ϕ ◦ Kc(x, p), where ϕ ∈ C∞(R), ϕ : R → R,
then X = XK0 + αXKc is invariant with respect to θd if
and only if (18) is satisfied. Furthermore, X = X̂K with
K = K0 + Φ ◦Kc.

Proof: R2n+1 'M Kc−−→ R ϕ−→ R, thus

α = ϕ ◦Kc(x0, x, p),

but Kc ∈ X is a strict contact Hamiltonian (i.e., Kc =
Kc(x, p)), hence α(x, p) = ϕ ◦ Kc(x, p). Replacing the
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control law in the expression of the closed-loop contact
Hamiltonian (15), and since F (x, p) and ϕ ◦Kc verify (18),
we obtain K = K0 +Φ◦Kc+cF , and since the constant cF
does not change the closed-loop vector field we may write
K = K0 + Φ ◦Kc.
The closed-loop contact vector field is invariant with respect
to the new contact form θd,

X̂K = X̂K0+Φ◦Kc
= XK0

+ αXKc
.

The closed-loop contact Hamiltonian is equal to the internal
contact Hamiltonian plus the composition of the function
Φ and the interaction contact Hamiltonian Kc. Furthermore,
the feedback is exactly the derivative of the function Φ, ϕ =
d
dλ (Φ(λ)). This result is similar to the one obtained when
investigating structure preserving feedback of Hamiltonian
systems [2]. In the case of Hamiltonian control systems,
a feedback of the form α = d

dλ (C(λ)), where C(x, p) is
the interaction Hamiltonian function and P ◦ C some po-
tential control function, generates a closed-loop Hamiltonian
function H = H0 + P ◦ C. The Hamiltonian closed-loop
vector field is XH = XH0+P◦C . The difference between
control of Hamiltonian systems and contact systems is that
in the first the geometry of the system is not changed in
closed-loop. Proposition 4 shows that applying feedback
on a contact system necessary changes its contact form,
i.e., the geometry of the system is changed in closed-loop.
This introduces, unlike control of Hamiltonian systems, the
matching condition (18) due to the change in the contact
form.

V. CONTROL SYNTHESIS

It is clear that the key step in finding a structure preserving
feedback for a control contact system is the existence of
solutions of (18). In this section the existence of solutions to
this equation is analysed from a control synthesis perspective.
Without loose of generality it is assumed that cF = 0.
Consider the closed-loop contact Hamiltonian function

K = K0 + Φ ◦Kc

Consider K as a control design parameter K = Kd, where
Kd is some desired closed-loop contact Hamiltonian function
with some prescribed properties. From the previous equation,

Φ ◦Kc = Kd −K0, (19)

hence Φ ◦Kc may be seen as a function that is added to the
internal contact Hamiltonian in order to shape the closed-
loop contact Hamiltonian Kd. Note that Φ ◦ Kc is not a
completely free design parameter since it is a composite
function with Kc. Equation (18) may be written as

(XK0 + (ϕ ◦Kc)XKc)(F ) + (ϕ ◦Kc)Kc − Φ ◦Kc = 0.

Since K0 and Kc are given, and Φ ◦ Kc (and hence also
ϕ◦Kc) has been assigned, the previous equation represents a
quasi-linear PDE in F . We may express this in the canonical

coordinates as[∂F
∂x
∂F
∂p

]> [−∂K0

∂p − (ϕ ◦Kc)
∂Kc

∂p
∂K0

∂x + (ϕ ◦Kc)
∂Kc

∂x

]
+ (ϕ ◦Kc)Kc − Φ ◦Kc = 0. (20)

The solutions of this equation represent all possible functions
F for a specified Φ. Hence, by fixing the desired closed-
loop contact Hamiltonian, equation (20) determines how the
closed-loop contact form θd and the Reeb vector field (the
coordinate associated to the energy) are shaped. A different
approach is to assign the desired contact form θd, and hence
the desired function F , and solve the previous equation in Φ
and ϕ. Since ϕ = d

dλ (Φ(λ)), equation (20) may be rewritten
as a differential equation in Φ. In order to illustrate the
synthesis a simple example is presented.

A. An illustrative example

Consider a single adiabatic compartment that can interact
with the environment only through a controlled entropy
source. The dynamic equation of the system is given by

Ṡ = u (21)

where S is the entropy in the compartment and u is a
controlled entropy flow. This system is characterized by the
vector of thermodynamic variables (U, S, T ), where U(S) is
the internal energy and T (S) is the temperature that depends
on the entropy and may be modelled as T = eS [19]. The
canonical contact form of this system is

θ = dU − TdS.

On the submanifold where θ = 0, the canonical variables
(x0, x, p) are identical to (U, S, T ). The internal and interac-
tion contact Hamiltonians are defined ( [12]) by K0 = 0, and
Kc = T (x)−p. From a control perspective it is of interest to
shape θ in order to obtain the following closed-loop contact
form

θd = d(x0 + F )− pdx = dx0d
− pdx,

i.e., the energy of the closed-loop system is changed in
some prescribed way x0d

= Ud(x, p), where Ud is a desired
closed-loop energy profile. For this purpose consider the
choice F = Ua(x, p), such that Ud(x, p) = U(x) +Ua(x, p)
and F represents an added internal energy. Furthermore,
define the desired closed-loop contact Hamiltonian as Kd =
c(T (x)−p)2, with c a design parameter. Since K0 = 0, from
(19) we have that Φ = c(T (x)− p)2 and ϕ = 2c(T (x)− p).
Replacing this functions in (20) we obtain the following PDE

∂Ua
∂x

+ T (x)
∂Ua
∂p

= −1

2
(T (x)− p).

The solution to this equation is

Ua(x, p) = −1

2
(T (x)− p)x+ Ua(T (x)− p),

where Ua(T (x) − p) is an arbitrary function (degree of
freedom). Hence, the selected closed-loop contact Hamil-
tonian function is equipped with the closed-loop contact
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form θd = dUd(x, p) − pdx. Furthermore, note that the x-
coordinate of the closed-loop contact vector field is given
by

ẋ = 2c(T (x)− p).

Hence, be choosing c = −k2 , with k > 0 a positive control
gain, the system is asymptotically stable with Lyapunov
function V = (T (x) − p)2 for some temperature profile
defined by p = Td(x

∗), where x∗ = S∗ is a desired entropy
value.

VI. CONCLUSION AND FUTURE WORK

The conditions for structure preserving feedback of con-
trolled contact system of the class XK = XK0

+XKc
u have

been studied. It has been shown that in order to preserve
the canonical contact form θ only a constant feedback is
allowed (Proposition 4). However, the closed-loop system
can still be a contact system with respect to a new 1-form
θd. The conditions have been formally stated in terms of
the definition of a contact system and a matching equation.
For the case of strict controlled contact systems, i.e., contact
systems whose contact Hamiltonian function does not depend
on the x0 coordinate, the matching equation is reduced to a
relation in the 1-form θd and the state feedback. Moreover,
for a particular class of feedback it has been shown that it is
possible to render the closed-loop system a contact system
with respect to the closed-loop contact form θd = θ + dF ,
where the function F is the solution to a quasi-linear PDE
(Propositions 8 and 10). The closed-loop contact form θd
changes the canonical contact form θ in the direction of the
x0 coordinate. From a control perspective this means that
the energy of the system is changed, and hence the feedback
may be interpreted in the frame of passive and dissipative
control. Furthermore, the results may be considered as an ex-
tension of classical results on structure preserving feedback
of Hamiltonian control systems. A control synthesis method
that uses the desired closed-loop contact Hamiltonian func-
tion as design parameter has been suggested and illustrated
on a simple thermodynamic system. The control design may
also be performed assigning the closed-loop contact form and
solving the matching equation for the control law. Future
work will study the control synthesis and specialize these
results to conservative controlled contact system arising from
the modelling of physical processes.
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