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Abstract— In this paper, a universal formula is proposed for
event-based stabilization of general nonlinear systems affine
in the control. The feedback is derived from the original one
proposed by Sontag. Under the assumption of the existence of a
smooth Control Lyapunov Function, it enables smooth (except
at the origin) global asymptotic stabilization of the origin while
ensuring that the sampling interval do not contract to zero.
Indeed, for any initial condition within any given closed set
the minimal sampling interval is proved to be strictly positive.
Under homogeneity assumptions the control can be proved to
be smooth anywhere and the sampling intervals bounded below
for any initial condition.

I. INTRODUCTION

The classical so-called discrete time framework of controlled
systems consists in sampling the system uniformly in time with
a constant sampling period T and in computing and updating
the control law every time instants tk = k · T . This field,
denoted as the time-triggered case (or the synchronous case in
sense that all the signal measurements are synchronous), has been
widely investigated for linear control systems (see [1] and the
references therein), even in the case of delays, sampling jitter and
measurement loss that can be seen as a kind of asynchronicity [2].
In the case of nonlinear control systems, one way to address a
discrete-time feedback is to implement a continuous time control
algorithm with a sufficiently small sampling period [3]. However,
the hardware used to sample and hold the plant measurements or
compute the feedback control action may make it impossible to
reduce the sampling period to a level that guarantees acceptable
closed-loop performance. Other way to tackle this problem is
the application of sampled-data control algorithms based on an
approximate discrete-time models of the process [4] which is
not a trivial task. Another proposed approach consist to modify
a continuous time stabilizing control using for instance Son-
tag’s general formula to obtain a redesigned control suitable for
sampled-data implementation [5].

To overcome these drawbacks, event-based control - also
called event-triggered control - has been recently proposed. In
this control strategy, the control task is executed after the occur-
rence of an external event, generated by an event mechanism.
Thus in this scheme, the term sampling time denotes a time
interval between two consecutive events (e.g. level crossings of
the measure). Hence, two successive sampling instants may not
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be equidistant in time. Let us first consider general nonlinear
systems of the form:

ẋ = f(x, u) (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rp, and f a Lipschitz function
vanishing at the origin. For sake of simplicity, we only consider
in this paper null stabilization with initial time instant t0 = 0.
By event-based feedback, it is usually meant a set of the two
following functions:
• an event function e : X × X → R that indicates if one

needs (when e ≤ 0) or not (when e > 0) to recompute the
control. In its more general form, the event function e takes
the current state x as input and a memory m of its value
last time e became negative. A memoryless version is also
possible, that is an event function e : X → R that only
requires the current value of the state. There is a priori no
constraint on the regularity of e.

• a feedback function k. We talk about static event-based
feedback when k : X → U . The time (then k : X × R+ →
U) or simply the sampling index (then k : X ×N→ U) can
be added to build a dynamic event-based feedback.

Additionally, e can depend upon the time (then e : X × R+ →
{0, 1}) or simply upon the sampling index (then e : X × N →
{0, 1}) and one then talks about dynamic event-based feedback.
Classical sampled feedback of period T can be seen as a dynamic
event-based feedback with e(x, t) ≤ 0 if and only if t/T ∈ N.

Typical event-detection mechanisms are functions on the vari-
ation of the state (or at least the output) of the system, like in [6],
[7], [8], [9], [10]. Although the event-triggered control is well-
motivated and allows to relax the periodicity for computations of
the control law, only few works report theoretical results about
the stability, convergence and performance of event-triggered
control systems. In [11] for instance, it is proved that such an ap-
proach reduces the number of sampling instants for the same final
performance. Recent works deal with the problem of scheduling
the control task for continuous-time linear systems [11], [12],
[13], [14] and discrete-time linear system [15] where stability and
some robustness proprieties such as ISS and L∞-performance
are exploited. Furthermore, in [15] a Model Predictive Control
scheme is used where the event-triggered policies are used for
relaxing the computationally demanding algorithms. Some of the
above contributions do not need the memory of the last sample,
the event function e is memoryless, that is, it can simply be
formulated as a function of X .

An alternative approach consists in taking e related to the
variation of a Lyapunov function - and consequently to the state
too - between the current state and the previous sample, like in
[16], [17], or in taking e related to the time derivative of the
Lyapunov function. Convergence and stability in the nonlinear
case is studied in [18], [19], [20]. The main contribution from
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the above mentioned works is the existence of a minimal time
between consecutive executions of the control task guaranteeing
desired levels of performances in the absence of accumulation
points. However, in these works is assumed the Input-to-State
Stability (ISS) property of the system which is a very strong
assumption. Moreover, these techniques are developed for two
classes of nonlinear control systems, namely, state-dependent
homogeneous systems and polynomial systems.

The solution of (1) with event-based feedback (e, k) starting in
x0 ∈ X at t = 0 is then defined as the solution of the differential
system (when it exists, a discussion follows on that subject):

ẋ = f(x, k(m)) (2)

m(x) =

{
x if e(x,m) ≤ 0, x 6= 0

m elsewhere
(3)

with: x(0) = x0 and m(0) = x(0) (4)

If f is assumed to be Lipschitz, and events are punctual, a unique
solution in the Caratheodory sense always exists without any
smoothness assumption on k similarly to [21] when . However,
this solution may not exists for all t ≥ 0 as shown in item 3
of section II. Let t → x(t, x0) denote this solution. Given an
event function e, and a feedback k defined as above, for any
initial condition x(t = 0) = x0 it fully defines a sampling set
Te,k,x0

:= {t0, t1, t2, . . . } as the set of time instant t0 = 0,
t1, etc. (called sampling instants) at which e is negative. The
duration between two successive sampling instants will be called
inter-sampling duration. The event-based closed-loop solution is
therefore defined at least for all positive t in [0, sup(Te,k,x0

)[.
This interval is closed if sup(Te,k,x0

) ∈ Te,k,x0
. To illustrate

this we give in the next section different examples of possible
phenomena. This will introduce new notions and definitions
given in section III. Section IV is dedicated to the main theorem
that extends Sontag’s universal formula for smooth feedback
stabilization to event-based stabilization.

Notations: In the following, B(d, x) will stand for the ball of
radius d centered at x and B(d) for the ball of radius d centered at
the origin. x(t;x0, t0, u) will denote the solution of a differential
system starting in x0 at t0 with control u. For sake of simplicity, u
will be omitted when trivial and x(t;x0) will stand for x(t;x0, 0).

II. WHAT CAN HAPPEN WITH EVENT-BASED
CONTROL ?

To illustrate different phenomena that can arise with event-
based feedback systems, we consider the simple linear integrator
ẋ = u. All event functions considered in these examples are
assumed to be memoryless that is to be just functions of X .
Between two sampling instants ti and ti+1, u remains constant
so that: xi+1 = xi + (ti+1 − ti) · u, xi denoting the value of
the state when the ith event occurs. With the following different
feedback laws and event functions and initial conditions, it gives:

1) k(x) = −x, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and
initial condition x0 = 0. Then

Te,k,x0
:= {0}

and the trajectory x(t) = 0 is defined for all t ∈ [0,+∞[.
2) k(x) = −x, e(x) = 0 when |x| = exp(−κ), κ ∈ Z

and initial condition x0 = 1. Assuming that at time ti
of the sampling set Te,k,x0

, the state of the system is

xi = ± exp(−κi), then at the next sampling instant ti+1,
the state of the system becomes xi+1 = ± exp(−κi+1) =

± exp(−κi − 1). The sampling is therefore periodic of
period 1− exp(−1):

Te,k,x0
:= {j · (1− exp(−1)), j ∈ N}

The trajectory is well-defined for all t ∈ [0,+∞[.
3) k(x) = −x, e(x) = 0 when |x| = exp(−κ · |κ|), κ ∈ Z

and initial condition x0 = 1. In that case, one can calculate
that ti = i −

∑i
j=1 exp(−2j + 1). And when i tends to

infinity, ti tends to t̄ :=
exp(−1)

1−exp(−2)
. The trajectory is then

well-defined only for all t ∈ [0, t̄[.
4) k(x) = −x3, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and

initial condition x0 = 1. In that case,

ti+1 − ti =
xi+1 − xi
−x3

i

= exp(2i) · [1− exp(−1)]

and when i tends to infinity, ti+1− ti also tends to infinity.
Although the inter-sampling duration tends to infinity, the
trajectory is well-defined for all t ∈ [0,+∞[ as in case 2.

5) k(x) = −x · (1− exp(−1)) · (1− log |x|) if |x| ≤ 1, k(x) =

−x · (1− exp(−1)) elsewhere, and k(0) = 0 by continuity,
e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition
x0 = 1. Here, one can prove that ti+1 − ti = 1

i+1 and
therefore ti+1 − ti tends to zero when i tends to infinity as
in case 3 but the ti’s do not converge to a finite limit.

Consider now the unstable system ẋ = (x + u)3. The control u
being constant between each sampling instant, the solution is the
one of a Bernoulli differential system whose solution is:

xi+1 =
xi + u√

1− 2(ti+1 − ti) · (xi + u)2
− u

Then, taking
6) k(x) = −2x, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and

initial condition x0 = 1. Then the inter-sampling duration
is:

ti+1 − ti =
exp(2i)

2
·
[

1− 1

(2− exp(−1))2

]
and when i tends to infinity, ti+1− ti also tends to infinity.
However, the origin of the closed loop system can be
proved to be asymptotically stable and the trajectories
well-defined on [0,+∞[ for all initial condition.

In cases 1 to 6, the system can trivially be proved to be globally
null-asymptotically stable taking V (x) := 1

2x
2. Cases 1 and 2

show that the sampling set is clearly initial condition dependent.
Case 2 to 5 show that for the same system and initial condition,
the sampling can be periodic, contractile or expansile (with a
finite or infinite limit) depending upon the event function or the
feedback. Case 6 shows the inconsistency of the Shannon criteria
in the event based paradigm and in particular that the inter-
sampling duration can infinitely increase even when insuring the
stability of the closed loop of an open-loop unstable system.

III. PRELIMINARY DEFINITIONS FOR
EVENT-BASED SYSTEMS

Usually, the event is of null measure, in the sense that the
control is recomputed only at distinct x (in the countable sense).
However, taking e(x) = 0 for all x ∈ X would mean that one
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recomputes the control at each x and therefore that one applies
a classical continuous-time feedback. On the sets of non null
measure where e(x) = 0, the solution is understood in the
classical sense (with all possible solution existence problems
if the field is discontinuous). Elsewhere, the solution can be
intended in the Caratheodory sense. To go further on that, we
define:

Definition 3.1 (Well-defined event-based control): An event-
based control (k, e) will be said well-defined if and only if for
any initial condition x0 at t = 0, the solution t → x(t;x0) exists
for all t ≥ 0.

Property 3.1 (Minimal Sampling Interval - MSI): An event-
based control (k, e) will be said to fulfill the Minimal Sampling
Interval property (MSI) if and only if for any initial condition
x0 at t = 0, there exists a non zero minimal sampling interval
τ(x0) defined by:

τ(x0) := inf
i∈N,ti∈T (x0)

ti+1 − ti > 0

In that case, the control is piecewise constant between each time
sample and we define:

• xi, i ∈ I ⊂ N with x0 := x(t = 0) as the series of
successive values of the state at which e is negative for a
given initial condition x0

• ti, i ∈ I ⊂ N with t0 := 0 as the corresponding series of
time instants

The aim of definition 3.1 is to exclude solutions with sampling
intervals converging to zero at some time (case 3 of section II) or
to infinity (case 5 of section II). It quite trivially follows:

Theorem 3.2: An MSI event-based control is well-defined.

Proof of Theorem 3.2: The proof is trivial since if the event-
based control is MSI, then T (x0) is either finite or countably
infinite and the ti are isolated in R+. The solution t → x(t;x0)

hence exists for all t ≥ 0 in the Caratheodory sense.
This minimal sampling period is useful for implementation pur-
pose but also when the feedback k is discontinuous for robustness
purpose [22]. However, it would be more suitable to have such a
bound less depending upon initial condition:

Property 3.3 (Semi-uniformly MSI event-based control): An
event-based control (k, e) will be said semi-uniformly MSI if
and only if for any δ > 0:

τ(δ) := inf
i∈N,ti∈T (x0),x0∈B(δ)

ti+1 − ti > 0

Property 3.4 (Uniformly MSI event-based control): An
event-based control (k, e) will be said uniformly MSI if and
only if:

τ := inf
i∈N,ti∈T (x0),x0∈X

ti+1 − ti > 0

Properties 3.1 to 3.3 can be specified using the qualifying term
“global” when X = Rn in opposition to the term “local” that was
omitted above for sake of simplicity. Now that the above notions
for event-based controlled systems are appropriately defined,
notions like stability, asymptotic stability and stabilizability natu-
rally follow since they rely on the resulting trajectory. The ques-
tion that arises then is: does a universal formula for uniformly
discrete event-based feedback stabilization exist similarly to the
continuous time case ? This is the purpose of the next section.

IV. A UNIVERSAL FORMULA FOR EVENT-BASED
STABILIZATION

In the sequel, the analysis is restricted to systems affine in the
control:

ẋ = f(x) + g(x)u = f(x) +
∑
i

gi(x)ui (5)

where f and g are smooth functions with f vanishing at the
origin. We assume that a Control Lyapunov Function (CLF)
exists for system (5), that is a smooth and positive definite
function V : X → R so that for each x 6= 0 there is some u ∈ U
such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)u < 0 (6)

In addition, one may require that the CLF V fulfills the small
control property [23], that is that for each ε > 0 there is some δ >
0 such that for any x in the ball B(δ)\ {0}, there is some u with
‖u‖ ≤ ε such that (6) holds. Then, it is known that it is possible
to design a smooth feedback control that asymptotically stabilizes
the system. This is known as the Sontag’s universal formula:

Theorem 4.1 (Sontag’s universal formula): If there exists a
CLF for system (5), then the feedback k : X → U , smooth on
X\ {0} is such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)k(x) < 0, x ∈ X\ {0} (7)

for k defined by:

ki(x) := −bi(x)φ(a(x), β(x)), i ∈ {1, . . . , p}

where a(x) := ∂V
∂x f(x), b(x) := ∂V

∂x g(x), β(x) := ‖b(x)‖2 and

φ(y1, y2) :=

{
y1+
√
y2

1+y2q(y2)
y2

if y2 6= 0

0 if y2 = 0
(8)

with q : R → R is any real analytic function such that q(0) = 0

and y2q(y2) > 0 whenever y2 6= 0.
Moreover, if the CLF satisfies the so called small control prop-
erty, then taking q(y2) := y2, the control is continuous at the
origin [23].
The main purpose of this paper is to establish that a universal
formula also exists in the event-based context up to a slight
modification of the original formula proposed by Sontag:

Theorem 4.2: If there exists a CLF for system (5), then the
event-based feedback (e, k) defined below is semi-uniformly
MSI, smooth on X\ {0}, and such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)k(m) < 0, x ∈ X\ {0} (9)

where m is defined by (3) and:

ki(x) := −bi(x)γ(x) (10)

e(x,m) := −a(x)−b(x)k(m)−σ
√
a(x)2+β(x)α(x) (11)

where a(x), b(x) and β(x) are as in Theorem 4.1, α : X → R+ is
any smooth function strictly positive on S := {x ∈ X|β(x) 6= 0},
σ ∈]0, 1[, and

γ(x) :=

{
a(x)+

√
a(x)2+β(x)α(x)

β(x)
if x ∈ S

0 if x /∈ S
(12)

As in Theorem 4.1, if the CLF satisfies the so called small control
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property, then the control is continuous at the origin. Moreover, if
there exists some smooth function w : X → R+ strictly positive
on S and such that w(x)β(x) − a(x) ≥ 0 on S, then the control
is smooth on X with the choice:

α(x) := w(x)2β(x)− 2w(x)a(x) (13)

Before giving the proof of Theorem 4.2, let us explain the ideas
behind the construction of feedback (10). In the event function,
a(x) + b(x)k(m) is the time derivative of the Lyapunov function
V and therefore the event function detects when the Lyapunov
function V stops to be enough decreasing. In the control, the
term a(x) outside the square root is here to compensate the au-
tonomous evolution of the CLF. The term a(x) inside the square-
root is linked to the one outside by smoothness considerations.
In the term β(x)α(x), β(x) is added for smoothness reasons in
connection with the β(x) at the denominator and α(x) plays a
fundamental role by tuning how fast the CLF must decrease when
an event occurs. This is the term that enables to avoid too close
successive events.

We next focus on homogeneous systems that gave rise to
an important literature for general nonlinear systems (see for
instance [24], [25] and the references therein) and more recently
for event-based approaches (mainly in [20], [16], [18]). However,
in these event-based contributions, ISS is assumed contrary to
the proposed result. We shortly recall some definitions given
for general nonlinear system (see the cited references for more
detailed definitions and properties):

Definition 4.1: For n positive real numbers ri, i ∈ {1, . . . , n},
d > −mini ri, all λ > 0, and Λr = diag(λr1 , λr2 , . . . , λrn),

1) a function V : X → R is homogeneous of degree d if for
all x ∈ X ,

V (Λrx) = λdV (x)

2) a function e : X × X → R is homogeneous of degree d if
for all x,m ∈ X ,

e(Λrx,Λrm) = λde(x,m)

3) a vector field h : X → X is homogeneous of degree d if for
all x ∈ X ,

h(Λrx) = λdΛrh(x)

4) a controlled system of the form (1) with feedback u = k(x)

is homogeneous of degree d if k is such that x→ f(x, k(x))

is homogeneous of degree d
5) an event-based controlled system of the form (2-4) is

homogeneous of degree (d1, d2) if k is such that (x,m)→
f(x, k(m)) and (x,m) → e(x,m) are respectively homo-
geneous of degree d1 and d2.

6) the notation ‖·‖Λr will denote the homogeneous p-norm,
that is:

‖x‖Λr =

(
n∑
i=1

|xi|
p
ri

) 1
p

with p sufficiently large so that the norm is smooth except
at the origin.

Property 4.3: Consider now an event-based controlled dy-
namical system homogeneous of degree (d1, d2) then as long as
the trajectory exists and is unique, the solution is such that:

x(t; Λrx0) = Λrx(λd1t;x0) (14)

Proof of Property 4.3: Between events, (14) holds by
homogeneity of f(x, k(m)). e being homogeneous of de-
gree d2, e(Λrx,Λrm) = λd2e(x,m). λ being strictly positive,
e(Λrx,Λrm) and e(x,m) have the same sign, therefore events
along the trajectories of t → x(t; Λrx0) appear for the same t as
for t→ Λrx(λd1t;x0).

For homogeneous systems, Theorem 4.2 becomes:
Theorem 4.4: Assume that f and each gi are homogeneous

respectively of degree df and dg , identical for all gi, i ∈
{1, . . . , p} with dg < df . Assume in addition that the CLF
V is homogeneous of degree dV , then the following feedback
proposed in [26], that corresponds to (10) with α as in (13) and
w(x) = ‖x‖df−2dg−dV

Λr ,

ki(x) := −νbi(x) ‖x‖df−2dg−dV
Λr (15)

with ν > 0 sufficiently large and e as in (11) is such that:
1) the event-based controlled system is homogeneous of de-

gree (df , dV + df )

2) the event-based control is smooth and uniformly MSI
3) the CLF is strictly decreasing for all x ∈ X\ {0}

The end of the section is dedicated to the proofs of Theo-
rems 4.2 and 4.4.

Proof of Theorem 4.2: We begin the proof by establishing
that γ is smooth on X\ {0}. For this, consider the algebraic
equation:

F (x, p) := β(x)p2 − 2a(x)p− α(x) = 0 (16)

Note first that p = γ(x) is a solution of (16) for all x ∈ X . It is
easy to prove that the partial derivative of F with respect to p is
always strictly positive on X\ {0}:

∂F

∂p
:= 2β(x)p− 2a(x)

Indeed, when β(x) = 0, equation (6) gives ∂F
∂p = −2a(x) >

0 and when β(x) 6= 0, equation (12) gives ∂F
∂p =

2
√
a(x)2 + β(x)α(x) > 0, ∂F∂p never vanishes at each point of

the form {(x, γ(x))|x ∈ X\ {0}}. Furthermore, F is smooth with
respect to x and p since so are functions a, β and α. Therefore,
using the implicit function theorem, γ is smooth on X\ {0}.

The decrease of the CLF is trivial to prove. Indeed, for each
xi, i ∈ N:

dV

dt
(xi) =

∂V

∂x
(xi)f(xi) +

∂V

∂x
(xi)g(xi)k(xi)

= −
√
a(xi)2 + β(xi)α(xi)

< 0 for all x 6= 0

With the updated control, the event function becomes strictly pos-
itive: e(xi, xi) = (1− σ)

√
a(xi)2 + β(xi)α(xi) > 0. Therefore,

by smoothness of the Lyapunov function V , f and g, it clearly
follows that dV

dt (x(t;xi, ti)) < 0 for all t ∈ [ti, ti+1[, that is
until the next event occurs. ti+1 is necessarily bounded since,
if not, the Lyapunov function V should converge to a constant
value where dV

dt = 0. The event function precisely prevents
this phenomena detecting dV

dt is close to vanish and updates the
control if it happens.

To prove that the event-based control is MSI, we have to prove
that for any initial condition in a a priori given set, the sampling
intervals are bounded below. First of all, notice that events occur
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only when V̇ vanishes or when x = 0 and therefore from
equation (9) there is no event on the set {x ∈ X|β(x) = 0}∪{0}.
We therefore restrict the study to the set S\ {0}where α is strictly
positive by assumption. Let us rewrite the time derivative of the
CLF along the trajectories:

dV

dt
(x) = a(x) + b(x)k(m)

= −
√
a(x)2+β(x)α(x)+b(x)(k(m)−k(x)) (17)

where, defining for m ∈ S, ϑm := V (m) and the set Vϑm
:=

{x ∈ X|V (x) ≤ ϑm}, x belongs to Vϑx
⊂ Vϑm

. Note that
although m must belong to S, this is not necessarily the case
for x. First see that for t = ti, x = m and therefore, since α is
strictly positive on S and a necessarily non zero on the frontier
of S (except possibly at the origin):

dV

dt
(x) = −

√
a(m)2 + β(m)α(m)

≤ − inf
m∈S

s.t. V (m)=ϑm

√
a(m)2 + β(m)α(m) =: −χ(ϑm) < 0

Considering now the second time derivative of the CLF:

V̈ (x) =

(
∂a

∂x
(x) + k(m)T

∂bT

∂x
(x)

)
(f(x) + g(x)k(m))

By continuity of all the functions involved, both terms can be
bounded for all x ∈ Vϑm

by the following upper bounds %1(ϑm)

and %2(ϑm):

%1(ϑm) := sup
m∈S s.t. V (m)=ϑm

x∈Vϑm

∥∥∥∥∂a∂x (x) + k(m)T
∂bT

∂x
(x)

∥∥∥∥
%2(ϑm) := sup

m∈S s.t. V (m)=ϑm

x∈Vϑm

‖f(x) + g(x)k(m)‖

Therefore, V̇ is strictly negative at any event instant ti and can not
vanish until the time τ(ϑm) is elapsed and this minimal sampling
is only depending on the level ϑm of the CLF in m:

τ(ϑm) ≥ χ(ϑm)

%1(ϑm)%2(ϑm)
> 0 (18)

which ends the proof, the event-based feedback (10-11) is semi-
uniformly MSI.

To prove the continuity of k at the origin, we only need to
consider the points where β(x) 6= 0 since we already have k(x) =

0 if β(x) = 0. Considering first the subset where a(x) > 0, we
have:

‖k(x)‖ ≤
|a(x)|+

√
a(x)2 + β(x)α(x)√
β(x)

≤ 2 |a(x)|√
β(x)

+
√
α(x)

With the small control property, for any ε > 0, there is δ > 0 such
that for any x ∈ B(δ)\ {0}, there exists some u with ‖u‖ ≤ ε

such that a(x) + b(x)u < 0. Therefore |a(x)| <
√
β(x)ε. The

continuity of α at the origin where it vanishes yields that for
the same ε there is a δ′ > 0 such that for all x ∈ B(δ′)\ {0},√
α(x) ≤ ε. Therefore, for any x ∈ B(min(δ, δ′))\ {0}:

‖k(x)‖ ≤ 3ε

Now, if a(x) ≤ 0, using the triangular inequality:

0 ≤ a(x) +
√
a(x)2 + β(x)α(x) ≤

√
β(x)α(x)

And therefore using again the continuity of α:

‖k(x)‖ ≤
√
α(x) ≤ ε

which ends the proof of the continuity.

Finally, with α as in (13), the control becomes ki(x) =

−bi(x)w(x) which is obviously smooth on X .

Proof of Theorem 4.4: Take ν such that:

ν > sup
x∈{x∈X|‖x‖Λr=1,a(x)≥0}

a(x)

β(x) ‖x‖df−2dg−dV
Λr

(19)

As in [26], k is homogeneous of degree df − dg and the system
is therefore homogeneous of degree df . In addition e is homo-
geneous of degree dV + df . Item 1 therefore holds. Thanks to
Theorem 4.2, item 3 also holds and k is smooth on X . To finish
the proof, remains to establish that the event-based feedback
is uniformly MSI. For this, we invoke the homogeneity of the
Lyapunov level sets Vϑm

together with (14), it follows that for all
ϑm > 0:

τ(ϑm) = τ(1)

V. EXAMPLES

Consider the linear time-invariant system:

ẋ = Ax+Bu (20)

Take P , a positive definite matrix solution of the Riccati equation
PA + ATP − 4εPBBTP = −P (that can be proved to exist as
soon as (A,B) is a stabilizable pair). Then V (x) := xTPx is a
CLF for system (20) since for all x 6= 0, u = −2εBTPx renders
V̇ strictly negative. Since a(x) = xT (PA + ATP )x, b(x) =

2xTPB and β(x) = 4xTPBBTPx, the Riccati equation gives:

εβ(x)− a(x) = xTPx = V (x) ≥ 0 ∀x 6= 0

Therefore, taking w(x) = ε, and α(x) according to (13) the
control is smooth everywhere and linear:

k(x) = −εb(x)T

We next consider the nonlinear system proposed in [27]:

ẋ1 = −x5
1 + x1x2

ẋ2 = x2
2 + u

(21)

which admits V (x) = 1
2 ‖x‖

2 as CLF and a(x) = −x6
1 + x2

1x2 +

x3
2, b(x) = x2. Taking

α(x) = β(x) + a(x)2

and σ = 0.1, it gives the trajectories of the states, control and
event function represented in Figure 1. Now, taking w(x) =
1
2 (1 + x2)2,

w(x)β(x)− a(x) =
(
x3

1 x2

)( 1 −1
2

−1
2

1
2

)(
x3

1

x2

)
+

1

2
x4

2

is strictly positive for all x 6= 0. Therefore with α(x) as in (13),
the control is smooth. The resulting trajectories with σ = 0.1 are
represented in Figure 2.
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Fig. 1. System (21) under event-based control with α(x) = β(x)+a(x)2.
The red dots represent the events instants.
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Fig. 2. System (21) under smooth event-based control. The red dots
represents the events instants.

VI. CONCLUSION
In this paper, we proposed an extension of the universal for-

mula for smooth feedback stabilization to event-based controlled
systems. A modification of the original formula is necessary to
ensure that there is a minimal sampling interval between two con-
secutive events avoiding phenomena like accumulation points. As
in the original work, if the Control Lyapunov Function fulfills
the small control property, then the control is continuous at the
origin. With additional homogeneity assumptions, the control can
be proved to be smooth everywhere and the minimal sampling
intervals bounded below for all initial conditions.
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