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Abstract— In this paper we study the problem of deploying a
team of flying robots to perform surveillance coverage missions
over an unknown terrain of arbitrary morphology. In such
a mission, the robots should simultaneously accomplish two
objectives: firstly, to make sure that the overall terrain is visible
by the team and, secondly, that the distance between each point
in the terrain and one of the robots is as small as possible.
These two objectives should be efficiently fulfilled given the
physical constraints and limitations imposed at the particular
coverage application (i.e., obstacle avoidance, limited sensor
capabilities, etc). As the terrain’s morphology is unknown and
it can be quite complex and non-convex, standard multi-robot
coordination and control algorithms are not applicable to the
particular problem treated in this paper. In order to overcome
such a problem, a new approach that is based on the Cognitive-
based Adaptive Optimization (CAO) algorithm is proposed and
evaluated in this paper. Both rigorous mathematical arguments
and extensive simulations on unknown terrains establish that
the proposed approach provides an efficient methodology that
can easily incorporate any particular constraints and quickly
and safely navigate the robots to an arrangement that optimizes
surveillance coverage.

I. INTRODUCTION

The use of multi-robot teams has gained a lot of attention
in recent years. This is due to the extended capabilities that
the teams have to offer comparing to the use of a single
robot for the same task. Robot teams can be used in a variety
of missions including: surveillance in hostile environments
(i.e. areas contaminated with biological, chemical or even
nuclear wastes), environmental monitoring (i.e. air quality
monitoring, forest monitoring) and law enforcement missions
(i.e. border patrol), etc. In all the aforementioned tasks the
positioning of limited resources to maximize the area mon-
itored is the key issue. This can be achieved deploying the
robots so that two objectives are simultaneously optimized:

(O1) the part of the terrain that is “visible“, i.e. that is
monitored by the robots is maximized;

(O2) the team members are arranged so that for every
point in the terrain, the closest robot is as close as
possible to that point.

The majority of existing approaches for multi-robot
surveillance coverage, which concentrate mostly on the 2D
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case of ground robots, deal only with one of the objectives
(O1) or (O2); see e.g. see [1], [2], [3], [4], [5], [6] and
the references therein. Furthermore, in most of the existing
approaches the terrain morphology is considered convex
and/or known. In such cases the problem of multi-robot
surveillance coverage can be seen to be equivalent to a
standard optimization problem where the robots’ trajectories
are generated according to a gradient-descent or gradient-
descent-like methodology. However, in the case where it
is required that both of the objectives (O1) and (O2) are
simultaneously addressed and the terrain’s morphology is
non-convex and unknown, standard optimization tools are not
applicable anymore as these tools require full knowledge of
an objective function that depends on the unknown terrain’s
morphology.

To approach this problem we propose a new solution
based on the recently introduced Cognitive-based Adaptive
Optimization (CAO) algorithm [8], [9]. The main advantage
of CAO as compared to standard optimization tools is that it
does not require that the objective function to be optimized
is explicitly known; CAO instead requires that at each-time
instant a value (measurement) of this objective function is
available. By introducing an appropriate objective function,
that is defined so that both objectives (O1) and (O2) are
simultaneously taken into account, we achieve to render
the CAO algorithm applicable to the particular problem of
3D multi-robot surveillance coverage treated in this paper.
This objective function depends on the unknown terrain’s
characteristics and thus its explicit form is not known.
However, for any given team configuration the value of this
objective function can be directly computed from the robots’
sensor measurements, and thus the CAO algorithm can be
applied to the problem by using such an objective function. It
has to be emphasized that apart from rendering the optimiza-
tion problem solvable, the CAO-based approach preserves
additional attributes that make it particularly tractable: it can
handle a variety of physical constraints and limitations and
it is fast and scalable.

The rest of the paper is organized as follows. In sec-
tion II we describe in detail the cognitive based adaptive
optimization approach, while in section III we formulate
the problem for the 3D multi-robot coverage over unknown
terrains. Finally, in section IV extensive simulation results
are presented to validate the proposed approach.

II. THE COGNITIVE-BASED ADAPTIVE OPTIMIZATION
APPROACH

The Cognitive-based Adaptive Optimization (CAO) ap-
proach [7]-[9] was originally developed and analyzed for
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the optimization of functions for which an explicit form is
unknown but their measurements are available as well as
for the adaptive fine-tuning of large-scale nonlinear control
systems. In this section, we will describe how the CAO
approach can be appropriately adapted and extended so that
it is applicable to the problem of multi-robot coverage. More
explicitly, let us consider the problem where M robots are
involved in a coverage task, attempting to optimize a given
coverage criterion. Apparently, the coverage criterion is a
function of the robots’ positions or poses (positions and
orientations), i.e.

Jk = J
(
x

(1)
k , . . . , x

(M)
k

)
(1)

where k = 0, 1, 2, . . . denotes the time-index; Jk de-
notes the value of the coverage criterion at the k-th time-
step; x(1)

k , . . . , x
(M)
k denote the position vectors of robots

1, . . . ,M , respectively; J is a nonlinear function which
depends, apart from the robots’ positions, on the particular
environment where the robots live. For instance, in the 2D
case the function J depends on the location of the various
obstacles that are present, while in the 3D case with flying
robots monitoring a terrain, the function J depends on the
particular terrain morphology.

Due to the dependence of the function J on the particular
environment characteristics, the explicit form of the function
J is not known in most practical situations. However, in
most practical cases like the one treated in this paper, the
current value of the coverage criterion can be estimated from
the robots’ sensor measurements. In other words, at each
time-step k, an estimate of Jk is available through robots’
sensor measurements,

Jnk = J
(
x

(1)
k , . . . , x

(M)
k

)
+ ξk (2)

where Jnk denotes the estimate of Jk and ξk denotes the
noise introduced in the estimation of Jk due to the presence
of noise in the robots’ sensors.

Apart from the problem of dealing with a criterion for
which an explicit form is not known but only its noisy mea-
surements are available at each time, efficient robot coverage
algorithms have additionally to deal with the problem of
restricting the robots’ positions so that obstacle avoidance
as well as robot formation constraints are met. In other
words, at each time-instant k, the vectors x(i)

k , i = 1, . . . ,M
should satisfy a set of constraints which, in general, can be
represented as follows:

C
(
x

(1)
k , . . . , x

(M)
k

)
≤ 0 (3)

where C is a set of nonlinear functions of the robots’
positions. As in the case of J , the function C depends on
the particular environment characteristics (e.g. location of
obstacles, terrain morphology) and an explicit form of this
function may be not known in many practical situations;
however, it is natural to assume that the coverage algorithm
is provided with information whether a particular selection
of robots’ positions satisfies or violates the set of constraints
(3).

Given the mathematical description presented above, the
multi-robot coverage problem can be mathematically de-
scribed as the problem of moving x

(1)
k , . . . , x

(M)
k to a set

of positions that solves the constrained optimization prob-
lem: minimize (1) subject to (3). As already noticed, the
difficulty in solving in real-time and in real-life situations
this constrained optimization problem lies in the fact that
explicit forms for the functions J and C are not available.
To circumvent this difficulty, the CAO approach, appropri-
ately modified to be applicable to the problem in hand, is
adopted. This method is capable of efficiently dealing with
optimization problems for which the explicit forms of the
objective function and constraints are not known, but noisy
measurements/estimates of these functions are available at
each time-step. Next we describe the CAO approach as
applied to the multi-robot coverage problem described above.

As a first step, the CAO approach makes use of function
approximators for the estimation of the unknown objective
function J at each time-instant k according to

Ĵk

(
x

(1)
k , . . . , x

(M)
k

)
= ϑτkφ

(
x

(1)
k , . . . , x

(M)
k

)
. (4)

Here Ĵk
(
x

(1)
k , . . . , x

(M)
k

)
denotes the approximation of J

generated at the k-th time-step, φ denotes the nonlinear
vector of L regressor terms, ϑk denotes the vector of
parameter estimates calculated at the k-th time-instant and
L is a positive user-defined integer denoting the size of the
function approximator (4). The parameter estimation vector
ϑk is calculated according to

ϑk = argmin
ϑ

1
2

k−1∑
`=`k

(
Jn` − ϑτφ

(
x

(1)
` , . . . , x

(M)
`

))2

(5)

where `k = max{0, k−L−Th} with Th being a user-defined
nonnegative integer. Standard least-squares optimization al-
gorithms can be used for the solution of (5).

As soon as the estimator Ĵk is constructed according to (4),
(5), the set of new robots’ positions is selected as follows:
firstly, a set of N candidate robots’ positions is constructed
according to

xi,jk = x
(i)
k + αkζ

i,j
k , i ∈ {1, . . . ,M}, j ∈ {1, . . . , N} , (6)

where ζi,jk is a zero-mean, unity-variance random vector with
dimension equal to the dimension of x(i)

k and αk is a positive
real sequence which satisfies the conditions:

lim
k→∞

αk = 0,
∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞ . (7)

Among all N candidate new positions x1,j
k , . . . , xM,j

k , the
ones that correspond to non-feasible positions, i.e. the ones
that violate the constraints (3), are neglected and then the
new robots’ positions are calculated as follows:[
x

(1)
k+1, . . . , x

(M)
k+1

]
= argmin

j ∈ {1, . . . , N}
xi,jk not neglected

Ĵk

(
x1,j
k , . . . , xM,j

k

)
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The idea behind the above logic is simple: at each time-
instant a set of many candidate new robots’ positions is
generated. The candidate, among the ones that provide with a
feasible solution, that provides the “best” estimated value Ĵk
of the coverage criterion is selected as the new set of robots’
positions. The random choice for the candidates is essential
and crucial for the efficiency of the algorithm, as such a
choice guarantees that Ĵk is a reliable and accurate estimate
for the unknown function J ; see [8], [9] for more details. On
the other hand, the choice of a slowly decaying sequence αk,
a typical choice of adaptive gains in stochastic optimization
algorithms (see e.g. [14]), is essential for filtering out the
effects of the noise term ξk [cf. (2)]. The next theorem
summarizes the properties of the CAO algorithm described
above:

Theorem 1: Let x(1∗), . . . , x(M∗) denote any local mini-
mum of the constrained optimization problem. Assume also
that the functions J , C are either continuous or discontinuous
with a finite number of discontinuities. Then, the CAO-
based multi-robot coverage algorithm as described above
guarantees that the robots’ positions x

(1)
k , . . . , x

(M)
k will

converge to one of the local minima x(1∗), . . . , x(M∗) with
probability 1, provided that the size L of the regressor vector
φ is larger than a lower bound L̄.

The proof of this theorem, not presented here for brevity
purposes, is among the same lines as the main results of [8],
[9]; the main difference between the proof of the theorem
presented below and that of [8], [9] is that while in the case
of [8], [9] it is established that the CAO algorithm used
there is approximately a gradient-descent algorithm, the CAO
algorithm used in this paper is proven to be approximately
a projected gradient-descent algorithm.

Remark 1: We close this section by mentioning that simi-
larly to the proposed approach, global optimization methods
such as simulated annealing and genetic algorithms do not
require that the explicit form of the function J is known.
Moreover, these methods can guarantee global convergence
as opposed to the proposed approach which guarantees only a
local one. However, simulated annealing, genetic algorithms
and other similar global optimization methods require that a
large amount of different combinations of robots’ positions
is being evaluated all over the robots’ application area. Such
a requirement renders these methods practically infeasible as
a huge amount of time and energy would have to be spent
in order for the robots to visit many different locations all
over their application area. �

III. CAO FOR 3D MULTI-ROBOT COVERAGE OVER
UNKNOWN TERRAINS

In our previous works [10], [11] we have extensively de-
scribed the case of using the CAO approach for maximizing
the monitored area in a given region by using a team of
mobile robots in the 2D plane, without any assumption on
the topology of the environment. In this section, where the
main contribution of this paper is presented, we will extend
our approach to the 3D case.

Consider a team of M flying robots that is deployed to
monitor an unknown terrain T . Let z = Φ(x, y) denote
the unknown height of the terrain at the point (x, y) and
assume for simplicity that the terrain T is rectangular along
the (x, y)-axes, i.e. xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax.
Let P = {x(i)}Mi=1 denote the configuration of the robot
team, where x(i) denotes the position of the i-th robot.

Given a particular team configuration P , let V denote
the visible area of the terrain, i.e. V consists of all points
(x, y,Φ(x, y)) ∈ T that are visible from the robots. Given
the robots’ sensor capabilities, a point (x, y,Φ(x, y)) of the
terrain is said to be visible if there exists at least one robot
so that
• the robot and the point (x, y,Φ(x, y)) are connected by

a line-of-sight;
• the robot and the point (x, y,Φ(x, y)) are at a distance

smaller than a given threshold value.
Apparently, the main objective for the robot team is to

maximize the visible area V . However, this cannot be the
only objective for the robot team in a coverage task: trying
to maximize the visible area will simply force the robots to
“climb” as high as1 possible.

In parallel to maximizing the visible area, the robot team
should try to minimize the average distance between each
of the robots and the terrain subarea the particular robot is
responsible for, where the subarea of the terrain the i-th robot
is responsible for is defined as the part of the terrain that
(a) is visible by the i-th robot and (b) each point in this
subarea is closer to the i-th robot than any other robot of the
team. This second objective for the robot team is necessary
for two practical reasons: firstly, the closer is the robot to
a point in the terrain the better is, in general, its sensing
ability to monitor this point and, secondly, in many multi-
robot coverage applications there is the necessity of being
able to intervene as fast as possible in any of the points of
the terrain with at least one robot.

Having in mind that the robot team has to meet the
two above-described objectives, we define the following
combined objective function the robot team has to minimize:

J(P) =
∫
q∈V

min
i∈{1,...,M}

∣∣∣x(i) − q
∣∣∣2 dq +K

∫
q∈T −V

dq (8)

where K is a large user-defined positive constant and | · |
denote the Euclidean norm. The first of the terms in above
equation is the usual cost function considered in many
coverage problem for 2D environment related to the second
objective (minimize the average distance between the robots
and their subarea, see [1]). The second term is related to the
invisible area in the terrain (

∫
q∈T −V dq is the total part of the

terrain that is not visible by any of the robots). The positive
constant K is used to make sure that both objectives are taken
into account. To see this, consider the case where K = 0, in
which case we will have that the robots, in their attempt to

1Note also that in the ideal case where there are no limits for the robot’s
maximum height and the robot has unlimited sensing capabilities, it suffices
to have a single robot at a very high position to monitor the whole terrain.
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minimize their average distance to their subarea, may also
seek to minimize the total visible area. On the other hand, in
case where the first of the terms in (8) is negligible, we will
have the situation mentioned above where the robots in their
attempt to maximize the visible area will have to “climb” as
high as they are allowed to.

It has to be emphasized that the positive constant K should
be chosen sufficiently large so that the second term in (8)
dominates the first term unless no or a negligible part of the
terrain remains invisible. In this way, minimization of (8) is
equivalent to firstly making sure that all, or almost all, of the
terrain is visible and then to locate the robots so that their
average distance to the subarea they are responsible for is
minimized.

A large choice for the positive term K plays another
crucial role for the practical implementation of the CAO
algorithm in multi-robot coverage applications: the problem
with the performance index defined in (8) is that its second
term

∫
q∈T −V dq cannot be, in general, computed in practice;

as this term involves the part of the terrain that is not
currently visible, its computation requires that the geometry
this part is known or equivalently that the whole terrain is
known. To overcome this problem, instead of minimizing
(8) the following performance index is actually minimized
by the CAO approach:

J̄(P) =
∫
q∈V

min
i∈{1,...,M}

∣∣∣x(i) − q
∣∣∣2 dq

+K
∫

(x,y,φ(x,y))∈T −V
I(x, y)dxdy (9)

where I(q) denotes the indicator function that is equal to
1 if the point (x, y, φ(x, y)) belongs to the invisible area of
the terrain and is zero, otherwise. In other words, in the cost
criterion J̄(P) and for the whole invisible area, the unknown
terrain points (x, y, φ(x, y)) are replaced by (x, y, 1), i.e.
J̄(P) assumes that the whole invisible area is a flat subarea.

The replacement of the cost criterion (8) by the criterion
(9) has a negligible implication in the team’s performance:
as a large choice for K corresponds to firstly making sure
that the whole terrain is visible and then to minimizing the
average distance between the robots and their responsible
subareas, minimizing either of criteria (8) or (9) is essentially
the same.

An efficient trajectory generation algorithm for optimal
coverage, i.e. for minimization of the cost criteria (8) or
(9), must make sure that the physical constraints are also
met throughout the whole coverage task. Such physical
constraints include, but are not limited to, the following ones:
• The robots remain within the terrain’s limits, i.e. they

remain within [xmin, xmax] and [ymin, ymax] in the x−
and y-axes, respectively.

• The robots satisfy a maximum height requirement while
they do not “hit” the terrain, i.e. they remain within
[Φ(x, y) + d, zmax] along the z-axis, where d denotes
the minimum safety distance (along the z-axis) the
robots’ should be from the terrain and zmax denotes
the maximum allowable height for the robots.

• The robots do not come closer to the other ones than a
minimum allowable safety distance dr.

It is possible to see that all the above constraints can be
easily cast in the form (3) and thus can be handled by the
CAO algorithm.

Having defined the optimization problem, a fundamental
point for a good behavior of the CAO algorithm is an
appropriate choice of the form of the regressor vector φ,
introduced in equation (4) (for details about its construction
see [10]). Once the regressor vector φ has been set and
once the values of the cost function (9) are available for
measurement at each time step, it is possible to find at each
time step the vector of parameter estimates θk and thus the
approximation of the cost function Ĵk.

Remark 2: Please note that the CAO algorithm’s com-
putational requirements are dominated by the requirement
for solving the least-squares problem (5). As the number
of free parameters in this optimization problem is L, most
popular algorithms for solving least-squares problems have,
in the worst case, O(L3) complexity (polynomial complexity
with respect to L). For a realistic situation where 3-5 robots
are employed, our simulation investigations indicate that a
“good” value for L is around 20. �

IV. PERFORMANCE EVALUATION

To evaluate the efficiency of the proposed approach,
several scenarios were considered using a simulated flying
robot team. In all cases studied, the team was homogeneous
consisted of 4 robots with the same monitoring capabilities.
This assumption has been made only for simplification
purposes and easier comprehension of the results. The main
constraints imposed to the robots are that they remain within
the terrain’s limits, i.e. within [xmin, xmax] and [ymin, ymax]
in the x− and y-axes, respectively. At the same time they
have to satisfy a maximum height requirement while they
do not “hit” the terrain, i.e. they remain within [Φ(x, y) +
d, zmax] along the z-axis. The scenarios considered are
terrains with obstacles with same or uneven heights, while for
each scenario different values of the expression α which is
responsible for the convergence of the algorithm were tested.
Apart from the simulated terrains a realistic scenario was
considered by using a map of a real area [13], extracted
with the methodology described in detail in [12].

A. Simulated Environments

The first case studies an area sizes 10 by 10 meters, which
includes a surface with seven same height randomly placed
obstacles. All the team members were placed at starting
points adjunct to each other, with initial height 0.6 meters.
The maximum allowed flight height was 1 meter for all
robots. Different values of the expression α were tested
and the respective cost functions are presented in Fig. 1. A
sample trajectory of the robotic team in the case of α = 0.3
is presented in Fig. 2, while the final configuration in all three
test cases is presented in Fig. 3. It should be noted that CAO
does not converge always to the same swarm configuration,
but it converges always to a swarm configuration with similar
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Fig. 1. Cost Functions for α = 0.3, 0.5, 1, for the case of area with same
height obstacles.

Fig. 2. 3D Path followed by the robot team for α = 0.3, for the case of
area with same height obstacles.

coverage characteristics which corresponds to similar final J
value.

In the second case the area sizes 10 by 10 meters, which
includes a surface with seven randomly placed obstacles
with uneven height, with maximum value 2 meters. All team
members were placed at starting points close to each other,
with initial height 0.2 meters. The maximum allowed flight
height was 1 meter for all robots. Different values of the
expression α were tested and the respective cost functions
are presented in Fig. 4. A sample trajectory of the robotic
team in the case of α = 0.5 is presented in Fig. 5.

Fig. 3. Final positions of the robotic teams in the case of α = 0.3 (blue
markers), α = 0.5 (red markers), α = 1 (green markers), for the case of
area with same height obstacles.
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Fig. 4. Cost Functions for α = 0.3, 0.5, 1, for the case of area with uneven
obstacle height.

Fig. 5. 3D Path followed by the robot team for α = 0.5, for the case of
an area with uneven obstacle height.

B. Birmensdorf area

To validate our approach in a realistic environment, we
used the data which were collected with the use of a
miniature quadrator helicopter specially designed for the
needs of the European project sFLY (www.sfly.org).

These data correspond to the Birmensdorf area presented
in Fig. 6. More details about the data and the methodology
used, are presented in [12] and [13]. The main constraints
imposed to the robots are that they remain within the terrain’s
limits, i.e. within [xmin, xmax] and [ymin, ymax] in the x−
and y-axes, respectively. At the same time they have to
satisfy a maximum height requirement while they do not
“hit” the terrain, i.e. they remain within [Φ(x, y) + d, zmax]
along the z-axis. The value of α was equal to 0.3. Several
initial configurations for the robot team were tested. The
values of the cost function for three different configurations
are presented in Fig. 8. Sample trajectories for a robot team
with initial coordinates for Robot 1 (0.1, 9, 1.7), for Robot
2 (0.2, 9, 1.7), for Robot 3 (0.3, 9, 1.7) and for Robot 4
(0.4, 9, 1.7) are presented in Fig. 7.

V. DISCUSSION AND CONCLUSIONS

A new method for dealing with the problem of performing
surveillance coverage in unknown terrain of arbitrary mor-
phology has been proposed. The proposed approach has the
following advantages:
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Fig. 6. Outdoor flight path through the Birmensdorf area.
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Fig. 7. 3D Path followed by a robot team in a coverage scenario in
Birmensdorf area.

• it does not require any a priori knowledge on the
environment;

• it works in any given environment, without the necessity
to make any kind of assumption about its topology;

• it can incorporate any kind of constraints;
• it does not require a knowledge about these constraints

since they are learnt during the task execution;
• its complexity is low allowing real time implementa-

tions.

The advantages of the proposed methodology make it
suitable for real implementations and the results obtained
through numerical simulations give us the motivation to
adopt the CAO also in other frameworks. We are also
interested into formulating the same problem in a distributed
manner by using different cost functions for any robot in
the team. This approach is closer to real world applications
since it will not depend into a centralized scheme with all
the known disadvantages. Apart from that a decentralized ap-
proach will allow us to include communications constraints.
Our aim is to develop a strategy for the surveillance of an
unknown urban-like environment with a real MAV swarm.

We expect that many important tasks in mobile robotics
can be approached by CAO-based algorithms: for example
coordinated exploration, optimal target tracking, multi-robot
localization, and so on. This is basically due to the fact that
the CAO approach does not require an a priori knowledge
of the environment and it has low complexity. Both these
issues are fundamental in mobile robotics.
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Fig. 8. Comparative cost functions for different initial robot team
configurations in Birmensdorf area.
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