
Efficient Parallel Implementation of a Kalman Filter for Single Output
Systems on Multicore Computational Platforms

Olov Rosén, Alexander Medvedev

Abstract— Parallelization and cache memory bandwidth de-
mand of a Kalman filter for single output systems on multicore
computers are investigated and exemplified by an adaptive fil-
tering application. By breaking the data dependencies through
a re-organization of calculations, an almost completely parallel
algorithm is obtained. Analysis of the resulting algorithm brings
about an estimate of the memory bandwidth necessary for a
linear in the number of cores speedup. An evaluation of the
parallel algorithm on two different shared-memory multicore
architectures has been performed. It is found that linear speed-
up in the number of used cores can indeed be achieved provided
a sufficient memory bandwidth is offered by the hardware.

I. INTRODUCTION

The Kalman filter (KF) is one of the most widely used
state estimation algorithms in control applications, mostly
due to its optimality under the assumptions of linear plant
dynamics as well as white measurement and process noise.
Unfortunately, for N states to be estimated, the compu-
tational complexity of the KF is O(N3) [1], which can
easily become too computationally expensive for embedded
platforms. For instance, in echo cancellation, one seeks to
estimate in real time the coefficients of a finite impulse
response (FIR) filter with thousands of taps, to model an
acoustic channel [2]. In such applications, the KF exhibits
superior convergence speed, tracking performance and esti-
mation accuracy compared to e.g. Normalized Least Mean
Squares algorithm and Averaged Kalman Filter Algorithm
(AKFA) [3], [4]. Further, the KF outperforms the Recursive
Least Squares algorithm (RLS) in tracking time-varying
parameters since the underlying mathematical model for the
latter assumes the estimated parameters to be constant. The
KF also offers, relative to RLS, the benefit of individually set
time variation of states, see e.g. [5]. However since the RLS
is a special case of the KF [6], the proposed parallelization
also applies to the RLS.

The computer industry has now entered the multicore era
with hardware computational capacity increased by adding
more processors (cores) on one chip. All major manufactures
of processor chips have moved to a multicore (many core)
design and sequential processors will not be available already
in near future [7]. Almost any personal computer and some
cellular phones bought today contain two or more processors,
and the number of processors is predicted to drastically

The authors are partially supported by the project "Computationally
Demanding Real-Time Applications on Multicore Platforms" funded by
Swedish Foundation for Strategic Research.

O. Rosén and A. Medvedev is with the Institution of In-
formation Technology, Department of System and Control, Upp-
sala University, Uppsala SE-751 05, Sweden {olov.rosen,
alexander.medvedev}@it.uu.se

increase in the near future. The state-of-the-art hexa-core
processors contain six cores (e.g. AMD Phenom II X6, Intel
Core i7 Extreme Edition 980X) [8] [9].

Naturally, due to huge performance, lower energy con-
sumption and heat dissipation, multicore architectures are
highly appealing for computationally demanding embedded
control and signal processing applications. Alas, in most
cases, streamlined real-time software runs slower on a mul-
ticore computer than on a single core one with the same
clock frequency. This poses a major problem to companies
dependent on hard real time systems: they actually face a
slow-down of their software due to the oncoming departure
of sequential processors.

Parallelization of algorithms per se does not automatically
mean that they can be run efficiently on multicore plat-
forms. There are plenty of examples where "‘embarrassingly
parallel"’ algorithms have resulted in applications running
even slower in parallel than sequentially. A real challenge to
multicore software is presented by so-called "memory wall"
that is a disparity between how fast the processor can operate
on data and how fast it can get data. In order to achieve
speedup on multicore computers, parallel algorithms must be
optimized with respect to the cache memory use so that they
do not overcome the available on the present architecture
memory bandwidth.

Parallel implementations of the KF have been suggested
over the years to improve the execution time. However,
many of these schemes are hardware-specific assuming such
architectures as e.g. the Connection Machine [10], distributed
memory machines [11] and systolic arrays [12] and thus can
not be used for a multicore implementation. Other paral-
lelization solutions suffer from the presence of sequentially
executed sections that prevent significant speedup [13] [14].
Pipelined by design algorithms [15] have input-to-output
latency equal or even greater than that of a sequentially
executed filter, which is not acceptable in many real time
applications. No article known to the authors of this paper
addresses parallelization and cache memory handling of the
KF on multicore platforms. Notably, a similar analysis for
Particle Filters is presented in [16].

In this article, efficient parallelization of the KF executed
on a shared-memory multicore architecture is studied and
exemplified by an adaptive filtering application. The paral-
lelization is achieved by re-ordering the KF equations so
that the data dependencies are broken and allow for a well-
parallelized program implementation that has the potential
to exhibit linear speed-up in the number of used cores.
Analysis of the resulting algorithm brings about an estimate

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 3178

of the memory bandwidth necessary for a realization of this
potential on a multicore computer.

The article aims at bringing computer architecture insights
into the design of signal processing algorithms and, therefore,
a brief summary of the memory architecture for a multicore
is given in Section IV, to facilitate the understanding of
some points in the implementation. For a more extensive
exposition of these concepts see e.g. [17]. In Section V,
the plant and the corresponding KF equations are described
and the parallel implementation is provided in Section VI.
Results and discussion follow in Section VIII and Section IX,
respectively. Finally, the conclusions are given in Section X.

II. NOTATION

Assume that A is a matrix of size m× n. The submatrix
that lies in the rows of α ⊆ {1, .., n} and columns of β ⊆
{1, ..,m} is denoted A(α, β). Further, 1 : n , {1, 2, ..., n},
and A(:, j) denotes the j-th column of A

III. PARALLEL IMPLEMENTATION SPEEDUP

The speedup one can theoretically expect from a parallel
implementation of an algorithm with respect to a purely
sequential version of it can be analyzed as follows. Assume
that a program consists of a portion p| that must be executed
sequentially and a portion p|| = 1 − p| that can be run in
parallel. A parallelization also imposes an overhead c(M).
Let tM denote the execution time when executed using M
processors. It can be shown that the obtained speed up is
given by

s(M) =
t1
tM

=
1

p| +
(1−p|)

M + c(M)

From the above expression, it can be seen that a program
can never achieve a greater speedup than s(∞) = 1

p|

(assuming c(M) = 0). This is known as Amdahl’s law [18].
It is therefore of great importance that there are no large
sequentially executed portions in a parallel implementation.
The term c(M) is somewhat difficult to estimate. It accounts
for such effects as amount of communication, memory
bandwidth, number of synchronization points etc. and is
highly dependent on the architecture on which the program
is executed.

IV. COMPUTER MEMORY ARCHITECTURE

A. Single-core memory architecture

A typical computer has a Random Access Memory
(RAM), often referred to as the working memory, and also
a smaller cache memory with faster access time in between
the RAM and CPU. Every data element that is requested
from the CPU will be brought into the cache memory, if
not already there. The idea of introducing an intermediate
memory between the RAM and CPU is based on the ob-
servation of temporal and spatial locality in data usage for
most applications. If an algorithm utilizes data intensively but
for just a few simple calculations, i.e. the memory access to
Floating Point Operation (FLOP) ratio is high, it is crucial to
handle data distribution over the memory levels in an efficient

Cache Cache Cache Cache

RAM

CPU 1 CPU 2 CPU 3 CPU 4

Fig. 1. Sketch of a shared-memory multicore memory architecture

way. Fetching a data element resident in the RAM memory
can take hundreds of CPU cycles, while doing the same,
but with the cache memory, or performing a FLOP can be
completed in a few cycles. To keep the CPU from wasting
time on waiting for data to work on, it is important that
data elements that are already brought into the cache will be
reused to complete as many calculations as possible in the
algorithm before they are thrown out.

Note that the picture with a single cache memory is a
simplified description of the memory system architecture
of today’s computers. Often there is a hierarchy of cache
memories in between the RAM and CPU with up to three
levels. However, to understand the ideas presented here, it
suffice to think of the cache as a single memory with a much
faster access time than the RAM memory.

B. Shared memory multicore architecture

In a shared-memory multicore architecture, there are sev-
eral CPUs that can access a shared RAM, however each
CPU has a private cache memory, as shown in Fig. 1. Notice
that here the CPUs share a common bus to communicate to
the RAM. This is however only an example and the actual
organization of bus connections differs among different com-
puter architectures. The simplified view depicted in Fig. 1
shows that even though the CPUs have a shared memory, it
is beneficial to construct an algorithm that will keep the data
locally in the private cache memory of each CPU. It also
illustrates the fact that two processors can block memory
accesses for each other since only one processor at the time
can access the bus.

V. SYSTEM MODEL AND THE KALMAN FILTER

Parameter estimation in systems that can be written in the
regressor form

θt+1 = θt + εt

yt = ϕT
t θt + et

is considered. Here yt is the scalar measured output, ϕt is the
(known) regressor vector that depends on the data up to time
t − 1, θt is the time-varying vector of N parameters to be
estimated, εt is the process noise, et is the measurement noise
and t is discrete time. This description includes any linear
single output system, but also a broad class of nonlinear
systems that are linear in unknown parameters. An important
property of the regressor model that will be utilized further
is that the regressor vector ϕt only contains data from time

3179

Algorithm 1 Straightforward implementation of Eq. (1)-(3)
• Ct = Pt−1ϕt

• bt = ϕT
t Ct

• dt = rt + bt
• Pt = Pt−1 +CtC

T
t /dt +Qt

• ŷt = ϕT
t θ̂t−1

• θ̂t = θ̂t−1 +
Ct

dt
[yt − ŷt]

t− 1. The Kalman filter equations for estimation of θt (see
e.g. [5]) are given by:

θ̂t = θ̂t−1 +Kt[yt − ϕT
t θ̂t−1] (1)

Kt =
Pt−1ϕt

rt + ϕT
t Pt−1ϕt

(2)

Pt = Pt−1 −
Pt−1ϕtϕ

T
t Pt−1

rt + ϕT
t Pt−1ϕt

+Qt (3)

where θ̂t ∈ RN is the estimate of θt, Kt ∈ RN is the Kalman
gain, Pt ∈ RN×N is the error covariance matrix, rt ∈ R is
the measurement noise variance var(et) and Qt ∈ RN×N is
the covariance matrix of the process noise cov(εt). A priori
estimates of θ0 and P0 are taken as initial conditions, if
available. Otherwise it is standard to use θ0 = 0 and P0 = ρI
where ρ is some "large" number.

A numerically sound alternative to (1) - (3) is the square
root form known as the Square Root Information Filter
(SRIF) [19]. The SRIF has a similar structure and data
dependencies as (1) - (3) and the ideas presented below can
be straightforwardly applied to the SRIF, as well. However
to keep the description free from technical details, the KF
formulation in the form of (1) - (3) is treated further.

VI. IMPLEMENTATION

In this section, computer implementation of the KF equa-
tions (1) - (3) is discussed. First a straightforward im-
plementation will be presented and the drawbacks of it
will be explained. Thereafter it will be shown how these
drawbacks can be remedied by a simple reordering of the
equations, allowing for a well-parallelized algorithm suitable
for multicore and, possibly, for networked systems.

A. Straightforward implementation

To minimize the computational redundancy in (1)-(3), the
common terms Ct , Pt−1ϕt, bt , ϕT

t Pt−1ϕt = ϕT
t Ct

and dt , rt +ϕT
t Pt−1ϕt = rt + bt are first calculated. This

results in Alg. 1. The corresponding pseudo code is provided
in Alg. 2.

As mentioned, such an implementation has drawbacks.
Assume that θt is of length N = 2000, a not uncommon
size for, say, adaptive filtering in acoustics. P would then
require N2(8B) = 32 MB of storage (assuming double
precision, 8 B per element), which is too large to fit into
the cache (recall that the cache size is typically a few MB).
Thus to calculate C in Alg. 2, the elements of Pt−1 will be
brought into the cache as they are requested. Eventually, the
elements of Pt−1 that were first brought in will be substituted

Algorithm 2 Pseudo code for implementation of Alg. 1
• for i = 1 : N

– for j = 1 : N

∗ Ct(i) = Ct(i) +Pt−1(i, j)ϕt(j)

– end
– bt = bt + ϕt(i)Ct(i)
– ŷt = ŷt + ϕt(i)θ̂t−1(i)

• end
• dt = rt + bt
• for i = 1 : N

– for j = 1 : N

∗ Pt(i, j) = Pt−1(i, j) + Ct(i)Ct(j)/dt +
Qt(i, j)

– end for
– θ̂t(i) = θ̂t−1(i) +

Ct(i)
dt

[yt − ŷt]
• end for

Algorithm 3 Reorganized implementation of Alg. 1
• dt = rt + bt
• θ̂t = θ̂t−1 +

Ct

dt
[yt − ŷt]

• Pt = Pt−1 +CtC
T
t /dt +Qt

• Ct+1 = Ptϕt+1

• ŷt+1 = ϕT
t+1θ̂t

• bt+1 = ϕT
t+1Ct+1

by the elements currently in use. When the program later
arrives at the calculation of Pt, the elements of Pt−1 must
be brought in once again. Since P is of considerable size,
bringing it to the cache twice leads to a substantial increase
in the execution time.

B. Reordering of the equations for efficient memory utiliza-
tion

The reordering is based on the observation that ϕt+1

depends only on the data from time t, and can thus be
made available at time step t. This observation enables the
reformulation of Alg. 1 as Alg. 3. Why such an reordering
would improve the performance becomes clear from the
pseudo code given in Alg. 4 where it can be seen that once
an element of P is brought into the memory, it will be used
to accomplish all calculations it is involved in. Therefore,
squeezing the P matrix twice trough the memory at each
iteration is no longer needed.

C. Utilizing the symmetry of P

If P0 is symmetric, it can be seen from (3) that P will
stay symmetric through the recursions. This should be taken
advantage of, since approximately half of the calculations
and memory storage can be spared. Ct(i) can be rewritten
to be calculated from only upper triangular elements as

Ct(i) =

N∑
j=i

Pt(i, j)ϕt(j) +

i−1∑
j=1

Pt(j, i)ϕt(j).

3180

Algorithm 4 Pseudocode of memory efficient implementa-
tion.
• dt = rt + bt
• for i = 1 : N

– θ̂t(i) = θ̂t−1(i) +
Ct(i)
dt

[yt − ŷt]
– for j = 1 : N

∗ Pt+1(i, j) = Pt(i, j)+Ct(i)Ct(j)/dt+Qt(i, j)
∗ Ct+1(i) = Ct+1(i) +Pt+1(i, j)ϕt+1(j)

– end for
– ŷt+1 = ŷt+1 + ϕT

t+1(i)θ̂t(i)
– bt+1 = bt+1 + ϕt+1(i)Ct+1(i)

• end for

An implementation making use of only the upper triangular
part of P can thus be obtained by changing the j-loop in
Alg. 4 to:

• for j = i : N

– Pt+1(i, j) = Pt(i, j) +Ct(i)Ct(j)/dt +Qt(i, j)
– Ct+1(i) = Ct+1(i) +Pt+1(i, j)ϕt+1(j)
– Ct+1(j) = Ct+1(j) +Pt+1(i, j)ϕt+1(i)

• end for

D. Parallel implementation

Let M be the number of CPUs used for the implementa-
tion. It can be observed by examining Alg. 4 that the only
dependencies between i-loop iterations are in the adding
up of ŷt+1, bt+1 and Kt+1. Such dependencies are easily
broken by using a reduction, where each CPU calculates
the local contribution to the sum that is later added up in
a sequential section to give the global sum. By doing so,
a parallelization can be achieved by splitting the i-loop in
equally large chunks of size N/M (assumed to be integer),
and letting each CPU process one of the chunks.

For the algorithm utilizing only the upper triangular part
of P, there is an issue of splitting the workload among the
CPUs. Splitting over the i-index would result in an unevenly
distributed workload since the j-loop range from i to N .
Moreover, the splitting shall preferably be done so that each
CPU can hold locally as much of the data as possible. This
can be achieved by the following splitting. First map the
upper diagonal elements of P to a rectangular matrix P′ of
size N × (N/2+1), where the mapping from an element in
P to element (i.j) in P′ is given by

P′(i, j) = P(i, (i+ j − 1) mod N),
1 ≤ i ≤ N
1 ≤ j ≤ (N/2 + 1)

Notice that this matrix contains N/2 elements more than
necessary. The upper triangular block of P contains N(N +
1)/2 elements and P′ thus have N(N/2+1)−N(N+1)/2 =
N/2 elements extra. This is to avoid the use of if-statements
in the implementation and hence allow for better use of the
pipeline in the CPU. An example for N = 6 is given below.
Notice that P′ can be said to contain only upper diagonal

Algorithm 5
• Sequential

– ŷt =
M∑

m=1
y
(m)
t

– bt =
M∑

m=1
b
(m)
t

– Ct =
M∑

m=1
C

(m)
t

– dt = rt + bt

• CPU m (in parallel)
– for i = i1m : i2m

∗ θ̂t(i) = θ̂t−1(i) +Ct(i)/dt[yt − ŷt]
∗ for j = 1 : (N/2 + 1−

⌊
2i
N

⌋
)

· k = (i+ j)modN

· P′t+1(i, j) = P′t(i, j)+C
(m)
t (i)C

(m)
t (k)/dt+

Q′t(i, j)

· C
(m)
t+1(i) = C

(m)
t+1(i) +P′t+1(i, j)ϕt+1(k)

· C
(m)
t+1(k) = C

(m)
t+1(k) +Pt+1(i, j)ϕt+1(i)

∗ end for
∗ ŷ

(m)
t+1 = ŷ

(m)
t+1 + ϕT

t+1(i)θ̂t(i)

∗ b
(m)
t+1 = b

(m)
t+1 + ϕt+1(i)C

(m)
t+1(i)

– end for

elements since P(i, j) = P(j, i).

P =

 p11 p12 p13 p14 . .
. p22 p23 p24 p25 .
. . p33 p34 p35 p36

p41 . . p44 p45 p46
p51 p52 . . p55 p56
p61 p62 p63 . . p66

→ P′ =

 p11 p12 p13 p14
p22 p23 p24 p25
p33 p34 p35 p36
p44 p45 p46 p41
p55 p56 p51 p52
p66 p61 p62 p63

The redundant elements of P′ are in the last half of the

last column, which is equal to the first half of the last column.
The same mapping is applied to Q to yield Q′.

Splitting these calculations over the i-index so that CPU
m will loop from i1,m = N

M (m − 1) + 1 to i2,m = N
Mm

gives a parallel implementation described in Alg. 5, where
superscript (m) denotes a local variable to CPU m.

VII. ANALYSIS OF ALGORITHM 5

A. Sequential and parallel work

For one iteration of Alg. 5, 2M−1+N(M−1) FLOP’s are
executed sequentially which is negligible, assuming that N
is of considerable magnitude, compared to the 10(N2 +N)
FLOP’s that are executed in parallel. Further, the computa-
tional load performed in parallel is perfectly balanced, i.e.
each processor will perform an equal amount of work in the
parallel section.

B. Communication and synchronization

The proposed algorithm exhibits a large degree of data
locality. Most importantly, each CPU will only access a part
of P, consisting of N(N + 1)/2M elements, implying that
it can be stored locally and no parts of P will have to be
communicated among the CPUs.

The variables that are involved in a reduction, i.e. C, ŷ and
b, which consists of (N/2+1)+N/M+2 elements, have to

3181

be communicated from the parallel to the sequential section.
In the worst case scenario (M = 2) this becomes (N/2 +
1) +N/2 + 2 = N + 3 elements. Since double precision is
assumed (8 B per element), this means that for N = 2000,
(8B)(2000 + 3) ≈ 16 kB will need to be communicated,
certainly not a large amount. The data to be communicated
from the sequential to the parallel section are C, ŷ, b and
the additional values of ϕt+1.

Synchronization is required at the end of each iteration.
The overhead inflicted by this event is independent of N and
depends only on the number of CPUs used; the more proces-
sors are involved, the more expensive the synchronization is.
However, the relative cost of synchronization becomes less
for larger N and the synchronization overhead has smaller
influence on the overall execution time.

C. Memory bandwidth

The memory bandwidth needed by the algorithm to per-
form niter iterations in ttot seconds can be estimated as
follows. The only data structures of considerable size in the
algorithm are P and Q. Studying how these are transfered
from the RAM to the CPU gives a good estimate of the
required memory bandwidth. If the matrices P and Q have
a size of s(P) and s(Q) bytes, transferring them from the
RAM to the CPUs at each iteration requires a memory
bandwidth of

B =
[s(P) + s(Q)] · niter

ttot
(4)

Even though Qt is a matrix of size N×N , it is very often
selected to be diagonal or sparse. This means that in most
practical cases the required bandwidth needed is about half
of that stated by Eq. 4.

As for any other parallel algorithm, one could thus not
expect this algorithm to scale well for a too large or too
small problem size N . For small N , the parallel overhead
will become a bottleneck while for large N the available
memory bandwidth might strangle the performance.

VIII. RESULTS

A. Hardware and software

The algorithms were evaluated on two different computer
architectures, Grad (Intel R© 2.66GHz quad-core, E5430,
12 MB cache) and Kalkyl (quad-core Intel R© Xeon 5520,
Nehalem 2.26 GHz, 8 MB cache) [20]. All calculations
were carried out using double precision. The test data came
from a simulation and were the same for all runs. Program
compilation was performed with the pgi-compiler and full
compiler optimization was used for all algorithms. Open MP
[21] was used for parallelization which allowed the program
to be executed in parallel by adding a single extra code line
telling the compiler to run the outer i-loop in parallel and
perform the required reductions. The matrix Q was diagonal.
To evaluate the improvement gained by reorganizing the
equations, Alg. 2 was compared to Alg. 4. The rest of the
experiments were devoted to the algorithm of main interest,
i.e. Alg. 5. Also the memory bandwidth of Kalkyl and Grad
were evaluated, to enable further analysis.

TABLE I
EXECUTION TIMES IN SEC. FOR 50 ITERATIONS OF 2, ALG. 4 AND

ALG. 5, EXECUTED ON A SINGLE CORE ON GRAD AND KALKYL.

N Grad Kalkyl
Alg. 2 Alg. 4 Alg. 5 Alg. 2 Alg. 4 Alg. 5

500 0.12 0.063 0.021 0.12 0.051 0.028
1000 0.22 0.11 0.073 0.20 0.11 0.089
2000 1.06 0.60 0.33 0.99 0.56 0.34
4000 4.42 2.49 1.37 3.92 2.08 1.31
8000 17.55 9.60 5.51 16.52 8.45 5.54

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Number of cores

S
p
e
e
d
 u

p

N=500

N=1000

N=2000

N=4000

N=8000

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Number of cores

S
p
e
e
d
 u

p

N=500

N=1000

N=2000

N=4000

N=8000

Grad Kalkyl

Fig. 2. Speedup for Alg. 5, executed on Grad (left) and Kalkyl (right).
For reference linear speedup is marked by the dashed line.

B. Exection time and speedup

Table I shows execution times for the memory efficient
algorithm, Alg. 4, the memory inefficient algorithm, Alg. 2,
and the parallelizable implementaiton Alg. 5, tested on Grad
and Kalkyl. Speedup curves for Alg. 5 are plotted in Fig. 2.

C. Memory bandwidth

By means of the STREAM benchmark [22], which is
specially designed to evaluate the memory bandwidth of a
system, it was found that Grad has a memory bandwidth
to the RAM of about 5.5 GB/s while Kalkyl has 23 GB/s.
Tab. II show estimates of the required memory bandwidth
Blin(N,M) to achieve linear speedup for problem size N
using M processors. These values were obtained by applying
(4) to the data in Tab.I, to calculate Blin(N, 1) with further
extrapolation for M ≥ 1, i.e Blin(N,M) =M ·Blin(N, 1).

IX. DISCUSSION

It can be seen from Table I that the memory-efficient al-
gorithm, Alg. 4, executes about twice as fast as the memory-

TABLE II
THEORETICALLY EVALUATED BANDWIDTH TO OBTAIN LINEAR SPEEDUP

OF ALG. 5 EXECUTED ON GRAD AND KALKYL IN GB/S.

M\N 500 1000 2000 4000 8000
Grad

1 2.4095 2.7255 2.4038 2.3229 2.3207
2 4.8190 5.4509 4.8075 4.6458 4.6414
4 9.6381 10.9019 9.6151 9.2915 9.2828
8 19.2762 21.8037 19.2302 18.5831 18.5657

Kalkyl
1 1.7585 2.2470 2.3512 2.2636 2.3086
2 3.5169 4.4940 4.7023 4.5271 4.6173
4 7.0338 8.9881 9.4046 9.0542 9.2345
8 14.0677 17.9761 18.8093 18.1085 18.4690

3182

inefficient algorithm, Alg. 2, on both systems (Grad and
Kalkyl). Comparing execution times for Alg. 4 and Alg. 5
in Tab I, it can also be concluded that the execution time for
the algorithm utilizing the symmetry of P runs, as expected,
about twice as fast as the algorithm using the whole P
matrix.

Speedup curve for Kalkyl: Since linear speedup is ob-
tained for all values of N , there is apparently neither problem
with synchronization overhead for small values of N nor
memory bus saturation for larger values of N . This is further
confirmed by Table II where none of the elements exeedes the
available bandwidth of 23 GB/s. Even super-linear speedup
for small values of N can be observed. This is due to good
cache performance. With the work distributed among several
cores, each core needs to access a smaller amount of data
that will fit easier into the cache and result in a better overall
throughput.

Speed-up curve for Grad: In the speedup curve for Grad,
bad scaling for N = 500 and N = 1000 is observed. This
is due to the synchronization overhead that constitutes a
disproportionally large part of the execution time. Also in
Tab. II, there are indications that the memory bus would
be saturated for N = {500, 1000, 2000} and M = {4, 8}
since the available bandwidth of 5.5 GB/s would be exceeded
for these entries. However, no saturation can be seen in the
speedup curves and almost linear speedup is obtained for
N = 2000. One possible explanation to this discrepancy
is that the analysis in Section VII-C assumes that P is
transfered from the RAM to the CPU at each iteration. For
N ≤ 2000, the size of P satisfies s(P) ≤ 16 MB. Since
there are 24 MB cache available running on 8 cores, the
whole P matrix will remain in the cache memory between
iterations, avoiding the need of fetching it from the RAM,
creating an illusion of a larger memory bandwidth. For
N ≥ 4000, s(P) ≥ 64 MB, which is larger than the
available cache of 24 MB, the whole matrix must be brought
to the cache from the RAM at every iteration. At this point,
the memory bandwidth really becomes a bottleneck. Indeed,
the entries in Tab. II corresponding to N = {4000, 8000}
and M = {4, 8} do not align with the linear speedup
for N ≥ 4000. Therefore, on this hardware and using the
proposed KF algorithm, more bandwidth than the available
5.5 GB/s is needed to achieve a linear speedup.

X. CONCLUSIONS

Through test runs on two different shared-memory mul-
ticore architectures, it is found that a Kalman filter for
adaptive filtering can be efficiently implemented in parallel
by organizing the calculations so that the data dependencies
are broken. Analysis of the resulting algorithm yields an
estimate of the memory bandwidth necessary for a linear
in the number of cores speedup. The proposed algorithm
executes about twice as fast on a single core as a straight-
forward implementation and is capable of achieving linear
speedup in the number of cores used. The bandwidth estimate
gives a reasonable prediction of what memory system should

be selected for the multicore platform and the estimation
problem in hand in order to efficiently exploit the hardware.

However, since the KF involves relatively simple cal-
culations on large data structures, it is required that the
hardware provides enough memory bandwidth to achieve
linear speedup. This is an inherent problem of the KF itself
and not caused by the proposed parallelization algorithm.

REFERENCES

[1] M. S. Grewal and A. P. Andrews, Kalman Filtering : Theory and
Practice Using MATLAB, 2nd ed. Wiley-Interscience, Jan. 2001.

[2] E. Hansler, “The hands-free telephone problem: an annotated bibliog-
raphy update,” Annals of Telecommunications, vol. 49, pp. 360–367,
1994.

[3] T. Wigren, “Fast converging and low complexity adaptive filtering us-
ing an averaged Kalman filter,” Signal Processing, IEEE Transactions
on, vol. 46, no. 2, pp. 515 –518, Feb. 1998.

[4] M. Evestedt, A. Medvedev, and T. Wigren, “Windup properties of re-
cursive parameter estimation algorithms in acoustic echo cancellation,”
Control Engineering Practice, vol. 16, no. 11, pp. 1372 – 1378, 2008.

[5] T. Söderström and P. Stoica, Eds., System identification. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1988.

[6] L. Ljung and S. Gunnarsson, “Adaptation and tracking in system
identification-a survey,” Automatica, vol. 26, pp. 7–21, March 1990.

[7] “Multicore article series,” http://web.mit.edu/newsoffice/2011/multicore-
series-1-0223.html, Feb. 2011.

[8] “Intel core i7 extreme,” "http://www.intel.com", Feb. 2011.
[9] “Amd phenom ii x6 black,” http://www.amd.com/, Feb. 2011.

[10] M. Palis and D. Krecker, “Parallel Kalman filtering on the Connection
Machine,” in Frontiers of Massively Parallel Computation, 1990.
Proceedings., 3rd Symposium on the, Oct. 1990, pp. 55 –58.

[11] P. M. Lyster, C. H. Q. Ding, K. Ekers, R. Ferraro, J. Guo, M. Har-
ber, D. Lamich, J. W. Larson, R. Lucchesi, R. Rood, S. Schubert,
W. Sawyer, M. Sienkiewicz, A. da Silva, J. Stobie, L. L. Takacs,
R. Todling, and J. Zero, “Parallel computing at the nasa data assimila-
tion office (dao),” in Proceedings of the 1997 ACM/IEEE conference
on Supercomputing (CDROM), ser. Supercomputing ’97. New York,
NY, USA: ACM, 1997, pp. 1–18.

[12] P. L. Shaffer, “Implementation of a parallel extended Kalman filter
using a bit-serial silicon compiler,” in ACM ’87: Proceedings of the
1987 Fall Joint Computer Conference on Exploring technology: today
and tomorrow. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1987, pp. 327–334.

[13] D. Willner, C. B. Chang, and K. P. Dunn, “Kalman filter algorithms
for a multi-sensor system,” in Decision and Control including the 15th
Symposium on Adaptive Processes, 1976 IEEE Conference on, vol. 15,
Dec. 1976, pp. 570 –574.

[14] B. Tang, P. Cui, and Y. Chen, “A parallel processing Kalman filter
for spacecraft vehicle parameters estimation,” in Communications and
Information Technology, IEEE International Symposium on, vol. 2,
Oct. 2005, pp. 1476 – 1479.

[15] S. Howard, H.-L. Ko, and W. Alexander, “Parallel processing and
stability analysis of the Kalman filter,” in Computers and Communi-
cations, 1996., Conference Proceedings of the 1996 IEEE Fifteenth
Annual International Phoenix Conference on, Mar. 1996, pp. 366 –
372.

[16] O. Rosen, A. Medvedev, and M. Ekman, “Speedup and tracking
accuracy evaluation of parallel particle filter algorithms implemented
on a multicore architecture,” in Control Applications (CCA), 2010
IEEE International Conference on, Sep. 2010, pp. 440 –445.

[17] A. S. Tanenbaum and J. R. Goodman, Structured Computer Organi-
zation. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[18] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in AFIPS ’67 (Spring): Proceed-
ings of the April 18-20, 1967, Spring Joint Computer Conference.
New York, NY, USA: ACM, 1967, pp. 483–485.

[19] G. J. Bierman, Factorization Methods for Discrete Sequential Estima-
tion. New York, NY: Academic Press, 1977.

[20] “Uppmax,” http://www.uppmax.uu.se, Aug. 2010.
[21] “Open mp,” http://www.cs.virginia.edu/stream/, Aug. 2010.
[22] J. D. McClapin, “Stream benchmark,” http://www.cs.virginia.edu/-

stream/, Aug. 2010.

3183

