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Abstract— In part I of this paper we presented a solution
to the circular formation stabilization problem of kinematic
unicycles when the information flow graph is undirected. This
paper extends the results of part I in two directions. First,
we present a control law that solves the circular formation
stabilization problem when the information flow is described
by an arbitrary directed graph with a globally reachable node.
Second, we generalize our results to the case when the unicycles
are dynamic.

I. INTRODUCTION

This paper is a continuation of part I, where we designed

a control law solving the circular formation control problem

(CFCP) for a group of n unicycles under the assumption that

the information flow graph is undirected, and it has a globally

reachable node. In this paper, we provide two extensions.

First, we develop a solution to CFCP for arbitrary directed

information flow graphs with a globally reachable node.

Second, we show that all our results can be straightforwardly

extended to the setting of dynamic unicycles.

Consider again the system of n kinematic unicycles, n ≥
2, where the i’s unicycle model is given by

ẋi
1 = ui

1 cosx
i
3

ẋi
2 = ui

1 sinx
i
3

ẋi
3 = ui

2

(1)

with state xi = (xi
1, x

i
2, x

i
3) ∈ R

2×S1. The state space of the

system is X = (R2×S1)n, and we let χ = col(x1, · · · , xn),
and x3 = col(x1

3, · · · , x
n
3 ). This system can be written in the

control affine form χ̇ = g(χ)u.

We refer the reader to part I of this paper for the definitions

of the information flow digraph G and of the notion of

globally reachable node. We recall the problem we wish to

solve.

Circular Formation Control Problem (CFCP). Consider

the n-unicycles in (1). For a given information flow digraph

G with a globally reachable node, and a desired formation

specification expressed by a vector of angles α ∈ Sn, design

a distributed control law which asymptotically stabilizes the

set

Γ = Γ1 ∩ Γ2

= {χ : L(x3 − α) = 0, ci+1(xi+1) = ci(xi), 1 ≤ i ≤ n},
(2)
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where

Γ1 = {χ : ci+1(xi+1) = ci(xi), i ∈ {1, . . . , n}}

Γ2 = {χ : L(x3 − α) = 0 mod 2π},
(3)

and ci(xi) is defined as

ci(xi) = (xi
1 − r sinxi

3, x
i
2 + r cosxi

3) (4)

Additionally, the linear velocities ui
1 and angular velocities

ui
2 of the unicycles should be bounded away from zero on Γ

and the unicycles should have a common asymptotic centre

of rotation.

In this paper, as in part I, the indices i ∈ {1, . . . , n} are

evaluated modulo n so that, for instance, n+ 1 is identified

with 1.

We derive the solution to this problem for arbitrary infor-

mation flow graphs in two stages: in Section II, we address

the case of circulant graphs (i.e., graphs whose Laplacian is

a circulant matrix), and in Section III we further generalize

the result to general digraphs. Moreover, in Section IV we

show that all our results have a straightforward extension to

the case of dynamic unicycles.

The results of this paper do not rely on the passivity theory

reviewed in part I. A more general framework is needed when

the information flow graph is directed, as we now explain.

Recall the storage function used in part I,

V (χ) = c(χ)⊤L(2) c(χ) =
1

2
c(χ)⊤(L(2) + L⊤

(2)) c(χ),

where L is the Laplacian of G, and L(2) = L ⊗ I2.

We have established in part I that since G has a globally

reachable node, L has one eigenvalue at zero, and all its

other eigenvalues have positive real part. This fact, however,

does not imply that L(2) + L⊤

(2) is positive semidefinite

when L, and hence L(2), is not symmetric. If L(2) + L⊤

(2)

is not positive semidefinite, the passivity analysis of part I

cannot be applied. A second obstacle to the extension of the

passivity-based design of part I is the fact that, even if V (χ)
is positive semidefinite and V −1(0) = Γ1, the passive output

associated to the storage V ,

h(χ) = −rR(x3)(L(2) + L⊤

(2)) c(χ)

violates the information flow constraint, and thus it cannot be

used in a passivity-based feedback to generate a distributed

controller. To illustrate, consider the feedback transforma-

tion (12) of part I:

u = β1ū+ β2ũ (5)
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where β1 = blockdiag{[1 1/r]⊤, . . . , [1 1/r]⊤}, β2 =
blockdiag{[0 1]⊤, . . . , [0 1]⊤}, ū is a feedback used to

enforce Γ-detectability, and ũ is a PBF stabilizing the set Γ1

in (3). The simplest PBF, ũ(χ) = −h(χ), has the property

that ũi is affected by rows 2i − 1 and 2i of (L(2) + L⊤

(2)).
These rows are different from the corresponding rows of

L(2), unless L is symmetric, and therefore ũ(χ) violates the

information flow constraint embodied in L.

The considerations above suggest that in order to generate

distributed control laws solving CFCP, we should replace the

PBF ũ = −Kh(χ) in equation (21) of part I by a suitable

distributed feedback that asymptotically stabilizes the set Γ1

in (3). Recalling that ū in (19) of part I was designed to

stabilize Γ relative to Γ1, the problem then is to understand

whether the asymptotic stability of Γ relative to Γ1 and the

asymptotic stability of Γ1 imply the asymptotic stability of Γ.

This question is an instance of the general reduction problem

for a dynamical system Σ : ẋ = f(x): Consider two closed

sets Γ and Γ1, with Γ ⊂ Γ1, which are positively invariant

for Σ; suppose that Γ is stable, attractive, or asymptotically

stable relative to Γ1. When is it that Γ is, respectively, stable,

attractive, or asymptotically stable for Σ?

The answer to this question is contained in the next result,

taken from [1] (see [2] for the full version of the paper).

Theorem I.1 (Reduction principle for asymptotic stability,

Theorem III.2 in [1]). Let Γ and Γ1, Γ ⊂ Γ1 ⊂ X , be

two closed positively invariant sets. Then, Γ is [globally]

asymptotically stable if the following conditions hold:

(i) Γ is [globally] asymptotically stable relative to Γ1,

(ii) Γ1 is locally stable near Γ,

(iii) Γ1 is locally attractive near Γ [Γ1 is globally attrac-

tive],

(iv) if Γ is unbounded, then Σ is locally uniformly bounded

near Γ,

(v) [all trajectories of Σ are bounded.]

Seibert and Florio in [3] proved an analogous result for

the case when Γ is compact. We refer the reader to [1] for

the definitions of local stability and attractivity near a set. In

this context, it suffices to say that the asymptotic stability of

Γ1 implies conditions (i)-(ii) of Theorem I.1.

By invoking this reduction principle, we propose the fol-

lowing design strategy to solve CFCP for general information

flow graphs.

Step 1. Using the feedback transformation (5) and the feed-

back ū in equation (19) of part I, we show that Γ is

asymptotically stable relative to Γ1 when ũ = 0.

Step 2. We design a distributed feedback ũ(χ) which

asymptotically stabilizes Γ1 and guarantees that the

closed-loop system is LUB near Γ. Moreover, we

show that, with this feedback, the unicycles have a

common asymptotic centre of rotation.

Step 3. By invoking the reduction theorem for asymptotic

stability above, we conclude that the feedback in

question solves CFCP.

II. SOLUTION OF CFCP FOR CIRCULANT DIGRAPHS

In this section we apply the reduction-based set stabilizing

procedure previously outlined to solve CFCP when the

information flow digraph Laplacian is circulant, i.e., it takes

the form (see [4])

L =











l1 l2 · · · ln
ln l1 · · · ln−1

...
...

...

l2 l3 · · · l1











In the development that follows we will need the next lemma.

Lemma II.1. If the Laplacian L of a digraph G with a

globally reachable node is circulant, then the matrix L+L⊤

is positive semidefinite with a simple eigenvalue at 0 with

geometric multiplicity 1.

Proof: If L is circulant, then L⊤ is also the Laplacian

of a graph with the same node set, which we denote G⊤.

Therefore, L+L⊤ is the Laplacian of a graph with the same

nodes as those of G, and whose arcs are the arcs of G and

those of G⊤. Such graph, therefore, has a globally reachable

node, and its Laplacian L + L⊤ has one eigenvalue at zero

with geometric multiplicity 1 and n−1 positive eigenvalues.

Remark. Lemma II.1 is not applicable to digraphs with non-

circulant Laplacians because if L is the Laplacian of G, in

general it is not true that L⊤ is the Laplacian of a digraph.

Step 1: Asymptotic stabilization of Γ relative to Γ1

Consider system (1) with feedback transformation (5). Let

ū be defined as in part I,

ūi = v − v1 sin(L
i(x3 − α)), i = 1, . . . , n, (6)

and let ũ = 0. In the proof of Lemma V.2 of part I it was

shown that the derivative of the function W (x3) =
∑n

i=1[1−
cos(Li(x3 − α))] along solutions of the closed-loop system

is given by

Ẇ = −v1S(x3)
⊤LS(x3) = −

v1
2
S(x3)

⊤(L+ L⊤)S(x3),

where S(x3) = col(sin(L1(x3 − α)), . . . , sin(Ln(x3 − α))].
Since, by Lemma II.1, L + L⊤ is positive semidefinite and

has one eigenvalue at zero with geometric multiplicity one,

the proof of Lemma V.2 in part I is applicable in this context,

and it shows that the set Γ is asymptotically stable relative

to Γ1.

Step 2: Stabilization of Γ1 and LUB property

Referring to the feedback transformation (5), let ū be

defined as in (6), and let

ũ(χ) = KR(x3)ϕ(L(2)c(χ)),

where K > 0 and ϕ(y) = φ(y)y, with φ : R2n → (0,+∞)
a locally Lipschitz function such that supy∈R2n ‖φ(y)y‖ <

5059



v/(2Kr). Since

ẋi
3 =

ūi

r
+ ũi

=
v

r
−

v1
r
sin(Li(x3 − α))+

K[0 0 · · · cosxi
3 sinxi

3 · · · 0 0]φ(L(2)c(χ))L(2)c(χ),

our choice of φ guarantees that ‖ẋ3‖ ≥ µ > 0 for some

µ > 0. Next, the dynamics of the centres of rotation are

given by

ċ = −rKR(x3(t))
⊤ũ(χ)

= −rKφ(L(2)c(χ))R(x3)
⊤R(x3)L(2)c(χ)

= −rKφ(L(2)c(χ))R(x3(t))L(2)c(χ).

The above can be viewed as a time-varying system whose

time-dependency is brought about by the signal x3(t). We

use averaging theory to analize this system. Our arguments

here are sketched due to space limitations. The averaged

system is

ċavg = −rKφ(L(2)cavg)R̄L(2)cavg, (7)

where R̄ can be shown to be positive definite. Letting

P =

[

1

∣

∣

∣

∣

0
In−1

]

, using the coordinate transformations z =

P−1c, zavg = P−1cavg, and partitioning z = (z̄, z̃), zavg =
(z̄avg, z̃avg), we obtain

˙̄z = Kφ(L(2)Pz)A12(t)z̃

˙̃z = Kφ(L(2)Pz)A22(t)z̃

˙̄zavg = Kφ(L(2)Pzavg)Ā12z̃avg

˙̃zavg = Kφ(L(2)Pzavg)Ā22z̃avg,

where the matrix Ā22 is Hurwitz. By the definition of P ,

the terms L(2)Pz and L(2)Pzavg are linear functions of

only z̃ and z̃avg, respectively. Since the real-valued function

φ(·) is bounded away from zero on any compact set, the

origin of the z̃avg subsystem is exponentially stable and

globally asymptotically stable. By the averaging theorem, for

small enough K the linear time-varying system with matrix

KA22(t) is globally exponentially stable. This fact implies

that for small enough K the origin of the z̃ subsystem is

exponentially stable and globally uniformly asymptotically

stable. We thus have that the unicycles have a common

asymptotic centre of rotation and there exists M > 0 such

that for all χ(0) ∈ X , ‖c(χ(t))‖ ≤ M‖L(2)c(χ(0))‖, thus

proving that the closed-loop system is LUB near Γ.

Step 3: Solution of CFCP

The arguments presented in the previous two steps and the

reduction principle for asymptotic stability in Theorem I.1

yield the following result.

Proposition II.2. Assume that the information flow graph

has a circulant Laplacian with a globally reachable node. Let

v > v1 > 0 and φ : R2n → (0,+∞) be a locally Lipschitz

function such that supy∈R2n ‖φ(y)y‖ < ∞. Then, there

exists K⋆ > 0 satisfying supy∈R2n ‖φ(y)y‖ < v/(2K⋆r)

such that for all K ∈ (0,K⋆) the feedback

ui
1 = v − v1 sin(L

i(x3 − α))

ui
2 =

ui
1

r
+Kφ(L(2)c(χ))

[

cosxi
3L

2i−1
(2) c(χ)

+ sinxi
3L

2i
(2)c(χ)

]

, i = 1, . . . , n

(8)

solves CFCP and renders the goal set Γ in (2) asymptotically

stable, and Γ1 in (3) globally asymptotically stable for the

closed-loop system.

Remark. If we replace the expression for ui
1 in (8) by that

in (22) of part I, and we take the state space to be X = R
3n,

then the set Γ becomes globally asymptotically stable relative

to Γ1, and the feedback above solves CFCP globally. As

pointed out in part I to show this one cannot use the same

method as that of Proposition II.2 because xi
3(t) is no longer

a solution on the compact set S1.

Simulations

We present simulation results for for 6 unicycles, for the

two cases presented in part I of the paper:

A. The unicycles are uniformly distributed on the circle with

α =
[

0 2π
6

4π
6

6π
6

8π
6

10π
6

]⊤
.

B. The unicycles are uniformly distributed on half the circle

with α =
[

0 2π
10

4π
10

6π
10

8π
10

10π
10

]⊤
. This time the infor-

mation flow structure corresponds to cyclic pursuit: unicycle

i gets relative information with respect to unicycle i+1. The

corresponding Laplacian is

L =

















1 − 1 0 0 0 0
0 1 − 1 0 0 0
0 0 1 − 1 0 0
0 0 0 1 − 1 0
0 0 0 0 1 − 1
− 1 0 0 0 0 1

















.

Figures 1 and 2 show the simulations results for cases A and

B using feedback (8) with the following parameters: r = 1,

v = 1, v1 = 0.2, and K = 0.7. The function φ : R2n →
(0,+∞) is chosen as

φ(y) =

{

c ‖y‖ ≤ c
c2/‖y‖ ‖y‖ > c

where c =
√

0.99v/Kr.

III. SOLUTION OF CFCP FOR GENERAL DIGRAPHS

The solution of CFCP in the case of circulant information

flow digraph relies on the feedback transformation (5) and

the design of two feedbacks ū(χ) and ũ(χ). The feedback

ū(χ) asymptotically stabilizes Γ relative to Γ1, while the

feedback ũ(χ) asymptotically stabilizes Γ1 and yields the

LUB property. The stability analysis for the feedback ũ(χ)
does not rely on the fact that the graph Laplacian L is

circulant, and is therefore applicable to general information

flow graphs that have a globally reachable node. On the other

hand, the analysis for feedback ū is based on Lemma II.1 and

Lemma V.2 in part I, and cannot be used in the case when L
is not circulant. In this section we develop a different analysis
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Fig. 1. CFCP Simulation - A: circulant digraph

proving that the feedback ū(χ) in (6) stabilizes Γ relative to

Γ1 even when L is not circulant, and thus the distributed

feedback (8) solves CFCP in the general case of information

flow graphs with a globally reachable node.

Proposition III.1. Assume that the information flow graph

has a globally reachable node. Let v > v1 > 0 and

φ : R
2n → (0,+∞) be a locally Lipschitz function such

that supy∈R2n ‖φ(y)y‖ < ∞. Then, there exists K⋆ > 0
satisfying supy∈R2n ‖φ(y)y‖ < v/(2K⋆r) such that for all

K ∈ (0,K⋆) the feedback (8) solves CFCP and renders the

goal set Γ in (2) asymptotically stable, and Γ1 in (3) globally

asymptotically stable for the closed-loop system.

The proof is omitted for space limitations.

A. Simulations

Figures 3 and 4 show the simulations results for cases

A and B, given in Section II, using feedback (8) with the

following parameters: r = 1, v = 1, v1 = 0.14, K = 1.9
and

L =

















1 0 − 1 0 0 0
0 1 − 1 0 0 0
0 − 1 1 0 0 0
0 0 0 1 − 1 0
0 − 1 0 0 2 − 1
0 − 1 0 0 0 1

















.

The function φ : R2n → (0,+∞) is set as in Section II.

IV. SOLUTION OF CFCP FOR DYNAMIC UNICYCLES

Here we extend the solutions of the CFCP presented in

Sections II and III, and Section V of part I to a system of

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

1

1

2

2

3

3

3

4

4

5

5

6

6

x1

x
2

Fig. 2. CFCP Simulation - B: circulant digraph

dynamic unicycles (refer to the vertical rolling disc model

in [5]),
ẋi
1 = xi

5 cosx
i
3

ẋi
2 = xi

5 sinx
i
3

ẋi
3 = xi

4

ẋi
4 =

1

J
wi

2

ẋi
5 =

R

(I +mR2)
wi

1

(9)

for i = 1, . . . , n, with state xi
d = (xi

1, x
i
2, x

i
3, x

i
4, x

i
5) ∈

R
2 × S1 × R

2. We will denote the overall state by χd =
col(x1

d, · · · , x
n
d ). Moreover, as before, we will denote the

kinematic states of each unicycle as xi = (xi
1, x

i
2, x

i
3), and

we will let χ denote the overall kinematic state of the

unicycles, i.e., χ = col(x1, . . . , xn). The scalars R and m
in (9) are, respectively, the radius and mass of the unicycle; I
and J are, respectively, the moments of inertia of the unicycle

about axes perpendicular to and in the plane of the unicycle,

passing through the centre, as shown in Figure 5. Finally, wi
1

and wi
2 are the torques about those axes. These are the new

control inputs.

As before, the information flow among the n-unicycles

is modeled by a digraph G with Laplacian L. An arc from

node i to node j means that unicycle i has access to the

relative displacement, relative heading, and relative linear

and angular velocities with respect to unicycle j. Each

unicycle is also assumed to have access to its own absolute

orientation xi
3, and its own velocities xi

4, xi
5.

In order to adapt the formulation of CFCP to system (9),

we note the linear and angular velocities of the kinematic
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Fig. 3. CFCP Simulation - A: general digraph

unicycles on the goal set Γ are ui
1 = v and ui

2 = v/r for

i = 1, · · · , n so that, in steady-state, all unicycles follow

a circle of radius r counter-clockwise with forward speed

v. In light of this observation, we state CFCP for dynamic

unicycles as follows.

CFCP for dynamic unicycles. Consider the n dynamic

unicycles in (9). For a given information flow digraph G
with a globally reachable node, and a desired formation

specification expressed by a vector of angles α ∈ Sn, design

a distributed control law which asymptotically stabilizes the

set

Γd = {χd : L(x3 − α) = 0, ci+1(xi+1) = ci(xi),

xi
4 = v/r, xi

5 = v, 1 ≤ i ≤ n},
(10)

where ci(xi) is defined in (4). Additionally, as before,

the unicycles should have a common asymptotic centre of

rotation.

Note that the goal set Γd in (10) can be expressed as

Γd = Γ ∩ {χd : xi
4 = v/r, xi

5 = v, 1 ≤ i ≤ n}, where Γ is

the goal set for the kinematic unicycles, defined in (2). As we

mentioned earlier, all feedbacks ui
1(χ), u

i
2(χ) presented in

part I and in this paper have the property that ui
1(χ)|Γ = v,

ui
2(χ)|Γ = v/r. Therefore, letting

O = {χd : xi
4 = ui

2(χ), xi
5 = ui

1(χ), i = 1 · · · , n},

we can express the goal set Γd as

Γd = Γ ∩ O.

All kinematic feedbacks presented earlier guarantee that the

set Γd is asymptotically stable relative to O for (9). There-

fore, in order to solve CFCP for dynamic unicycles, we may

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

1

1 2

2

3

3

4

4

5

5

6

6

x1

x
2

Fig. 4. CFCP Simulation - B: general digraph

x1

x2

x3

x5

I

J

Fig. 5. Dynamic Unicycle

leverage once again the reduction principle in Theorem I.1

as follows:

Step 1. Given any of the kinematic feedbacks ui
1(χ), u

i
2(χ)

designed earlier, we design distributed feedbacks

wi
1(χ

d) and wi
2(χ

d), i = 1, · · · , n, rendering O
globally asymptotically stable. We also show that the

feedbacks wi
1(χ

d), wi
2(χ

d) guarantee that the closed-

loop system is LUB near Γd, and that the unicycles

have a common asymptotic centre of rotation.

Step 2. By using the fact that Γd is asymptotically stable

relative to O, and invoking the reduction theorem for

asymptotic stability, Theorem I.1, we conclude that

the feedback in question solves CFCP for dynamic

unicycles.

The solution of CFCP for dynamic unicycles is given as

follows.

Proposition IV.1. i. Assume the information flow graph is
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Fig. 6. Dynamic unicycles, Simulation - A: general digraph

undirected and has a globally reachable node. If ui
1 and

ui
2, i = 1, · · · , n are chosen as in Proposition V.3 in

part I, then the feedback

wi
1 =

(I +mR2)

R

{

u̇i
1(χ)−K1(x

i
5 − ui

1(χ))
}

wi
1 = J

{

u̇i
2(χ)−K1(x

i
4 − ui

2(χ))
}

(11)

where K1 > 0 is a design constant, u̇i
1(χ) and u̇i

2(χ)
are, respectively, the Lie derivatives of ui

1(χ) and ui
2(χ)

along the dynamics (9), solves CFCP for dynamic uni-

cycles and renders the goal set Γd in (10) asymptotically

stable for the closed-loop system.

ii. Assume the information flow graph is undirected and has

a globally reachable node. If ui
1 and ui

2, i = 1, · · · , n
are chosen as in Proposition V.4 in part I, then the

feedback (11) renders the goal set Γd in (10) globally

asymptotically stable for the closed-loop system and

solves CFCP for dynamic unicycles globally when the

state space is taken to be X = R
5.

iii. For a general static information flow graph with a

globally reachable node. If ui
1 and ui

2, i = 1, · · · , n
are chosen as in Proposition III.1 in this paper, then

then feedback (11) solves CFCP for dynamic unicycles

and renders the goal set Γd in (10) asymptotically

stable for the closed-loop system. In addition, if ui
1 is

chosen as in (22) of part I and the state space is taken

to be X = R
5n, then the set Γd becomes globally

asymptotically stable relative to O, and the feedback

above solves CFCP for dynamic unicycles globally.

A. Simulations

Figures 6 and 7 show the simulations results for cases A

and B, given in Section II, using feedback (11) with K1 = 1,

φ(y) = lv/2rK(1 + ‖y‖) with l = 0.99, R = 1, J = 1,

I = 1, m = 1 and the rest of the parametrs as in Section III-

A. Notice that K∗ is unknown and so we used K = K∗

in φ(y). From this and the feedback (11) the parameter K
is irrelevant in the controller. Empirically, we observed that

increasing l beyond 1 gives better convergence of the centres

of rotation up to a point, beyond which the performance

degrages and solutions even become unbounded.
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Fig. 7. Dynamic unicycles, Simulation - B: general digraph
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