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Abstract— We investigate the following problem: design a
distributed control law making n kinematic unicycles converge
to a common circle of prespecified radius, whose centre is
stationary but dependent on the initial conditions, and traverse
the circle in a desired direction. Moreover, the vehicles are
required to converge to a formation on the circle, expressed by
desired separations and ordering of the unicycles. We present
a solution for the case when the information flow graph is
undirected. In part II of this paper we generalize the solution
to the case of arbitrary information flow graphs, and to the
case of dynamic unicycles.

I. INTRODUCTION

Consider a system of n kinematic unicycles, with n ≥ 2,

ẋi
1 = ui

1 cosx
i
3

ẋi
2 = ui

1 sinx
i
3

ẋi
3 = ui

2

i = 1, . . . , n. (1)

The state of unicycle i is xi = (xi
1, x

i
2, x

i
3) ∈ R

2 × S1,

where S1 is the set (R mod 2π) of real numbers modulo

2π, diffeomorphic to the unit circle. The state space of the

overall system is X = (R2×S1)n. Let χ = col(x1, · · · , xn)
be the overall state, and let x3 = col(x1

3, · · · , x
n
3 ). System (1)

can be written in the driftless form χ̇ = g(χ)u, with

g = blockdiag











cosx1
3 0

sinx1
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 , · · · ,
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We will assume that each unicycle has access to its own

absolute heading (this can be achieved with an on-board

compass) and that it can exchange relative information with

some other unicycles. As is customary in the multi-agent

literature, the information flow shall be modelled by a

directed graph G. Each node of G represents a unicycle,

and the edges of G represent which unicycles exchange

information. Specifically, an edge from node i to node j
means that unicycle i has access to its relative displacement

and relative heading with respect to unicycle j. Let L denote

the Laplacian of the digraph G of the n-unicycles. We will

use the notation Li for the i-th row of L, and we denote

L(2) = L⊗I2 where I2 is the 2×2 identity matrix. Refer to

[1] for an overview on algebraic graph theory and digraphs.

In this paper, we assume that G is static, and it has a globally
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reachable node, i.e. a node with arcs from every other node

in the digraph. Equivalently, the graph has a spanning tree. A

useful characterization of this property, used in the following

sequel, is given in [2] as follows.

Lemma I.1 (Lemma 2, [2]). The digraph G has a globally

reachable node if and only if 0 is a simple eigenvalue of L.

By this lemma, if a digraph with Laplacian L has a

globally reachable node then kerL = span1 where 1 =
col(1, . . . , 1) ∈ R

n and ker denotes the kernel. Note also

that, by the Gershgorin circle Theorem [3], the eigenvalues

of any Laplacian are either zero or have positive real part.

Thus, if the digraph has a globally reachable node, then all

the eigenvalues of L have positive real part except for one

which is zero.

Circular Formation Control Problem (CFCP). Consider

the n-unicycles in (1). For a given static information flow di-

graph G with a globally reachable node, design a distributed

control law achieving the following objectives:

(i) Circular path following. For a suitable set of initial

conditions, the unicycles should converge to a common

circle of radius r > 0, whose centre is stationary

but dependent on the initial condition, and traverse

the circle in a desired direction (clockwise or counter-

clockwise). The unicycles’ forward speed should be

bounded away from zero.

(ii) Formation stabilization. On the circle in part (i) of

the problem, the n-unicycles are required to converge

to a formation expressed by desired separations and

ordering of the unicycles.

In Section III, we give a more precise formulation of CFCP

as the problem of stabilizing a suitable subset of the overall

state space X . In this paper, we solve CFCP in the case where

the information flow graph is undirected, which corresponds

to the situation when the Laplacian L is symmetric. The

solution, presented in Section V (see Proposition V.3), relies

on recent results concerning the passivity-based stabilization

of closed sets [4], [5]. These results are briefly reviewed

in Section IV. In part II, we generalize the solution in two

directions: we allow the information graph to be an arbitrary

static directed graph with a globally reachable node, and we

present the solution to CFCP for dynamic unicycles. Our

control design for CFCP provides circular path following in

the counter-clockwise direction, but can be easily modified

to achieve clockwise path following.

Notation: In this paper we use the following notation. We

will denote by Sn the n-torus, i.e., the Cartesian product

S1×· · ·×S1, n times. If A and B are two matrices or vectors,
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col(A,B) denotes the matrix [A⊤ B⊤]⊤ where ⊤ denotes

transpose, and blockdiag(A,B) denotes the block-diagonal

matrix with blocks A and B. If a1, . . . , an are scalars,

diag(a1, . . . , an) is the diagonal matrix with diagonal entries

ai. By φ(t, x0) we denote the solution of ẋ = f(x) with

initial condition x0. Given an interval I of the real line and a

set S ∈ X , denote by φ(I, S) the set φ(I, S) := {φ(t, x0) :
t ∈ I, x0 ∈ S}. We use ‖ · ‖S to denote the point-to-set

distance to a set S ⊂ X , Bα(x) an open ball of radius α
centered at x, and Bα(S) the set of points with distance less

than α to S. Denote by N (S) a generic open neighbourhood

of S. We use the standard notation LfV to denote the Lie

derivative of a C1 function V along a vector field f on X .

For a function f : Rn → R
m, f−1(0) = {x : f(x) = 0}

denotes the zero level set of f . Finally, we denote by A⊗B
the Kronecker product of two matrices A and B.

II. PREVIOUS RESULTS

The work in [6], [7] addresses the cyclic pursuit control

problem where agent i has communication link with agent i+
1. The authors obtain circular formations and show that the

resulting relative equilibria are generalized regular polygons.

The cyclic pursuit law in [6] has been studied in many other

works, such as [8] and [9].

Another important research direction on formation sta-

bilization is found in [10], where the authors investigate

problems of synchronization for systems of particles modeled

as unicycles. Potential functions are defined for various tasks

and used to generate gradient control laws. Among other

things, the authors stabilize the unicycles to a circle. The

results are based on an all-to-all communication assumption.

In [11] the authors extend the results in [10] to address

different communication topologies. First, they provide a

direct extension to the case of undirected time invariant com-

munication topologies. Then they provide dynamic feedbacks

to address the case where the communication topology is

time varying and directed. The ideas used in [10] and [11]

are incorporated in several other works, such as [12], [13].

The results above deal mainly with symmetric formations.

In particular, the formations in [6], [7] are regular polygons.

In [10] the authors show that general formations can be

stabilized using phase potentials that are minimum at desired

phase formations; the control design in [10] focuses on

symmetric formations using specific potentials. In this paper

we present controllers that stabilize arbitrary formations on

the circle. Selecting the formation to be stabilized does not

require extra design; the formation is simply encoded in a

vector parametrizing our feedback controller.

As mentioned earlier, our results in part II solve the

circular formation problem for general static graphs. All our

controllers are time invariant static feedbacks. The informa-

tion required by unicycle i is the relative displacement and

relative heading with respect to neighbouring unicycles, and

its own absolute heading. In [11], the authors allow for time

varying and directed graphs by using dynamic feedbacks

utilizing consensus filters that asymptotically reconstruct the

averaged quantities required by the all-to-all stabilizing con-

trol law. The scheme in [11] requires extra communication,

since particles must exchange relative estimated variables, in

addition to relative displacement and relative heading.

III. CFCP AS A SET STABILIZATION PROBLEM

For i ∈ {1, . . . , n}, define the function ci(xi) as

ci(xi) = (xi
1 − r sinxi

3, x
i
2 + r cosxi

3) (2)

For unicycle i, the point ci(xi) lies at a distance r from

(xi
1, x

i
2), and the vector col(xi

1, x
i
2)−ci(xi) is orthogonal to

the normalized velocity vector (cosxi
3, sinx

i
3) of unicycle i,

see Figure 1. Therefore, the point ci(xi) is the centre of the

circle that the unicycle would follow in the counter-clockwise

direction if its controls were chosen as ui
1 = v and ui

2 = v/r.

Using the functions ci in (2), part (i) of the CFCP can be

(xi
1
, xi

2
)

xi
3

r

ci(xi)

Fig. 1. The centre ci(xi)

stated as the stabilization of the set

Γ1 = {χ : ci+1(xi+1) = ci(xi), i = 1, · · · , n} (3)

with the additional requirements that the linear velocities of

the unicycles be bounded away from zero and that ci(xi(t)),
i = 1, . . . , n, tend to constant values. In the above, and

in what follows, the indices i ∈ {1, . . . , n} are evaluated

modulo n. For instance, n+ 1 is identified with 1.

Remark. The function ci(xi) gives a smooth map R
2 ×

S1 → R
2 × S1, (xi

1, x
i
2, x

i
3) 7→ (ci(xi), xi

3) which is a

diffeomorphism. Using this, instead of the dynamics (1), one

can express the unicycle model as

ċi1 = (ui
1 − rui

2) cosx
i
3

ċi2 = (ui
1 − rui

2) sinx
i
3

ẋi
3 = ui

2.

(4)

We now turn our attention to part (ii) of CFCP. Consider a

formation where unicycle j travels on the circle at distance

d from unicycle i, as shown in Figure 2. This formation

j

i

xi
3
− x

j
3

r

r

d

2 sin−1 d
2r

Fig. 2. Formation on the circle
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constraint can be equivalently expressed as xi
3 − xj

3 =
2 sin−1

(

d
2r

)

mod 2π. In light of this observation, part (ii) of

CFCP can be restated as the stabilization of the configuration

on the circle where the unicycles headings differ by prespec-

ified constant angles, or xi
3(t) = ᾱ(t) + αi mod 2π, i =

1, · · · , n, for some differentiable function ᾱ(t) and desired

angles αi. The angles αi ∈ [0, 2π) determine the ordering

of the unicycles on the circle and their inter-distances. Part

(ii) of CFCP can be restated as the stabilization of the set

Γ2 defined as

Γ2 = {χ : L(x3 − α) = 0 mod 2π} (5)

where α = col(α1, · · · , αn) is the vector of desired angles

specifying the formation. Notice, indeed, that since we

assume that G has a globally reachable node, kerL = span1
and χ(t) ∈ Γ2 if and only if xi

3(t) = ᾱ(t) + αi mod 2π,

i = 1, · · · , n. Using the sets Γ1 in (3) and Γ2 in (5), CFCP

can be restated as follows.

CFCP (equivalent statement). Consider the n-unicycles

in (1). For a given information flow digraph G with a glob-

ally reachable node, and a desired formation specification

expressed by a vector of angles α ∈ Sn, design a distributed

control law which asymptotically stabilizes1 the set

Γ = Γ1 ∩ Γ2

= {χ : L(x3 − α) = 0, ci+1(xi+1) = ci(xi), 1 ≤ i ≤ n},
(6)

where ci(xi) is defined in (2). Additionally, the linear ve-

locities ui
1 and angular velocities ui

2 of the unicycles should

be bounded away from zero on Γ, and the unicycles should

have a common asymptotic centre of rotation, by which it is

meant that for all χ(0) ∈ X there exists c̄ ∈ R
2 such that

c(xi(t)) → c̄ as t → ∞, i = 1, . . . , n.

Note that Γ is closed but not compact since there are no

restrictions on the centres of rotation ci(xi).

IV. PASSIVITY-BASED SET STABILIZATION

In this section we review recent results on the stabilization

of closed sets by means of passivity-based feedback. We

begin with some basic stability definitions concerning a

smooth dynamical system Σ : ẋ = f(x), x ∈ X , and a

closed set Γ ⊂ X .

Definition IV.1 (Set stability and attractivity). The set Γ is

1) stable for Σ if, for all ε > 0, there exists a neighbour-

hood N (Γ) such that φ(R+,N (Γ)) ⊂ Bε(Γ).
2) an attractor for Σ if there exists a neighbourhood N (Γ)

such that, for all x0 ∈ N (Γ), limt→∞ ‖φ(t, x0)‖Γ = 0.

It is a global attractor if it is a attractor with N (Γ) = X .

3) [globally] asymptotically stable for Σ if it is stable and

attractive [globally attractive] for Σ.

All stability notions in Definition IV.1 can be relativized

to a subset of the state space as follows.

Definition IV.2 (Relative set stability and attractivity). Let

O ⊂ X be such that O ∩ Γ 6= ∅. We say that Γ is

1The notion of asymptotic stability of a set is reviewed in Definition IV.1.

stable relative to O for Σ if, for any ε > 0, there exists a

neighbourhood N (Γ) such that φ(R+,N (Γ)∩O) ⊂ Bε(Γ).
Similarly, one modifies all other notions in Definition IV.1

by restricting initial conditions to lie in O.

The next definition presents a notion of boundedness near

a set.

Definition IV.3 (Local uniform boundedness). Σ is locally

uniformly bounded (LUB) near Γ if for each x ∈ Γ there exist

positive scalars λ and m such that φ(R+, Bλ(x)) ⊂ Bm(x).

Now we turn our attention to the control-affine system

ẋ = f(x) +

m
∑

i=1

gi(x)ui := f(x) + g(x)u

y = h(x)

(7)

with state space X ⊂ R
n that is either an open subset of

R
n or a smooth submanifold. We assume that f and gi, i =

1, . . . ,m, are smooth vector fields on X , and h : X → R
m is

a smooth mapping. Suppose that system (7) is passive with

C1 nonnegative storage function V : X → R, i.e., [14],

(∀x ∈ X ) LfV (x) ≤ 0 and LgV (x) = h(x)⊤, (8)

where LgV = [Lg1V · · · LgmV ]. We consider the class of

passivity-based feedbacks defined as follows.

Definition IV.4 (Passivity-based feedback). A smooth func-

tion u = −ϕ(x), where ϕ(x) is such that ϕ(x) = 0 whenever

h(x) = 0, and h(x)⊤ϕ(x) > 0 whenever h(x) 6= 0, is called

a passivity-based feedback (PBF) with respect to the output

h(x).

Now suppose that Γ ⊂ X is a closed set which is positively

invariant for the open-loop system, i.e., such that, for all

x0 ∈ Γ, the solution of the open-loop system ẋ = f(x)
through x0 remains in Γ for all positive times. The results

in [4] answer this question: under what conditions does a

passivity-based feedback with respect to h(x) asymptotically

stabilize the set Γ for the control system (7)? The answer to

this question relies on the following notion of detectability.

Let O denote the maximal open-loop invariant set contained

in h−1(0), that is, the set with the property that if Ô is

any other open-loop invariant set contained in h−1(0), then

Ô ⊂ O.

Definition IV.5 (Γ-detectability). System (7) is locally Γ-

detectable if Γ is asymptotically stable relative to O for

the open-loop system, and Γ-detectable if Γ is globally

asymptotically stable relative to O for the open-loop system.

In [5], the following a procedure was introduced to design

set stabilizing controllers.

Set stabilization procedure: Let Γ be a closed goal set

that is controlled invariant for (7), i.e., there exists a smooth

feedback u⋆(x) such that Γ is a positively invariant set for

the closed-loop system ẋ = f(x) + g(x)u⋆(x).

1. Candidate storage function and feedback transformation.

a) Find a candidate C1 storage function V : X → R
+

such that Γ ⊂ V −1(0) and LfV (x) ≤ 0 for all x ∈ X .
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b) Find, if possible, a locally Lipschitz matrix-valued

function β1(x) : X → R
m×k, for some k ∈

{1, . . . ,m − 1}, such that β1(x) has full rank k and

LgV (x)β1(x) = 01×k for all x ∈ X .

c) Let β2(x) : X → R
m×m−k be any locally Lipschitz

function such that [β1(x) β2(x)] is nonsingular for all

x ∈ X , and define the feedback transformation

u = β1(x)ū+ β2(x)ũ, (9)

where ū ∈ R
k and ũ ∈ R

m−k are new control inputs.

Define an output function h(x) := Lgβ2
V (x)⊤.

2. Γ-detectability enforcement. Find, if possible, a feedback

ū(x) such that Γ is (globally) asymptotically stable rela-

tive to O for the system ẋ = [f(x) + g(x)β1(x)ū(x)]|O,

where O is the maximal subset of h−1(0) invariant under

the vector field f + gβ1ū.

3. Passivity-based stabilization. Pick any PBF ũ(x), and

let u(x) = β1(x)ū(x) + β2(x)ũ(x), where ū(x) is the

feedback chosen in step 2.

Proposition IV.6 (Set stabilizing procedure). The feedback

u(x) designed according to the procedure above has the

following properties:

(a) If Γ is compact, then u(x) asymptotically stabilizes it.

(b) If Γ is closed and unbounded, then u(x) asymptotically

stabilizes it provided that the closed-loop system is LUB

near Γ.

(c) In both cases above, if all trajectories of the closed-loop

system are bounded, and the Γ-detectability property

enforced in step 2 of the procedure is global, then the

stabilization of Γ is global as well.

In the rest of this paper we apply this procedure to solve

CFCP.

V. SOLUTION OF CFCP FOR UNDIRECTED GRAPHS

In this section we use the passivity-based set stabilization

procedure outlined before to solve CFCP when the informa-

tion flow digraph is undirected.

Step 1: Candidate storage function.

Let c(χ) = col(c1(x1), · · · , cn(xn)) ∈ R
2n with ci(xi)

defined in (2). Consider the following candidate storage

function

V (χ) =
1

2
c(χ)⊤L(2) c(χ) (10)

Since L is symmetric, L(2) is positive semidefinite. Also,

since the information digraph has a globally reachable node,

from Lemma I.1 we have that L(2) has 2 eigenvalues at 0
with geometric multiplicity 2, and thus

kerL(2) = Image {col(I2, · · · , I2)} , (11)

from which it follows that V −1(0) is the set where all the

centres of rotation coincide, i.e., V −1(0) = Γ1. Based on

the observation that any feedback of the form (ui
1, u

i
2) =

(ūi(χ), ūi(χ)/r), i = 1, · · · , n, keeps the centres of rotation,

and hence V , constant along solutions of the closed-loop

system, we choose the feedback transformation

ui =

[

ui
1

ui
2

]

= βi
1 ū

i+βi
2 ũ

i =

[

1
1/r

]

ūi+

[

0
1

]

ũi, 1 ≤ i ≤ n.

Setting, for i = 1, . . . , n, ui
1 = ūi, ui

2 = ūi/r+ũi, we obtain

the feedback transformation

u = β1 ū+ β2 ũ, (12)

with β1 = blockdiag{[1 1/r]⊤, · · · , [1 1/r]⊤}, β2 =
blockdiag{[0 1]⊤, · · · , [0 1]⊤}. The above feedback trans-

formation has the property that LgV (χ)β1 = 01×n. More-

over, LfV = 0 because f = 0. Therefore, for any feedback

ū(χ), the system with input ũ and output y = h(χ) :=
Lgβ2

V (χ)⊤ is passive. The output y is given as follows

y = h(χ) = −rR(x3)L(2) c(χ) (13)

where

R(x3) = blockdiag {[ cosx1

3
sinx1

3] , · · · , [ cosx
n

3
sinxn

3 ]}

Step 2: Γ-detectability enforcement.

Lemma V.1. Let ū(χ) be any feedback which is bounded

away from zero component-wise, i.e., for some ε > 0,

infχ ūi(χ) ≥ ε > 0 for i = 1, · · · , n. Then, the maximal

subset of h−1(0) invariant under the vector field f + gβ1ū
is Γ1, i.e., O = Γ1.

Proof: As observed earlier, if ũ = 0 and infχ ū >
ε > 0 component-wise, then each unicycle moves along a

circle of radius r, and so the vector L(2) c, in the output

function (13), is constant. Suppose that, for some solution

χ(t) of the system with ũ = 0, h(χ(t)) ≡ 0. Then, either

L(2) c(χ(t)) = 0 which, because of (11), is only possible

when all the centres coincide, i.e., when χ(t) ∈ Γ1, or,

for some i, the constant vector L(2)c is perpendicular to

the vector [0 0 · · · cosxi
3(t) sinxi

3(t) · · · 0 0]⊤, for

i = 1, · · · , n and t ∈ R, implying that xi
3(t) is constant.

However, by assumption the unicycles move along n circles

with nonzero linear velocity vectors, and therefore the angle

xi
3(t) is not constant.

As mentioned earlier, the functions ci(xi) in (2) remain con-

stant along the solutions of (1) with feedback transformation

(12) and ũ = 0. When ũ = 0, the restriction of the vector

field f + gβ1ū to O = Γ1 is

ẋi
1 = ūi cosxi

3, ẋi
2 = ūi sinxi

3, ẋi
3 =

1

r
ūi (14)

Using the model (4), the dynamics above takes the form

ċi1 = 0, ċi2 = 0, ẋi
3 =

1

r
ūi (15)

i.e., the dynamics of the unicycles are entirely described by

those of their angular velocities ẋi
3. Under the assumption of

Lemma V.1, the goal set Γ can be expressed as

Γ = {χ ∈ O : L(x3 − α) = 0}, (16)

so we need to design ū to stabilize the set {x3 : L(x3−α) =
0}. In designing the stabilizer, we must take into account
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the fact that xi
3 ∈ S1, so the stabilization must be performed

modulo 2π. To fulfill the assumption of Lemma V.1, we

also need ūi to be bounded away from zero. There are many

ways to obtain these objectives. We base our design on the

following candidate Lyapunov function

W (x3) =
n
∑

i=1

[1− cos(Li(x3 − α))] (17)

where Li is the i-th row of the Laplacian L. Note that W ≥ 0
and W = 0 if and only if Li(x3 − α) = 0 mod 2π, for

i = 1, · · · , n. Thus W−1(0) is precisely the set we wish to

stabilize. The derivative of W along (14) is

Ẇ =

n
∑

i=1

sin(Li(x3 − α))Li ū/r =
1

r
S(x3)

⊤L ū, (18)

where

S(x3) =







sin(L1(x3 − α))
...

sin(Ln(x3 − α))






.

Lemma V.2. The feedback

ūi = v − v1 sin(L
i(x3 − α)), i = 1, . . . , n, (19)

where and v > v1 > 0 are design constants, is bounded

away from zero component-wise and makes the set Γ asymp-

totically stable relative to Γ1 for system (1) after feedback

transformation (12) and ũ = 0, thus enforcing local Γ-

detectability of the system with input ũ and output y = h(χ)
in (13).

Proof: By Lemma V.1, the maximal subset of h−1(0)
invariant under the vector field f+gβ1ū is O = Γ1. Referring

to the system restriction on O in (15), to prove the Lemma

it suffices to show that the set W−1(0) is asymptotically

stable for the system ẋi
3 = ūi/r, i = 1, · · · , n, with ūi given

in (19). By substituting the control (19) into the derivative

(18) we get Ẇ = −v1S(x3)
⊤LS(x3). The matrix L is

positive semidefinite with one eigenvalue at zero and so W
is nonincreasing along solutions, proving that W−1(0) is

stable. As for its attractivity, since (x1
3, . . . , x

n
3 ) ∈ Sn is com-

pact, we can apply the LaSalle invariance principle and con-

clude that, for all initial conditions, S(x1
3(t), . . . , x

n
3 (t)) →

kerL = span1. Therefore, there exists a C1 real-valued

function s(t) such that sin(Li(x3 − α)) → s(t) for all

i. Let Ω = {x3 : W (x3) < 1 − min{cos(2π/n), 0}}.
The set Ω is positively invariant. Moreover, since for each

x3 ∈ Ω and each i ∈ {1, . . . , n}, 1 − cos(Li(x3 − α)) ≤
W (x3) < 1−min

{

cos 2π
n
, 0
}

, we have cos(Li(x3 −α)) >
min{cos(2π/n), 0}, so that

|Li(x3 − α)| < min{2π/n, π/2} modulo 2π. (20)

Now let x3(0) be an arbitrary initial condition in Ω.

Since for all i ∈ {1, . . . , n}, |Li(x3 − α)| < π/2
we can invert the sin function and deduce that (∀i ∈
{1, . . . , n}) Li(x3 − α) → arcsin s(t) mod 2π, or L(x3 −
α) → 1 arcsin s(t) mod 2π. Since kerL = kerL⊤ =
span1, we have 1

⊤L(x3 − α) = 0, and therefore it must

be that 1⊤
1 arcsin s(t) = 0 mod 2π, or n arcsin s(t) = 0

mod 2π. In other words, arcsin s(t) ∈ {2πk/n+2πl, k, l ∈
N}. But since |Li(x3 − α)| < min{2π/n, π/2} mod 2π, it

must be that arcsin s(t) = 0 mod 2π, proving that W−1(0)
is attractive, and hence asymptotically stable.

Step 3: Passivity-based stabilization.

We are now ready to solve CFCP in the case of undirected

information flow graph.

Proposition V.3 (Solution of CFCP for undirected informa-

tion flow graph). Assume that the information flow graph

is undirected and has a globally reachable node. For any

v > v1 > 0, there exists K⋆ > 0 such that for all

K ∈ (0,K⋆) the feedback

ui
1 = v − v1 sin(L

i(x3 − α))

ui
2 =

ui
1

r
−Khi(χ), i = 1, · · · , n

(21)

where h(χ) is given in (13), solves CFCP and renders the

goal set Γ in (6) asymptotically stable, and Γ1 in (3) globally

asymptotically stable for the closed-loop system.

The proof is omitted due to space limitations.

Remark. Note that unicycle i needs to compute

hi(χ) = [0 0 · · · − r cosxi
3 − r sinxi

3 · · · 0 0]L(2)c(χ)

and Li(x3 − α). In order to perform this computation,

the unicycle needs to sense its relative displacement and

orientation with respect to its neighbours in the information

flow graph, as well as its absolute orientation xi
3. Therefore,

feedback (21) is a distributed control law respecting the

information flow graph.

Simulations

We consider 6 unicycles exchanging information in a

cyclic manner: unicycle i exchanges information with unicy-

cles i+ 1 and i− 1. The Laplacian of the information flow

digraph is

L =

















2 − 1 0 0 0 − 1
− 1 2 − 1 0 0 0
0 − 1 2 − 1 0 0
0 0 − 1 2 − 1 0
0 0 0 − 1 2 − 1
− 1 0 0 0 − 1 2

















.

We present simulation results for the following two forma-

tions.

A. The unicycles converge to a circular formation

whereby they are uniformly distributed on the circle

in a counter-clockwise cyclic order {1, 2, 3, 4, 5, 6}. To

achieve this formation the vector α is set as: α =
[

0 2π
6

4π
6

6π
6

8π
6

10π
6

]⊤
.

B. The unicycles converge to a circular formation

whereby they are uniformly distributed on half of the

circle in a counter-clockwise cyclic order {1, 2, 3, 4, 5, 6}.

To achieve this formation the vector α is set as: α =
[

0 2π
10

4π
10

6π
10

8π
10

10π
10

]⊤
.
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Figures 3 and 4 show the simulations results for cases A

and B using feedback (21) with the following parameters:

r = 1, v = 1, v1 = 0.9, and K = 1. Empirically, we

observed that by either increasing or decreasing K beyond

1 the convergence of the centres of rotation degrades.
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Fig. 3. CFCP Simulation - A
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Fig. 4. CFCP Simulation - B

Global solution of CFCP

The passivity-based design in Section V took into account

the fact that xi
3 ∈ S1 and so the stabilization was performed

modulo 2π. This was accomplished by using the function W
in (17), which is 2π-periodic with respect to xi

3, i = 1, . . . , n.

Moreover, the centres ci(xi), upon which the output (13)

depends, are 2π-periodic with respect to xj
3, j = 1, . . . , n.

Motivated by the fact that several results in literature, includ-

ing the work in [6], do not account for the fact that x3 ∈ S1,

in this section we present a variation of the controller solving

CFCP in Proposition V.3 which assumes that x3
i ∈ R, rather

than S1, but globally asymptotically stabilizes the goal set

Γ, hence solving CFCP globally.

Proposition V.4 (Global solution of CFCP for undirected

information flow graph). Assume that the information flow

graph is undirected and has a globally reachable node. Let

v > 0, and let2 ϕ : Rn → R
n be defined as ϕ(y) = φ(y)y,

where φ : Rn → (0,+∞) is a locally Lipschitz map such

that sup
Rn ‖ϕ‖ < v. Then, there exists K⋆ > 0 such that,

for all K ∈ (0,K⋆), the feedback

ui
1 = v − ϕi(L(x3 − α))

ui
2 =

ui
1

r
−Khi(χ), i = 1, · · · , n,

(22)

where h(χ) is defined in (13) and ϕi denotes the i-th
component of ϕ, globally asymptotically stabilizes Γ in (6)

and solves CFCP globally when the state space is taken to

be X = R
3n.

To prove this result one cannot use the same method as

that of Proposition V.3 because xi
3(t) is no longer a solution

on the compact set S1.

REFERENCES

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and

Applications. Springer-Verlag, 2002.
[2] Z. Lin, M. Maggiore, and B. A. Francis, “Necessary and sufficient

graphical conditons for formation control of unicycles,” IEEE Trans-

actions on Automatic Control, vol. 20, no. 1, pp. 121–127, 2005.
[3] R. Bhatia, Matrix Analysis. Springer-Verlag, 1996.
[4] M. I. El-Hawwary and M. Maggiore, “Reduction principles and the

stabilization of closed sets for passive systems,” IEEE Transactions

on Automatic Control, vol. 55, no. 4, pp. 982–987, 2010.
[5] M. I. El-Hawwary and M. Maggiore, “Case studies on passivity-based

stabilisation of closed sets,” International Journal of Control, 2011.
[6] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of

vehicles in cyclic pursuit,” IEEE Transactions on Automatic Control,
vol. 49, pp. 1963–1974, 2004.

[7] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Pursuit formations
of unicycles,” Automatica, vol. 42, no. 1, pp. 3–12, 2006.

[8] A. Sinha and D. Ghose, “Generalization of nonlinear cyclic pursuit,”
Automatica, vol. 43, no. 11, pp. 1954–1960, 2007.

[9] M. Pavone and E. Frazzoli, “Decentralized policies for geometric
pattern formation and path coverage,” Journal of Dynamic Systems,

measurement and control, vol. 129, no. 5, pp. 633–643, 2007.
[10] R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar

collective motion: All-to-all communication,” IEEE Transactions on

Automatic Control, vol. 52, no. 5, pp. 1–14, 2007.
[11] R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar

collective motion with limited communication,” IEEE Transactions on

Automatic Control, vol. 53, no. 3, pp. 706–719, 2008.
[12] D. A. Paley and C. Peterson, “Stabilization of collective motion in a

time-invariant flowfield,” Journal of Guidance, Control, and Dynamics,
vol. 32, no. 3, pp. 771–779, 2009.

[13] D. A. Paley, N. E. Leonard, and R. Sepulchre, “Stabilization of
symmetric formations to motion around convex loops,” Systems and

Control Letters, vol. 57, no. 3, pp. 209–215, 2008.
[14] D. Hill and P. Moylan, “The stability of nonlinear dissipative systems,”

IEEE Transactions on Automatic Control, vol. 21, pp. 708–711, 1976.
[15] C. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback equiv-

alence, and the global stabilization of nonlinear systems,” IEEE

Transactions on Automatic Control, vol. 36, pp. 1228–1240, 1991.
[16] A. S. Shiriaev, “The notion of V -detectability and stabilization of

invariant sets of nonlinear systems,” Systems and Control Letters,
vol. 39, pp. 327–338, 2000.

2One possible choice of function ϕ is ϕ(y) = v1 min{1, 1/‖y‖}y, with
0 < v1 < v.

5057


