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Abstract— In this paper, I discuss the concept of control by
relaxed input. The method allows for the transformation of a
non-affine nonlinear system into an affine one. As a result,
various control design methodologies for affine systems can
directly be applied. The implementation aspect of relaxed input
is also discussed.
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I. INTRODUCTION

Geometric control theory has laid a strong foundation in

the study of nonlinear systems analysis and control. The

books [3] and [6] describe the extension of various systems

theoretic properties of linear systems to nonlinear systems

employing tools from differential geometry. Although it

is limited to affine nonlinear systems, geometric control

theory has been able to generalize various notions from

linear systems, such as, controllability, observability, state

decomposition, input-output decoupling and minimum-phase

systems.

For example, local decomposition results for affine non-

linear systems show the existence of state transformation

that leads to decomposition of the state equations into

controllable and non-controllable parts, observable and non-

observable parts [3]. In [6], a state-feedback control law can

be designed which can transform an affine nonlinear system

to a linear one.

In this paper, I discuss the concept of control by relaxed

input in order to extend the aforementioned results to non-

affine nonlinear systems. I extend the result in [4] by dis-

cussing the concept of feedback control via relaxed input, by

studying the local decomposition problem and by discussing

the implementation aspect of feedback control via relaxed

input.

Warga in [10] introduced the concept of relaxed con-

trol, where the ordinary input functions are replaced by

measure-valued input functions, for relaxing the optimal

control problems. Gamkrelidze in [2] discussed a relevant

methodology of generalized control. The relaxed control

method has been extended subsequently by Artstein in [1] for

solving stabilization problem of general nonlinear systems.

Necessary and sufficient condition for the nonlinear systems

to be stabilizable by relaxed control are given in [1] in

the form of a control Lyapunov-type condition. Application

of relaxed control to optimal control problem has been

discussed in [5].
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Suppose that the nonlinear systems are described by the

state equation:

ẋ(t) = f(x(t), u(t)), (1)

where x(t) ∈ R
n and u(t) ∈ R. The relaxed control method

[1], [10] assumes the input u as a finite positive Radon

measure valued function µ with U as its support, where (1)

becomes

ẋ(t) =

∫

w∈R

f(x(t), w) dµ(w).

In practice, the relaxed control signal resembles the princi-

ple of control by pulse-width modulation (PWM) [8]. Dither

control introduced by Zames and Shneydor in [12], [11], is

also based on a similar concept. In [12], [11], the sector

condition for the static nonlinearity is relaxed by using an

additional dither signal in the control signal.

In Section II, I discuss the concept of relaxed systems

with the corresponding relaxed input. In Section III, I discuss

an application of relaxed input to solve local decomposition

problem for non-affine nonlinear systems. Finally, in Section

IV, I discuss the implementation aspect of relaxed input using

ordinary input.

II. RELAXED SYSTEMS

Throughout this paper, I consider nonlinear systems de-

scribed by

ẋ(t) = f(x(t), u(t)),
y(t) = h(x(t)),

(2)

where x(t) ∈ X ⊂ R
n, u(t) ∈ U ⊂ R

m and y(t) ∈ Y ⊂ R
p.

The functions f and h are assumed to be locally Lipschitz. I

also assume that the origin is an element in both U and X .

Let rpm(U) be the set of all Radon probability measure

defined on U . For a compact metric space V ⊂ R
q , the space

Rf (V, rpm(U)) is the space of all functions µ : v ∈ V 7→
µ(v) ∈ rpm(U) such that the function

fR : (x, v) ∈ X × V 7→

∫

U

f(x, τ)
(

µ(v)
)

(dτ) (3)

is locally Lipschitz on X × V . The subscript f in Rf

describes its dependence on the vector field f .

Lemma 2.1: The space Rf (V, rpm(U)) is non-empty.

Proof: Firstly, let us assume that m = q, i.e., the

dimension of U and V is equal. In this case, we can define
(

µ(v)
)

(E) =
∫

E
δ0(τ)dτ for all v ∈ V and for all E ⊂ U .

Using µ, simple computation shows that the function
∫

τ∈U

f(x, τ) d
(

µ(v)
)

(τ) = f(x, 0),
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where f is locally Lipschitz by assumption.

For the case m 6= q, we can use similar argument as above

either by projecting or extending the space of Rq onto R
m.

Remark 2.2: Note that when V ⊂ U , by defining
(

µ(v)
)

(E) =
∫

E
δv(τ)dτ for all v ∈ V and for all E ⊂ U ,

a routine computation shows that
∫

U

f(x, τ)
(

µ(v)
)

(dτ) = f(x, v), (4)

for all v ∈ V , where f is locally Lipschitz by assumption.

♦

For a given vector field f , a sequence (uj) : [0, t] → U is

said to be converging to ν : [0, t] → rpm(U) if

lim
j

∫ t

0

f(x(λ), uj(λ))dλ =

∫ t

0

∫

U

f(x(λ), τ)
(

ν(λ)
)

(dτ)dλ,

(5)

for every continuous function x ∈ C([0, t], X) [10].

Using Rf (V, rpm(U)), the ordinary input u in (2) can

be replaced by µ ∈ Rf (V, rpm(U)) such that the relaxed

system is given by

ẋ(t) =

∫

U

f(x(t), τ)
(

µ(v(t))
)

(dτ) =: fR(x(t), v(t)),

x(0) = x0, (6)

where v(t) ∈ V . The signal v becomes the new input

variable in the RHS of (6). The system with the relaxed

input µ ∈ Rf (V, rpm(U)) as given in (6) is called relaxed

system. The function fR is locally Lipschitz by the definition

of Rf (V, rpm(U)).
The solution x of (2) using the relaxed input µ(v) where

µ ∈ Rf (V, rpm(U)) and v ∈ L1(V ) is the Carathéodory so-

lution x of the relaxed system (6). The following proposition

is due to Warga [10] which describes the approximation of

the solution to the relaxed systems.

Lemma 2.3: Assume that X is open. Then, for every µ ∈
Rf (V, rpm(U)) and v ∈ L1(V ) such that the solution x̄ of

(6) is defined for all t ≥ 0, and for every sequence of input

signal (uj) defined on U that converges to µ(v), there exists

j0 ∈ N and a sequence (xj)j≥j0 defined in X such that

(xj , uj) is the solution of (2) and

lim
j
xj = x̄.

Proof: The proof follows immediately from Lemma

VI.1.4 in [10] by taking there ψW = Id, T = [0, t], y =
x, σ = µ(v) and by the fact that f is a locally Lipschitz

function.

The original nonlinear system equation with ordinary input

in (1) can be derived back from (6) by taking V = U and
(

µ(v)
)

(E) =
∫

E δv(τ)dτ for all v ∈ V and E ⊂ U .

Lemma 2.4: Let k : X → V be a locally Lipschitz func-

tion, then the composition of µ◦k with µ ∈ Rf (V, rpm(U))
belongs to Rf (X, rpm(U)).

The proof of the lemma follows from the fact that the

composition of two locally Lipschitz functions is also a

locally Lipschitz function.

The lemma shows that state-feedback can be applied to

the relaxed input and the stability of the closed-loop system

can be analyzed via the relaxed system equation

ẋ = fR(x, k(x)),

where fR is locally Lipschitz according to Lemma 2.4.

Note that the behavior of the original system with static

state-feedback law k can be obtained using the relaxed-input

by taking V = U and using µ as constructed in Remark 2.2.

Indeed, using (4) and using v = k(x), we get

ẋ = f(x, k(x)).

When we use dynamic state-feedback to the ordinary input,

the similar remark also holds.

A similar observation is applicable when a state feedback

law with an exogenous signal is used. For example, let k :
X×W → V be locally Lipschitz function with W ⊂ R

w be

the space of an exogenous signal w(t) ∈ W . Then, for every

µ ∈ Rf (V, rpm(U)), we have µ◦k ∈ Rf (X×W, rpm(U)).
The result in [1] describes the stabilization of (1)

by designing state-feedback relaxed control µ ◦ k ∈
Rf (X, rpm(U)) such that the resulting differential equation

ẋ = fR(x, k(x))

is (locally) asymptotically stable in the origin. The following

theorem is the main result of [1].

Theorem 2.5: The system (1) with locally Lipschitz f
is locally asymptotically stabilizable by a state-feedback

relaxed control if and only if there is a continuously differ-

entiable function V : X → R+ where X is a neighborhood

of 0 such that V is positive definite and

inf
u∈Rm

grad V (x)f(x, u) < 0 ∀x ∈ X\{0}.

It is globally asymptotically stabilizable by a state-feedback

relaxed control if and only if X = R
n and V is radially

unbounded.

The above theorem provides flexibility in designing a

smooth state-feedback relaxed control for solving controller

design for nonlinear systems which can only be stabilized

by non-smooth state-feedback control.

III. DECOMPOSITION PROBLEM

For an affine nonlinear system, the relaxed input µ ∈
Rf (V, rpm(U)) does not yield an advantage over the stan-

dard control input. Indeed, let an affine nonlinear system be

described by (2) with

f(x, u) = f1(x) + f2(x)u,

where f1 and f2 are locally Lipschitz function. For every

µ ∈ Rf (V, rpm(U)), the computation of (6) yields

ẋ(t) = f1(x(t)) + f2(x(t))

∫

τ∈U

τ d
(

µ(v(t))
)

(τ).

3229



It is evident from the above equation that the resulting

relaxed system is also an affine nonlinear system with the

same f1 and f2.

On the other hand, for non-affine nonlinear systems,

relaxed input can be designed such that the resulting fR
has a number of useful control properties. For instance, it

is possible to transform a non-affine nonlinear system to an

affine one.

Proposition 3.1: Consider a non-affine nonlinear system

described by (2) withm = 1. Let V = [v1, v2] where v1 < v2
are constants. Then there exists µ ∈ Rf (V, rpm(U)) such

that the relaxed system in (6) is an affine nonlinear system.

Proof: For the given v1, v2 ∈ R, let the functions f1, f2
be defined by

f1(x) =
f(x, v1)v2 − f(x, v2)v1

v2 − v1
,

and

f2(x) =
f(x, v2)− f(x, v1)

v2 − v1
.

For every v ∈ V , define
(

µ(v)
)

(E) by

(

µ(v)
)

(E) =

∫

E

v − v1
v2 − v1

δv2(τ) +
v2 − v

v2 − v1
δv1(τ)dτ

∀E ⊂ U.

Using the above µ, it can be shown that

ẋ(t) =

∫

τ∈U

f(x(t), τ) d
(

µ(v(t))
)

(τ)

=
v(t) − v1
v2 − v1

f(x(t), v2) +
v2 − v(t)

v2 − v1
f(x(t), v1)

= f1(x(t)) + f2(x(t))v(t),

where f1 and f2 are locally Lipschitz functions and v(t) ∈
V . This proves the claim.

An extended system to the nonlinear system (2) has also

been considered in the literature for constructing an affine

system from a non-affine one, by taking the input as the

extended state and its time derivative is assigned as the new

affine input (see, for example, [6, Chapter 6]). However,

designing a stabilizing state-feedback controller for such an

extended system can be restrictive. For example, we cannot

design a controller for the extended system if the original

system can only stabilized by discontinuous state-feedback

law.

The following corollaries are consequences of Proposition

3.1.

Corollary 3.2: Consider a non-affine nonlinear system

described by (2) with m = 1. Suppose that there exists

v1, v2 ∈ R such that v1 < 0, v2 > 0 and the system

ẋ = f1(x)

where

f1(x) =
f(x, v1)v2 − f(x, v2)v1

v2 − v1
,

is locally asymptotically stable (at the origin), then using the

relaxed input

µ(E) =

∫

E

−v1
v2 − v1

δv2(τ) +
v2

v2 − v1
δv1(τ)dτ,

the corresponding relaxed system is locally asymptotically

stable.

Corollary 3.3: Consider a non-affine nonlinear system

described by (2) with m = 1. Suppose that there exists

v1, v2 ∈ R such that v1 < 0, v2 > 0 and the system

ẋ = f1(x) + f2(x)v (7)

where

f1(x) =
f(x, v1)v2 − f(x, v2)v1

v2 − v1
,

f2(x) =
f(x, v2)− f(x, v1)

v2 − v1
.

is locally controllable (i.e., its linearization at the origin is

controllable), then using the relaxed input µ ◦ Kx where

K ∈ R
1×n is the locally stabilizing state-feedback gain of

(7) and

(

µ(v)
)

(E) =

∫

E

v − v1
v2 − v1

δv2(τ) +
v2 − v

v2 − v1
δv1(τ)dτ

∀v ∈ V, ∀E ⊂ U,

the corresponding relaxed system is locally exponentially

stable.

Example 3.4: Consider the system








ẋ1
ẋ2
ẋ3
ẋ4









=









x1u+ x1x3u
2 + x2e

x2

u+ x3
x4 − x2x3u

4

x3u+ sin(πu/2)(x23 + x2x4 − x22x3)









. (8)

Note that this system is a modified form of [3, Example 8.2].

By taking v1 = −1 and v2 = 1, and using the construction

as in the proof of Proposition 3.1, we can obtain an affine

nonlinear system given by

ẋ = f1(x) + f2(x)v (9)

where v ∈ (−1, 1),

f1(x) =
f(x, v1)v2 − f(x, v2)v1

v2 − v1

=









x1x3 + x2e
x2

x3
x4 − x2x3

x23 + x2x4 − x22x3









and

f2(x) =
f(x, v2)− f(x, v1)

v2 − v1

=









x1
1
0
x3









.
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♦
The transformation of non-affine form into an affine one

by relaxed input allows us to extend the result from the

geometric control theory. Recall the following result from

Isidori [3, Proposition 7.1].

Proposition 3.5: Consider an affine nonlinear systems

given by

ẋ = f(x) +

m
∑

i=1

gi(x)ui. (10)

Assume that there exists a nonsingular involutive distribution

∆ (with dimension d) such that it is invariant under the vector

fields f, gi, i = 1, . . .m. If the distribution span{g1, . . . gm}
is contained in ∆, then for every x0 there exists a neigh-

borhood X and a local coordinates transformation z = Φ(x)
defined on X such that







ż1
...

żd






= f1(z) +

m
∑

i=1

g̃i(z)ui (11)







żd+1

...

żn






= f2(zd+1, . . . , zn). (12)

Using this proposition and Proposition 3.1, it is possible

to transform non-affine systems into affine systems that can

locally be decomposed into controllable and non-controllable

parts.

Corollary 3.6: Assume that there exists a relaxed input

µ ∈ Rf (V, rpm(U)) such that the non-affine nonlinear

system (2) can be transformed into an affine form (10)

that admits a nonsingular involutive distribution ∆ as in

Proposition 3.5. Then (2) can be locally decomposed using

the relaxed input µ.

Example 3.7: Consider again Example 3.4. It has been

shown in Example 3.4 that the implementation of relaxed

input allows us to transform a non-affine nonlinear system

(8) into an affine nonlinear system (9). The functions f1
and f2 are the same the functions f and g as in [3, Example

8.2]. Following the same construction as in [3, Example 8.2],

using z1 = x1, z2 = x2, z3 = x3 and z4 = x4 − x2x3, we

can decompose (9) into

ż =









z1z3 + z2e
z2

z3
z4
0









+









z1
1
0
0









v.

♦

Remark 3.8: Proposition 3.5 describes the local decom-

position of affine nonlinear systems into controllable and

non-controllable components. It has been used to address the

reachability concept for affine systems, see for example, [3,

Theorem 8.13]. Therefore, similar to the Corollary 3.6, we

can also obtain a weaker notion of reachability for non-affine

systems by using relaxed input, e.g., reachable via relaxed

input. ♦

We conclude the section by noting that the possibility

of transforming non-affine nonlinear systems to affine ones,

has allowed the extension of various control theoretic results

from geometric control theory which have been derived for

affine nonlinear systems.

IV. IMPLEMENTATION OF THE RELAXED INPUT

In practice, the relaxed input µ must be implemented

using the ordinary input u of (2). Here, I will discuss the

approximation of the relaxed input µ for the case m = 1
and U = [a, b] where a, b ∈ R.

Suppose that we have a relaxed input µ ∈ Rf (V, rpm(U))
with U = [a, b] and let v ∈ C(R+, V ). The approximation

is based on the discrete-time sampling of µ(v) which is then

projected to the continuous-time approximating input uj .

Roughly speaking, if the sequence of time sample is given by

(tk), the approximating input uj is obtained by concatenating

sequences of (uj,k) where each uj,k : [tk, tk+1) → U is

defined such that the time proportion of uj,k spent on any

subset A ⊂ U is equal to µ(v(tk))(A). Before I discuss

the sequence of approximating input (uj) which converges

to µ(v) on every compact set [0, t], I describe first the

construction of uj,k.

Let ∆ > 0 be the sampling period, i.e., ∆ = tk+1− tk for

all k, and for simplicity of notation in the later description

of approximating input sequence, I also denote j := 1/∆.

Let us construct uj,k : [tk, tk+1) → U , which is based

on µ(v(tk)), as follows. Define γk := w ∈ [a, b] 7→
(

µ(v(tk))
)

([a, w]) which is a non-decreasing function. Let

Γk ⊂ [0, 1] be defined by Γk := {γk(w) | w ∈ [a, b]} which

can be a union of disjoint sets due to Dirac measures in

µ(v(tk)). Let N denote the number of Dirac measures in

µ(v(tk)).
For every ν ∈ [0, 1], let

η(ν) := min{ξ ∈ Γk | ξ − ν ≥ 0}. (13)

In other words, η(ν) is the closest point in Γk to ν from

above and η(ξ) = ξ for all ξ ∈ Γk. Let γ−1
k := ξ ∈ Γk 7→

min{w ∈ [a, b] | γk(w) = ξ}. Using these functions, we can

define uj,k(tk + ξ) = γ−1
k ◦ η(ξ/∆) for all ξ ∈ (0,∆]. The

signal uj,k is non-decreasing.

For every A ⊂ [a, b] and by defining Tj,k(A) := {t ∈
[tk, tk+1] | uj,k(t) ∈ A}, we have that

µj,k(A) :=

∫

Tj,k(A) dτ

∆
= µ(v(tk))(A). (14)

Based on the above construction, the concatenation of uj,k
gives the approximating input sequence (uj) which con-

verges to µ(v) as ∆ → 0. More precisely, the approximating

uj is given by

uj(t) =



















uj,1(t) 0 < t ≤ ∆
uj,2(t) ∆ < t ≤ 2∆
...

...

uj,k(t) (k − 1)∆ < t ≤ k∆,

(15)
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where k ∈ N. Moreover, (14) holds for every k where tk =
(k − 1)∆ (or, equivalently, tk = (k − 1)/j).

In the following, I will show that the approximating input

(uj) converges to µ(v) as ∆ → 0 (or as j → ∞).

Let uj be the sequence of the approximating input as

constructed above with ∆ = 1/j. For simplicity, let t ∈ N

and x ∈ C([0, t], X), in which case,

∫ t

0

f(x(λ), uj(λ))dλ

=

jt
∑

k=1

∫

[(k−1)/j,k/j]

f(x(λ), uj,k(λ))dλ.

For a sufficiently large j (or, equivalently, small ∆), x can be

approximated by a piecewise-constant signal on each interval

[(k − 1)/j, k/j] and we obtain

∫ t

0

f(x(λ), uj(λ))dλ

=

jt
∑

k=1

∫

[(k−1)/j,k/j]

f(x((k − 1)/j), uj,k(λ))dλ

=

jt
∑

k=1

∆

∫

U

f(x((k − 1)/j), τ)µj,k(dτ)

=

jt
∑

k=1

1

j

∫

U

f(x((k − 1)/j), τ)µ(v((k − 1)/j))(dτ).

By taking the limit j → ∞, we get

lim
j

∫ t

0

f(x(λ), uj(λ))dλ

= lim
j

jt
∑

k=1

1

j

∫

U

f(x((k − 1)/j), τ)µ(v((k − 1)/j))(dτ)

=

∫ t

0

∫

U

f(x(λ), τ)µ(v(λ))(dτ)dλ,

which shows that (5) holds and Lemma 2.3 can be used to

conclude the approximation to the solution of the relaxed

systems (6).

Example 4.1: Let U = [−10, 10] and consider µ(v(t))
which is given by

(

µ(v(t))
)

(E) =

∫

E

v(t)δ−5(E) + (1− v(t))δ5(E)

∀E ⊂ [−10, 10], v(t) ∈ [0, 1].

Following the construction of uj,k as before, we first

compute γk which is given by

γk(w) =







0 w ∈ [−10,−5)
v(tk) w ∈ [−5, 5)
1 w ∈ [5, 10].

The set Γk = {0, v(tk), 1} and it is straightforward to check

that

uj,k(tk + ξ) =

{

−5 0 ≤ ξ < v(tk)/j
5 v(tk)/j ≤ ξ < 1/j.

♦

It is worth to note that the implementation of relaxed input

in the Example 4.1 has been used widely for implementing

control signal using pulse width modulation signal where the

width of the pulse is modified according to v. The following

examples describe the approximation of relaxed input which

are given by a uniform probability measure valued function

and by a conditional Gaussian probability measure valued

function.

Example 4.2: Let U = [a, b]. Let µ(v) be a uniform

probability measure valued function defined on U and be

given by

(

µ(v(t))
)

(E) =

∣

∣E ∩ [v(t), b]
∣

∣

b− v(t)
∀E ⊂ [a, b],

where | · | is the Lebesgue measure. In this case, v(t) ∈ [a, b]
defines the lower interval of the uniform probability measure

valued function.

Using the same construction of uj,k as before,

γk(w) =

{

0 w ∈ [a, v(tk))
w−v(tk)
b−v(tk)

w ∈ [v(tk), b].

The set Γk = [0, 1] and uj,k is given by

uj,k(tk + ξ) = v(tk) + jξ(b − v(tk)) ∀ξ ∈ [0, 1/j).

♦

Example 4.3: Let U = [a, b] and µ(v) be a conditional

Gaussian probability measure valued function on [a, b]. Sup-

pose that for every E ⊂ [a, b], (µ(v))(E) is defined by

µ(v(t))(E) =

∫

E e
− (x−v(t))2

2 dx
∫

[a,b] e
− (x−v(t))2

2 dx
.

Using the same construction of uj,k as before,

γk(w) =
erf

(

w−v(tk)√
2

)

− erf
(

a−v(tk)√
2

)

erf
(

b−v(tk)√
2

)

− erf
(

a−v(tk)√
2

) ,

where erf is the Gauss error function. The set Γk = [0, 1]
and the function γk is invertible. Thus, uj,k is given by

uj,k(tk + ξ) = γ−1
k (jξ) ∀ξ ∈ [0, 1/j).

♦

Remark 4.4: In some cases, it may be desirable that the

approximating u (i.e., the concatenation of u∆,t) is a con-

tinuous signal. For example, if there are design requirements

that restrict high frequency noises due to an implementation

of discontinuous signals. As a result, the approximating u
using the concatenation of u∆,t as in (15) can be undesirable

since it gives result to discontinuous signal u. However,

if γ is continuous for every v(t) then we can design an

approximating u which is continuous. For example, such an
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approximating input is given by

uj(t) =







































uj,1(t) t ∈ (0, 1]∆
uj,2(2∆− t) t ∈ (1, 2]∆
...

...

uj,k(t) t ∈ (k, k + 1]∆
uj,(k+1)((k + 2)∆− t) t ∈ (k + 1, k + 2]∆
...

...
(16)

♦
Example 4.5: Let us consider a nonlinear system de-

scribed by

ẋ1 = sin(u)
ẋ2 = cos(u),

}

(17)

where x1(t), x2(t), u(t) ∈ R. Consider the following relaxed

input µ(v) with v = [ v1v2 ]

µ(v)(E) =

∫

E

v1χ[0,π](τ)

+(0.5− v1)χ[π,3π/2]∪[−π/2,0](τ)

+v2χ[−π/2,π/2](τ) + (0.5− v2)χ[π/2,3π/2](τ)dτ (18)

for all E ⊂ R where χ[a,b] denotes the indicator function on

the interval [a, b] and v1, v2 ∈ [0, 0.5]. Note that the relaxed

input µ defined above is constructed based on a uniform

probability measure. Using µ, the relaxed system of (17) is

given by

ẋ1 = 4v1 − 1
ẋ2 = 4v2 − 1.

}

(19)

By setting v1 = 0.25 − 0.25sat(x1) and v2 = 0.25 −
0.25sat(x2), the closed-loop relaxed system is given by

ẋ1 = −sat(x1)
ẋ2 = −sat(x2),

}

(20)

which is globally asymptotically stable. Figure 1 shows the

implementation of the relaxed input µ(v) by an ordinary

input u as constructed before with different ∆. △
Remark 4.6: The implementation of the relaxed input

using an approximating input uj by concatenating {uj,k}
as given in (15) or (16) uses a fixed sampling time ∆ =
1/j. However, by construction, each uj,k is designed to

approximate the relaxed input at any sampled time tk with

the corresponding inter-sampling time to the next sampled

time tk+1. The inter-sampling time tk+1 − tk =: ∆j,k

does not have to be a fixed constant as long as it satisfies

limj ∆j,k = 0. Thus, we can use different ∆j,k that may

depend on the design requirement such as computational

complexity, hardware bandwidth, communication constraint

and stability. ♦

V. CONCLUSIONS

In this paper, I discuss the control design by relaxed input.

It enables the transformation of non-affine nonlinear systems

into another form that is amenable to stability analysis and

controller design.
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Fig. 1. (a). The plot of x1(t) of (17) using state-feedback relaxed control
where the relaxed input is a uniform probability measure valued function
and is implemented by an approximating input uj (15) with ∆ = 0.001
and ∆ = 0.01; (b). The close-up of the state behaviour at 40s;

The implementation of relaxed input that is based on delta

measure leads to the Pulse Width Modulation (PWM) control

signal. By considering different type of relaxed inputs, we

can generalize the PWM control signal and, in particular, it

is possible to have an approximating input signal which is

continuous.
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