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Abstract— This paper presents a monitoring and fault detec-
tion system based on principal component analysis techniques
(PCA) for a simulated reverse osmosis desalination plant.

The classical fault detection techniques based on PCA are
not suitable for the type of plants studied in this work due to
the cleaning cycles necessary for correct plan running. These
cleaning cycles periodically change the operating mode of the
plant and these changes could be detected as faults. So a well-
known PCA approach designed for monitoring batch processes
(U-PCA) has been adapted and applied in order to monitor
this type of processes.

The developed technique has been tested with several types
of faults, obtaining good results. The ratio of false alarms has
also been reduced in the nominal behaviour.

I. INTRODUCTION

Two of the most important aims of the industry are

the best quality products and safe operation. The control

and automation theory has solved an important number of

problems with optimal results from the point of view of

the quality. Unfortunately, special causes can appear in the

industrial processes and normal operation and quality can

be altered. These special causes can even put the security

and health of the plant operators and the final users at risk

. This problem can be solved by implementing monitoring

schemes.

One approach widely extended in monitoring, fault detec-

tion and diagnosis tasks is the multivariate statistical pro-

cess control (MSPC) [1], replacing the traditional univariate

charts such as the Shewart, CUSUM and EWMA charts.

One of the most widely used MSPC methods is the

Analysis of Principal Components (PCA). These techniques

use historical databases to build empirical models. The

models obtained are able to describe the system’s trend. PCA

models extract useful information from the historical data.

This extraction is based on the calculation of the relationship

between the measured variables. When a fault appears, these

special causes can change the covariance structure captured

by the PCA model and this situation can be detected.

Some processes with continuous behaviour can go through

several operating modes due to, for example, changes in the

final product specifications, feed flow-rate compositions or

set-points. These changes can be detected as faults because

they can produce substantial changes in the covariance
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structure captured by the PCA model. So, many authors have

applied different solutions to deal with these lacks [2], [3].

This work presents a monitoring and fault detection

method based on the PCA approach applied to a simulated

reverse osmosis desalination plant. The simulated plant is

based on small and medium real plants placed in remote

areas. The remote localization of this kind of plants makes

the application of monitoring and fault detection tools very

suitable, since the staff cannot be present during all the day

or they may even only be able to be present one day per

week. Using the current technologies could make it very

easy to monitor the state of plants from a remote centralised

operation centre.

The plant studied in this work is a continuous process,

but here the monitoring is applied using a batch monitoring

PCA-based scheme (U-PCA). This approach is used due to

the necessary cleaning phases for the correct plant operation

that produces a significant amount of false alarms. Also,

the upper limits of the typical monitoring statistics used in

control charts take high values when the training data do not

have a stationary behaviour. High values in the upper limits

of the statistics can detract from the detectability of the fault

detection method.

So, the aim of this paper is to test the adaptation of the U-

PCA monitoring and fault detection approach in a continuous

process to reduce false alarms and improve the detectability.

Other works related with the monitoring of reverse osmo-

sis desalination plants can be found in [4] and [5].

Theoretical aspects of PCA are described in section II.

Section III describes the techniques used to monitor batch

processes. The simulated reverse osmosis desalination plant,

with the results of applying both PCA and U-PCA methods

to monitor the system are presented in section IV. The

conclusions obtained are presented in section V.

The notation used in this paper is the following: bold

capitals for matrices, bold lower case for vectors and cursive

for scalars.

II. PRINCIPAL COMPONENT ANALYSIS

One of the most widely used multivariate statistical tech-

niques is probably the Principal Component Analysis (PCA).

PCA has been used in MSPC [6] and in Fault Detection

and Isolation (FDI) tasks [1] with good results. PCA ba-

sically produces a linear transformation that generates new

uncorrelated variables, also called components, from the vari-

ables measured from the process, which are usually highly

correlated. This transformation is based on a dimensional

reduction of the original data, which means that only a few
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of these components are sufficient to represent appropriately

the hidden sources of variability in the studied process.

PCA calculates the correlation structure of the process

variables. The data collected from an industrial plant can be

arranged into a matrix X ∈ R
K×J , where J is the number

of process variables and K is the number of samples, also

called individuals. The data used to perform the PCA model

for a fault detection or monitoring scheme must be collected

under normal plant operation.

Mathematically, PCA estimates an approximation of the

matrix X as the product of two new matrices T and PT . The

columns (tR) of the matrix T are known as score vectors

and the rows (pT
R) of the matrix PT are known as the

loading vectors [7]. This calculation is performed through

the covariance matrix:

S =
1

K − 1
XTX (1)

X has to be previously normalized to zero mean and unit

variance. Then, the singular value decomposition SVD is

performed over the covariance matrix S obtaining [8]:

S = VΛVT (2)

The transformation from the original space of the corre-

lated measured variables to the uncorrelated reduced space

of the scores is performed using the transformation matrix

P1:A ∈ ℜJ×A:

T = XP1:A (3)

The matrix P1:A is arranged choosing the A eigenvectors or

columns of V that correspond to the greatest A eigenvalues.

The eigenvalues are the diagonal of the matrix Λ sorted in

decreasing order.

The scores can be transformed into the original space

operating in equation 3:

X̂ = TPT
1:A (4)

The difference between the original measured data X and

that estimated using the PCA model X̂ is known as the

residuals:

E = X− X̂ (5)

The original data space can be obtained by taking into

account the estimated data and the residuals:

X = TPT
1:A +E (6)

The PCA model can also be calculated using the NIPALS

algorithm [7].

There are several rules for choosing the correct number

of principal components A; several of these techniques

are heuristic, but the most popular procedure is the cross

validation [9], [10]. This approach consists of the selection

of the components which maximize the goodness of fit and

the goodness of prediction.

A. Monitoring and Fault Detection

When a PCA model has been established using nominal

data, the monitoring statistics are used in order to monitor

and detect faults in a new data set of the plant or in a real-

time scheme connected to the plant. The monitoring statistics

are drawn in control charts, the faults and special causes

are detected when the value of the monitoring statistics are

greater than a specific threshold. The most common statistics

used in fault detection and monitoring are Hotelling’s T 2

statistic and the square prediction error (SPE or Q) statistic.

The Hotelling’s T 2 statistic is calculated as follow:

T 2 = xTP1:AΛ
−1
A PT

1:Ax (7)

where ΛA is a squared matrix formed by the first A rows

and columns of Λ.

The process is considered normal for a given significance

level α if:

T 2 ≤ T 2
α =

(K2 − 1)A

K(K −A)
Fα(A,A−K) (8)

where Fα(A,K − A) is the critical value of the Fisher-

Snedecor distribution with A and K−A degrees of freedom

and α is the level of significance. α takes values between

90% and 95%.

Hotelling’s statistic uses only the A principal components

and is able to detect deviations in the latent variables. The

Q statistic is based on the rest of the components and can

be used as a test to detect deviations in the residuals.

Q = rT r (9)

with:

r = (I−P1:AP
T

1:A)x

The upper limit of this statistic can be computed as

follows:

Qα = θ1

[
h0cα

√
2θ2

θ1
+ 1 +

θ2h0(h0 − 1)

θ21

] 1

h0

(10)

with:

θi =

J∑

j=R+1

λi
j h0 = 1− 2θ1θ3

3θ22

where cα is the value of the normal distribution, with α being

the level of significance.

III. U-PCA

All the described PCA approaches can be applied when

the process presents a linear behaviour. This implementation

cannot be suitable for processes with a non-linear behaviour.

So, for non-linear processes a special configuration of the

PCA must be applied. These variations of the classical PCA

configuration is called multi way PCA (MPCA) or unfolded

PCA (U-PCA) [11] [12] and it is usually applied to batch

processes or transitory states and start-ups [13] [14].
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The PCA approach is mainly used as a fault detection tool

in stationary processes. When a process presents several sta-

tionary states, some variations of the classical PCA approach

can be applied, for example, the adaptive PCA approach

[3], the recursive PCA approach [15] or the exponentially

weighted PCA approach [16].

The plant considered in this paper presents a behaviour

similar to batch processes and U-PCA will be applied.

In the configuration of this approach, the database is made

up of data from past normal batches or transitions. In every

i = 1, 2, . . . , I correct past batches j = 1, 2, . . . , J variables

are measured at k = 1, 2, . . . ,K time intervals. All these

datasets are arranged into a three-way matrix X(I×J ×K)
(following the notation of [17]) as shown in the left part of

the Fig. 1.
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Fig. 1. Matrix unfolding

The three-way matrix must be unfolded into a two-way

matrix structure in order to apply the PCA formulation.

There are several ways to perform the unfolding of the three-

way matrix. In this work, the direction of the batches is

maintained and the trajectory of all process variables of the

first sample time are arranged into the unfolded matrix, and

then the next sample time, and so on, as shown in Fig. 1.

This formulation is used in [11], but there are other options

as discussed in [18].

In this configuration of PCA, when a batch monitoring

method is applied to a continuous process, two tasks have to

be considered: the data alignment and the data imputation.

A. Data alignment

When the data is collected from the process, it is arranged

into the three-way matrix, but in the example presented

in this work, it is normal that the events which produce

the activation of the filters and membrane cleanings do not

always trigger an alarm with the same frequency, so the

datasets do not have the same length. In these cases, the

three-way matrix cannot be arranged, so it is necessary to

use the same alignment technique to align the trajectories to

the same length.

There are principally two alignment techniques. One is

the indicator variable approach [11] [19]. This technique

is applied when the progress of the process variables in a

batch or transitory state is a complex function of different

phenomena and it is not simply a function of time. When

this approach is applied, a monotonically increasing or

decreasing variable has to be found. This variable leads the

data collection instead of time. For example, in cases where

a reagent is added, an indicator variable can be used if the

accumulated flows are monotonically increasing variables.

In the plant studied in this work, it is not possible to

find indicator variables to align the data, so the indicator

variable is not a suitable approach. In this case, the method

used is dynamical time-warping (DTW) [20]. Basically, for

two multivariate trajectories of two different implementations

between the cleaning cycles, A and B, both matrices of

dimensions K1×J and K2×J , where the number of samples

K1 and K2 is not equal, DTW aligns both trajectories to the

length of one of these or to a reference trajectory, created by

eliminating some points. These processes of compression or

expansion of the time scales must be performed to minimize

the dissimilarity between the two trajectories. Also, a real-

time version of the DTW methodology has been developed

to allow on-line monitoring.

B. Imputation

When the plant is monitored on-line at each time t,

as figure 2 shows, the future values of the variables are

necessary in order to calculate the corresponding score. The

matrix P1:A was built using data along the whole past

nominal trajectories. There are several methods to deal with

this missing future data problem. These methods impute

the missing data and estimate the scores using different

strategies. In [21], the principal missing data imputation

methods are presented, explained and compared. In this

work, two methods will be used: Trimmed score method

(TRI) and Trimmed score regression method (TSR).

...
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Fig. 2. Imputation

The data matrix X is a collection of column vectors

xj (variables) or row vectors zTi (observations). Columns

of the loading matrix P are pj . The score matrix T will

be considered as a set of row vectors τ
T
i (scores in the

ith observation) or column vectors ti (latent variables). A

new observation at a particular time instant is partitioned as

following:

z =

[
z∗

z#

]
(11)

where z∗ is the known past and current process variable

values and z# is the unknown future data values.

The loadings matrix P is partitioned, separating the known

and the unknown data, separating the significant A principal

components and leaving K −A components, as equation in

12:
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P =

[
P∗

P#

]
=

[
P1:A PA+1:K

]
(12)

=

[
P∗

1:A P∗

A+1:K

P
#
1:A P

#
A+1:K

]

The trimmed score method (TRI) substitutes every missing

value by its mean, as the statistics are calculated using

centred data, where the mean value is zero. In short, this

method substitutes the future unknown data by zeros z# = 0.

The scores can be calculated as [21]:

τ1:A = PT
1:Az =

[
P∗T

1:A P
#T
1:A

] [ z∗

z#

]
(13)

= P∗T
1:Az

∗ +P
#T
1:Az

# = P∗T
1:Az

∗

The trimmed score regression (TSR) method reconstructs

T1:A from the trimmed scores using the following regression

model T1:A = T∗

1:AB + U. The scores are estimated as

follows [21]:

τ1:A = ΛAP
∗T
1:AP

∗

1:A

(
P∗T

1:APΛP∗TP∗

1:A

)−1
P∗T

1:Az
∗ (14)

C. Control limits

The T 2 monitoring statistic and the upper limit in this

adaptation of PCA are calculated using equations 7 and 8.

The number of individuals in the unfolded matrix X is the

number of past I instead of the number of process samples

K.

The Q statistic is calculated as the squared prediction error

SPE in every particular instant k [11]:

SPEk =

kJ∑

(k−1)J+1

e(c)2 (15)

instead of the squared residuals over all time periods Q,

as this measurement does not represent the instantaneous

perpendicular distance to the reduced space.

The upper limit for these statistics can be calculated

by approximating the value every instant to a chi squared

distribution, as as explained in [11].

IV. STUDY CASE

The approach presented in this paper has been applied to a

simulated reverse osmosis desalination plant. The description

of the plant can be found in [22]. The plant has been

simulated using the simulation environment EcosimPro c©.

EcosimPro c© is an object-oriented and dynamic simulation

tool that allows first principles models to be built. Every

component is modelled in correlation with the real compo-

nent principles and such related parameters as the quality

of feed water, salinity, temperature, type of filter, membrane

characteristics, etc.

The simulated plant presented in this work is based on real

small or medium plants placed in remote areas. The aim of

the simulated plant is to test different control and monitoring

and fault detection techniques in order to facilitate the

autonomous functioning and reduce the human maintenance

and operation.

This type of plants are based on the reverse osmosis

separation process that uses high pressure to force the water

through a semi-permeate membrane that retains the salt. Two

filters are placed before this membrane, first a sand filter and

then a cartridge filter. Both filters are necessary in order to

remove particles which can break the membranes.

A typical problem in this kind of plants is the decrease

in performance of the membranes and filters during the

operation. This decrease is due to deposits such as silt,

scale, organic components, etc. Thus, cleaning cycles are

performed to reduce the amount of deposits.

The accumulation of deposits in the filters and membranes

and the cleaning cycles mean that the plant does not have

a strictly stationary behaviour, due to the differences in

measurements of pressures and concentrations when the plant

has just been cleaned and when the plant was cleaned long

ago, as Fig. 3 shows. All these factors mean that the classical

PCA approach for monitoring and fault detection in this kind

of processes is not the most effective. The monitoring by

the T 2 statistic (Fig. 4(a)) and the Q statistic (Fig. 4(b))

clearly shows a high number of false alarms in different

zones corresponding to the different cleaning cycles. The

PCA model used in this monitoring was built with nominal

data from 10 variables during several cleaning cycles. The

monitoring was run over new data from the plant.

0 20 40 60 80 100 120 140 160
1

1.2

1.4

1.6

1.8

2

2.2

time (days)

P
1
 (sand filter)

Fig. 3. Pressure measured in the sand filter output
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Fig. 4. Monitoring using classical PCA (a) T 2 monitoring statistic, (b) Q
monitoring statistic

A. Plant monitoring using U-PCA

To apply the U-PCA configuration, first of all, a data base

of past implementations between the cleaning phases under
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normal operation is necessary. In this work, each batch is the

implementation between the cleaning phases.

Ten variables was selected to monitor the plant presented

in this paper. Principally, these variables were concentrations,

pressures and flows related with the two filters and the

membrane.

All these variables were arranged into the same matrix

in order to apply U-PCA in a first approximation. But the

cleaning frequency is not the same in the filters and in the

membrane, so, in the same way as when the classical PCA

was applied, the changes in the behaviour due to the cleaning

phases were detected by the monitoring statistics as faults.

It is not possible to select a citerion for arranging the data

into the three-way matrix.

The solution taken to deal with this drawback consists

of building three U-PCA models: two models for the filters

and another model for the membrane. Some of the variables,

which are not affected by the cleaning phases, were included

in several models. The variables affected by a specific

cleaning phase are only selected in the model related with

the filter or membrane related with that cleaning phase. This

configuration is suitable for reducing the number of false

alarms.

The sand filter model was performed using six variables,

the dimension of the unfolded matrix was 18 × 5094 and

8 principal components were extracted. The carriage filter

unfolded matrix dimension was 27 × 1821 (three variables

were selected) and 13 principal components were extracted.

In the case of the membrane, the dimension of the unfolded

matrix was 21 × 2313, the number of variables in this case

was three. The number of principal components extracted in

this case was 10. In all cases, the number of principal com-

ponents was calculated using the cross validation approach

cited in section II.

Table I shows the false alarms percentage observed using

the classical PCA approach and the U-PCA in the different

sections. The U-PCA approach, using the TRI imputation

method, drastically reduces the amount of false alarms in

the case of the T 2 monitoring statistic. This reduction is not

so significant when the monitoring statistic applied is the Q

or SPE. In this case, the biggest reduction is more effective

when the selected imputation method is TSR. However the

amount of false alarms in the membrane section really

obtains an important improvement.

Method
Percentage

T 2 Q or SPE

Classical PCA 6.7% 16.3%

U-PCA TRI TSR TRI TSR

Sand filter 0% 1.6% 16.3% 16.2%

Cartridge filter 0% 2.6% 13.0% 11.3%

Membrane 0% 1.0% 21.9% 4.0%

TABLE I

FALSE ALARMS PERCENTAGE

Fig. 5(a) shows the T 2 monitoring of the membrane

section using U-PCA, the control chart on the left is the

monitoring using the TRI imputation method and on the

right is the same monitoring, but using the TSR imputation

method. The percentage of false alarms using the TSR

imputation only appears in the first stages while in the rest of

the monitoring the statistic remains under the upper limits.

This is due to the P∗T
1:APΛP∗TP∗

1:A term in Eq. 14 possibly

being an ill conditioned matrix when the known data is scare.

On the other hand, Fig. 5(b) shows the SPE monitoring.

The 99% upper limits are equalled to one. So, the 95%
upper limit and the statistics are divided by 99% upper

limit to normalize these charts because the thresholds in the

SPE statistic are not contsant. The results obtained with the

TSR imputation method are more acceptable than the results

obtained using the TRI imputation method as the percentage

of false alarms is lower.
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Fig. 5. Monitoring using U-PCA in the membrane section (a) T 2

monitoring statistic, (b) SPE monitoring statistic

Looking at the results presented in Table I and Fig.

5(a) and 5(b), one can conclude that the best option to

monitor this particular process, using U-PCA, is to use the

TRI imputation method for the T 2 statistic and the TSR

imputation method for the SPE statistic.

B. Fault Detection

The main results obtained with different sizes of faults

can be seen in Table II. The types of faults induced in

this work were offsets in the pressure, temperature and

concentration sensors, blockages in the filters and breakages

in the membranes. Every cell in the table is evaluated with

one of three possible values: lowly detectable (LD), when the

percentage of alarms after the occurrence of the fault, has a

value lower than 33%, partially detectable (PD) when the

percentage of alarms is between 33% and 66% and highly

detectable when this value is greater than 66%. When the

size of the fault is greater than 20%, the method detects

faults with a high level of detectability.

Figs. 6(a) and 6(b) show an example of fault detection

using the approach presented in this work. The fault consists

of an offset in a pressure sensor in the sand filter section.

The fault appeared on the second day. The SPE monitoring

quickly detects the fault because the statistic using both

the imputation methods raises the upper limit practically
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Phase Sensor Offset Blockage Breakage

10% LD LD LD
20% HD HD HD
40% HD HD HD
60% HD HD HD

TABLE II

FAULT DETECTION RESULTS

without delay. However the T 2 statistic in several of the

tested faults did not raise the upper limits as quickly as the

SPE statistic. The delay committed by this statistic was very

high, principally in the smallest faults, so the T 2 statistic

cannot be very suitable in this type of systems.
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Fig. 6. Fault detection of a 20% offset in a pressure sensor (a) T 2

monitoring statistic, (b) SPE monitoring statistic

V. CONCLUSIONS

A. Conclusions

This work presents a configuration for monitoring and

fault detection in continuous processes based on an approach

for batch processes.

The monitoring system is applied to a reverse osmosis

desalination plant, which needs cyclical cleaning phases that

changes slightly the plant behaviour. The little changes are

detected as faults, so it is necessary to use a monitoring tool

that explores not only the stationary state of the plant, but

the dynamics that these cleaning phases introduces into the

process nature.

The approach presented in this article: the adapted U-PCA

for the continuous process, reduces the ratio of false alarms

and is able to detect faults in several components in the plant

with good results.

B. Future Works

The next logical step in a monitoring and fault detection

system is the diagnosis stage. When a multivariate statistical

method like PCA is applied, a very suitable option for fault

diagnosis is the contribution plots [6].

Another issue that can considered is to use some of

the modifications proposed to PCA, such as recursive PCA

(RPCA), exponentially weighted (EWPCA) or adaptive PCA

(APCA).
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