
 

 

 

Abstract—This paper considers estimation problems where 
the energy of a linear system’s output is constrained. A low-cost 
filtering procedure is proposed in which the input 
measurements are constrained by nonlinear censuring 
functions. A similar smoothing procedure for off-line 
applications is also described. It is shown that the filtered and 
smoothed output estimates satisfy a performance bound. It is 
also established that the resulting estimates are unbiased, and 
the estimation errors are bounded. 
 

I. INTRODUCTION 

onstraints often appear within navigation problems. For 
example, vehicle trajectories are typically constrained 
by road, tunnel and bridge boundaries. Similarly, indoor 

pedestrian trajectories are constrained by walls and doors. 
However, as constraints are not easily described within 
state-space frameworks, many techniques for constrained 
filtering and smoothing are reported in the literature [1] – 
[18].  

A common technique for constrained filtering involves 
augmenting the measurement vector with perfect 
observations – see the discussion [1, p. 248]. The application 
of the perfect-measurement approach to filtering and fixed-
interval smoothing is described in [2]. Generalizations of 
this approach for time-varying problems are reported in [3] – 
[4]. Alternative proofs showing that the estimated states 
satisfy the constraints are presented in [5] - [6]. The use of 
perfect measurements can lead to singular state covariance 
matrices [1] which prompted the use of “nearly perfect” 
observations within an iterated extended Kalman filter [7] 
and nonzero measurement covariances within a linear filter 
[8], [9]. 
 Constraints can be applied to state estimates, see [10], 
where a positivity constraint is used within a Kalman filter 
and a fixed lag smoother. Three different state equality 
constraint approaches, namely, maximum-probability, mean-
square and projection methods are described in [11]. It can 
be shown that the constrained state estimates are unbiased 
[11] - [12]. It is established in [13] that if the states are 
known to be constrained in the null space of a constraint 
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matrix then the Kalman predictor for a constrained system 
provides an error variance improvement. In [14], the 
projection method is used to apply nonlinear equality 
constraints. Under prescribed conditions, the perfect-
measurement and projection approaches are equivalent [15] 
- [18]. 
 In the state equality constrained methods [15] – [18], a 
constrained estimate can be calculated from a Kalman 
filter’s unconstrained estimate at each time step. We seek 
simpler, low-computation-cost techniques suitable for 
implementation within real-time navigation systems. To this 
end, an on-line procedure is proposed that involves using 
nonlinear functions to constrain the measurements and 
subsequently applying the minimum-variance filter 
recursions [19]. An off-line procedure for retrospective 
analyses is also presented, where the minimum-variance 
fixed-interval smoother [20] – [23] is applied to the 
constrained measurements. In contrast to the afore-
mentioned techniques [1] – [18], which employ constraint 
matrices and vectors, here constraint information is 
represented by an exogenous input process. This approach 
enables the nonlinearities to be designed so that the filtered 
and smoothed estimates satisfy a performance bound. 

The remainder of this paper is organized as follows. The 
notation is introduced in Section IIA, suitable nonlinear 
censuring functions are discussed in Section IIB and the 
problem of interest is defined in Section IIC. Sections IID 
and IIE describe the constrained filtering and smoothing 
procedures, respectively. It is shown that the filtered and 
smoothed estimates are unbiased and the estimation errors 
are bounded. The conclusions follow in Section III. 
 

II. CONSTRAINED FILTERING AND SMOOTHING 

A. Notation 

Let wk  = 1, ,  
T

k m kw w   m  represent a stochastic 

white input process, with 
 ,{ } 0, { } , T

k j k k j kE w E w w Q                  (1)  

in which , j k  denotes the Kronecker delta function. It is 

convenient to abbreviate the entire record of wk over the 

interval k  [0, N] by the stacked vector w   1[ Tw … ]T T
Nw . 
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The two-norm of w is defined as 
2

w     1/ 2Tw w  and the 

set of processes having finite two-norms is known as the 
Lebesgue 2-space, which is denoted by 2 . The energy of a 

stochastic process is the square of its two-norm, i.e., 
2

2
w    

2
,

1 1 


pN

j k

k j

w . Thus, stipulating w  2  means that w is 

required to have finite energy. 

B. Constraining functions 

We consider nonlinear censuring functions whose outputs 
are constrained to lie within prescribed bounds. In particular, 
for αk , β   , k   [1, N], let ( , ) kf  denote an odd 

function of αk about E{α}, i.e., ( { }, )   kf E  = 

( { }, )   kf E , so that 

{ ( , )} { }  E f E .                           (2) 

Consider the hard-limiting function 
{ } if { }

( , ) if { } { }

{ } if { }

    
       

    

  
    
   

k

k k k

k

E E

f E E

E E

.      (3) 

By inspection, ( , ) f  is constrained within E{α} ± β and 

since it is an odd function, (2) is satisfied. In this paper, the 
attention is confined to zero-mean processes, namely E{α} = 
0 and 

if

( , ) if

if

  
     

  


    
  

k

k k k

k

f ,                      (4) 

for which ( , ) 


df

d
 = 1 when     k . 

An example will be presented subsequently that uses the 
saturating nonlinearity 

 1 1( , ) 2 arctan (2 )     g ,               (5) 

which is a continuous approximation of (4) and satisfies 

( , ) g      and ( , ) 


dg

d
 = 1  +  12 2( ) (2 ) 

    1 

when 2 2( ) (2 )      0. 

C. Problem statement 

Let k   p  denote an exogenous input process in 2 . 

Suppose that a system’s internal states, xk  n , and 

outputs, yk   p , are generated by 

1kx   = k kA x  + k kB w ,                         (6) 

1, 1, 1,

, , ,

( , )

( , )





   
   

    
   
   

 
k k k k

k

p k p k k p k

y f C x

y

y f C x

,                    (7) 

where kA   n n , kB   n m  and Cj,k is the jth row of 
 p n

kC .  It can be seen from (7) that the yj,k lie within 

, j k , i.e., , , ,   j k j k j ky , j = 1, … p. Consequently, the 

input k  is called a constraint process. For example, if the 

outputs represent the trajectories of pedestrians within a 
building then the constraint process could include 
knowledge about wall, floor and ceiling positions. Similarly, 
a vehicle trajectory constraint process could include 
information about building boundaries and road edges. 

Assume that observations  

kz  = ky  + kv                               (8) 

are available, where kv   p  is a stochastic, white 

measurement noise process with  
{ } 0, { } , { } 0.  T T

k j k k jk j kE v E v v R E w v       (9) 

Denote y   1[ Ty  … ]T T
Ny  and θ   1[ T  … ] T T

N , where θk  

= 1,[ k  … , ] T
p k . Equation (7) implies 

2 2

2 2
y ,                              (10) 

namely, the energy of the system’s output is bounded from 
above by the energy of the constraint process. In view of 
(10), it is desired to exploit knowledge of the model (6), (7) 
together with the assumptions (1), (9), to produce estimates 

ŷ    1ˆ[ Ty  … ˆ ]T T
Ny  of y  from the measurements z   1[ Tz  

… ]T T
Nz  such that  

2 2

22
ˆ y                                (11) 

and the output estimation error, ky  = ky  − ˆky , is in 2 .  

D. Constrained filter procedure 

A procedure is proposed in which the minimum-variance 
filter recursions [19] are used to calculate estimates ŷ  from 

measurements which are constrained using the nonlinear 
function (4). Suppose that the constrained measurements are 
obtained as 

1
1, 1, 1,

1
, , ,

( , )

( , )

 

 





  
  

    
  

   

 
k k k

k

p k p k p k

z f z

z

z f z

                  (12) 

for a positive      to be designed. 

The minimum-variance filter recursions are given by [19] 

1/ˆ k kx  = / 1ˆ( ) k k k k kA K C x  + k kA z              (13) 

/ˆk kx  = / 1ˆ( )  k k k kI L C x  + k kL z                 (14) 

/ˆk ky  = /ˆk k kC x                               (15) 

where kL  = 1( )T T
k k k k k kP C C P C R  is the filter gain,  kK  = 

k kA L  is the predictor gain and kP  = T
kP   n x n  is the 

solution of the Riccati difference equation (RDE)  
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1 ( ) .    T T T T
k k k k k k k k k K k k kP A P A K C P C R K B Q B    (16) 

For linear problems, namely if the measurements are 
given by k kC x  + kv , the state prediction, (13), is a 

conditional mean estimate, for which the prediction error, 

/ 1k kx  = kx  − / 1ˆ k kx , is unbiased, i.e., 

 / 1{ }k kE x  = 0,                              (17) 

and the filter minimizes the covariance / 1 / 1{ }  Tk k k kE x x  [18]. 

Although applying the filter (13) – (15) to the constrained 

measurements (12) does not minimize / 1 / 1{ }  Tk k k kE x x , the 

predicted and filtered estimates are unbiased. 
Lemma 2.1: In respect of the filter (13) – (15) operating 

on the constrained measurements (12), the following applies. 
(i) the predicted state estimates, 1/ˆ k kx , are unbiased; 

(ii) the corrected state estimates, /ˆk kx , are unbiased 

provided that 0 / 0x̂  = 0{ }E x ; and  

(iii) the output estimates, /ˆk ky , are unbiased provided that 

0 / 0x̂  = 0{ }E x . 

Proof:  see [26]. 
The nonlinearity design relies on following property of 

linear systems. 

Lemma 2.2 [25]: Suppose that ky    p  is generated 

from kw   m  by the system 

1kx  = k kA x  + k kB w                         (18) 

ky  = k kC x  + k kD w ,                        (19) 

where kA , kB , kC  and kD  are real-valued matrices of 

appropriate dimensions. Then with a     , the existence 

of solutions kM  = T
kM  > 0 to the RDE 

1kM   = T
k k kA M A + T

k kB B ( ) T T
k k k k kA M C B D  

2 1( )   T T
k k k k kI D D C M C  

( )T T T
k k k k kA M C B D  ,                            (20) 

satisfying  
2( )  T T

k k k k kI D D C M C  > 0,                 (21) 

for all k  [1, N], is necessary and sufficient to ensure that 
2

2
y  + 0 0 0

Tx M x  ≤ 
22

2
 z  for all z  2 . 

A candidate for   within (12) can be tested by applying 

Lemma 2.2 to the system (13) – (15) as follows. 
Lemma 2.3: Suppose that the minimum-variance filter 

recursions (13) – (15) operate on the constrained 

measurements (12).  Let kA  = k k kA K C , kB  = kK , kC  = 

( ) T T T
k k kI C L C  and kD  = k kL C .  For a given   > 0, if a 

solution kM  = T
kM  > 0 for the RDE (20) satisfying (21) 

exists for all k  [0, N], then the performance (11) is 
achieved. 
Proof: see [26].  

A search is required for a minimum 2  so that positive 

definite solutions for the RDE specified within Lemma 2.3 
exist. This search is tractable because 1kM   is a convex 

function of 2 , since 
2

1
2 2

kd M

d
 > 0, provided that (26) holds.  

It is shown below that the filter’s output estimation error 
is stable.  

Lemma 2.4: Define the filter output estimation error as y  

= y    ŷ . Under the conditions of Lemma 2.3,    2  

and v   2  imply y   2 . 

Proof: see [26].  

E. Constrained smoother procedure 

In this sequel, it is described how the censuring function 
within (12) can be designed for use by a fixed-interval 
smoother. The minimum-variance smoother for output 
estimation is derived in  [20] - [22] and a version that is 
robust to problem uncertainties appears in [23]. The 
smoother recursions are  given by 

1kx   = k kA x  + k kB z                      (22) 

k  = k kC x + k kD z                         (23) 

1k   = T
k kA     T

k kC  ,  0N               (24) 

k  =  T
k kB + T

k kD                      (25) 

/ˆk Ny  = kz   k kR ,                       (26) 

where kA , kB  are defined above, kD  =  1/ 2( )T
k k k kC P C R  

and kC  =  k kD C . It is shown below that the smoothed 

estimates are unbiased. 
Lemma 2.5: In respect of the smoother (22) – (26) 

operating on the constrained measurements (12), the 
smoothed estimates, /ˆk Ny , are unbiased. 

 Proof: see [26]. 
A method for testing candidates for the scalar   within 

(12) is described below.  
Lemma 2.6: In respect of the smoother (22) – (26) 

operating on the constrained measurements (12), suppose 
the following. 

(i) 2 , 3  > 0 are given.  

(ii) With kA , kB  defined above, kD  =  1/ 2( )T
k k k kC P C R ,  

kC  =  k kD C  and   = 2 , a solution kM  = T
kM  > 0 for the 

RDE (20) satisfying (21) exists for all k  [0, N]. 

(iii) With kA , kB  defined above, kD  =  
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1/ 2( )T
k k k k kR C P C R ,  kC  =  k k kR D C  and   = 3 , a 

solution kM  = T
kM  > 0 for the RDE (20) satisfying (21) 

exists for all k   [0, N]. 
Then the design 

2  = 1 + 2 2
2 3                                 (27) 

within (12) is sufficient to achieve (11). 
Proof: see [26].  

It is argued below that the smoother’s output estimation 
error is stable. 

Lemma 2.7: Define the smoother output estimation error as 
y  = y    ŷ . Under the conditions of Lemma 2.6,    2  

and v   2  imply y   2 . 

The proof follows mutatis mutandis from that of Lemma 
2.4.  

Once again, a   for (12) can be found iteratively by 

searching for minimum 2 , 3  > 0, so that positive definite 

RDE solutions exist in accordance with Lemma 2.6. 
Although the conditions of Lemma 2.6 serve to ensure (11) 
and y   2 , the choice (27) arises out of a sufficient 

condition. Consequently, the design 1
, 

j k , j = 1 … p, 

within (12) may be too conservative and yield poor mean-
square-error performance. That is, nonlinearity designs with 

2  < 1 + 2 2
2 3   may provide improved performance. 

F. Example 

 Measurements were generated using (6), the nonlinearity 

(5) within (7), A = 
0.9 0

0 0.9

 
 
 

, B = C = 
1 0

0 1

 
 
 

, Q = R = 

0.1 0

0 0.1

 
 
 

 and Gaussian processes. The constraint process 

within (7) was chosen to be fixed, namely, k  = 
0.5

0.5

 
 
 

, k  

[1, 106], for which   2 . A minimum value of   = 0.738 

was found for the solutions of the RDE specified within 
Lemma 2.3 to be positive definite. The limits of the 
observed distribution of the filtered estimates, /

ˆ
k ky = 

1, /

2, /

ˆ

ˆ

 
 
  

k k

k k

y

y
, are indicated by the outer black region of Fig. 1. It 

can be seen from the figure that -0.5 ≤ 1, /
ˆ

k ky  ≤ 0.5 and -0.5 

≤ 2, /
ˆ

k ky  ≤ 0.5, which illustrates Lemma 2.3.  

Minimum values of 2  = 2.79 and 3  = 2.06 were found 

for the solutions of the RDEs specified within Lemma 2.6 to 
be positive definite. However, constraining the smoother 

measurements using   = 2 2
2 31    = 5.83 was found to be 

too conservative and yielded poor error performance. 
Instead, the ratio of the unconstrained smoother and 

measurement energies, namely,   = 
1

22
ˆ 
y z  = 0.99, was 

used within (12) to constrain the smoother measurements. 
The observed distribution of the smoothed estimates, /ˆk Ny  = 

1, /

2, /

ˆ

ˆ

 
 
  

k N

k N

y

y
, are indicated by the inner white region of Fig. 1. 

Mean square errors of 0.0478, 0.0339, 0.0478 and 0.0327 
were observed for the unconstrained filter, constrained filter, 
unconstrained smoother and constrained smoother, 
respectively, which demonstrate that constrained filtering 
and smoothing can be advantageous. 

 

 
 
 
 
 

III. CONCLUSION 

This paper develops constrained filtering and smoothing 
procedures that differ from the approaches of [1] – [18] and 
are novel in the following respects. 

 Problems are considered where the output of a 

linear system, y, satisfies 
2 2

2 2
y , in which 

  2  is an exogenous constraint process. 

 Nonlinear functions to censure the measurements 
are designed so that the estimates, ŷ , satisfy 

2 2

22
ˆ y . 

 Although the filter and fixed interval smoother 
that operate on censured measurements do not 
minimize the error variance, it is shown that the 
estimates are unbiased and the estimation errors, 
y  = y − ŷ , are in 2 . 

Constrained filtering is illustrated by a loosely-coupled 
GPS/INS integration application. In particular, a priori 

Fig. 1. Superimposed distributions of  /
ˆ

k ky  

(outer black) and /ˆk Ny  (inner white) for 
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knowledge about altitude and velocity constraints is used in 
the calculation of navigation solutions. It is demonstrated 
that constraining the filter’s inputs can provide a 
performance benefit when GPS outages occur.  
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